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Abstract

Few-shot semantic segmentation aims at learning to seg-
ment a target object from a query image using only a few
annotated support images of the target class. This challeng-
ing task requires to understand diverse levels of visual cues
and analyze fine-grained correspondence relations between
the query and the support images. To address the problem,
we propose Hypercorrelation Squeeze Networks (HSNet)
that leverages multi-level feature correlation and efficient
4D convolutions. It extracts diverse features from different
levels of intermediate convolutional layers and constructs a
collection of 4D correlation tensors, i.e., hypercorrelations.
Using efficient center-pivot 4D convolutions in a pyramidal
architecture, the method gradually squeezes high-level se-
mantic and low-level geometric cues of the hypercorrelation
into precise segmentation masks in coarse-to-fine manner.
The significant performance improvements on standard few-
shot segmentation benchmarks of PASCAL-5, COCO-20",
and FSS-1000 verify the efficacy of the proposed method.

1. Introduction

The advent of deep convolutional neural networks [17,
20, 64] has promoted dramatic advances in many computer
vision tasks including object tracking [28, 29, 45], visual
correspondence [22, 44, 48], and semantic segmentation [7,
47, 62] to name a few. Despite the effectiveness of deep
networks, their demand for a heavy amount of annotated
examples from large-scale datasets [9, | |, 35] still remains a
fundamental limitation since data labeling requires substan-
tial human efforts, especially for dense prediction tasks, e.g.,
semantic segmentation. To cope with the challenge, there
have been various attempts in semi- and weakly-supervised
segmentation approaches [6, 26, 39, 66, 72, 77, 88] which
in turn effectively alleviated the data-hunger issue. However,
given only a few annotated training examples, the problem
of poor generalization ability of the deep networks is yet
the primary concern that many few-shot segmentation meth-
ods [10, 12, 13, 19, 33, 36, 37, 46, 54, 61, 63, 69, 70, 74, 75,
80, 83, 86, 87, 89] struggle to address.
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Figure 1: Our model performs visual reasoning in coarse-to-fine
manner by gradually squeezing high-dimensional hypercorrelation
to the target segmentation mask with efficient 4D convolutions.

In contrast, human visual system easily achieves gen-
eralizing appearances of new objects given extremely lim-
ited supervision. The crux of such intelligence lies at the
ability in finding reliable correspondences across different
instances of the same class. Recent work on semantic cor-
respondence shows that leveraging dense intermediate fea-
tures [38, 42, 44] and processing correlation tensors with
high-dimensional convolutions [30, 58, 71] are significantly
effective in establishing accurate correspondences. However,
while recent few-shot segmentation research began active
exploration in the direction of correlation learning, most
of them [36, 37, 46, 65, 73, 75, 80] neither exploit diverse
levels of feature representations from early to late layers of
a CNN nor construct pair-wise feature correlations to cap-
ture fine-grained correlation patterns. There have been some
attempts [74, 86] in utilizing dense correlations with multi-
level features, but they are yet limited in the sense that they
simply employ the dense correlations for graph attention,
using only a small fraction of intermediate conv layers.

In this work we combine the two of the most influen-
tial techniques in recent research of visual correspondence,
multi-level features and 4D convolutions, and deign a novel
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framework, dubbed Hypercorrelation Squeeze Networks
(HSNet), for the task of few-shot semantic segmentation.
As illustrated in Fig. 1, our network exploits diverse geo-
metric/semantic feature representations from many differ-
ent intermediate CNN layers to construct a collection of
4D correlation tensors, i.e., hypercorrelations, which rep-
resent a rich set of correspondences in multiple visual as-
pects. Following the work of FPN [34], we adapt pyramidal
design to capture both high-level semantic and low-level
geometric cues for precise mask prediction in coarse-to-fine
manner using deeply stacked 4D conv layers. To reduce
computational burden caused by such heavy use of high-
dimensional convs, we devise an efficient 4D kernel via rea-
sonable weight-sparsification which enables real-time infer-
ence while being more effective and light-weight than the ex-
isting ones. The improvements on standard few-shot segmen-
tation benchmarks of PASCAL-5? [61], COCO-20° [35], and
FSS-1000 [33] verify the efficacy of the proposed method.

2. Related Work

Semantic segmentation. The goal of semantic segmenta-
tion is to classify each pixel of an image into one of the
predefined object categories. Prevalent segmentation ap-
proaches [5, 7, 47,49, 52, 62, 76] typically employ encoder-
decoder structure in their architecture; the encoder aggre-
gates features along deep convolutional pathways and pro-
vides high-dimensional feature map in low-resolution and
the corresponding decoder takes the output to predict seg-
mentation mask by reversing this process [49]. Although
the methods clearly show the effectiveness of the encoder-
decoder architecture in the task of semantic segmentation,
offering useful insights to our study, they still suffer apparent
disadvantages of data-driven nature of neural networks: lack
of generalizibility under insufficient training data.

Few-shot learning. To resolve the generalization problem,
many recent approaches to image classification made vari-
ous attempts in training deep networks with a few annotated
examples [1, 18, 25, 31, 50, 53, 59, 65, 67, 73, 79, 84, 85].
Vinyals et al. [73] propose matching networks for one-shot
learning; the method utilizes a special kind of mini-batches
called episodes to match training and testing environments,
facilitating better generalization on novel classes. Snell e?
al. [65] introduce prototypical networks which compute dis-
tances between representative embeddings, i.e., prototypes,
for few-shot classification. With the growing interests in
few-shot learning in classification domain, the problem of
few-shot segmentation has attracted a great deal of attention
as well. Shaban et al. [61] propose one-shot semantic seg-
mentation networks which (meta-) learns to generate parame-
ters of FCN [62]. Inspired by the prototypical networks [65],
utilizing prototype representations to guide mask prediction
in a query image became a popular paradigm in few-shot
segmentation literature [10, 36, 37, 46, 63, 75, 80, 87, 89].

Witnessing the limitation of prototypical approaches, e.g.,
loss of spatial structure due to masked average pooling [89],
work of [74, 86] build pair-wise feature correlations, e.g.,
graph attention, to retain the spatial structure of the images
for fine-grained mask prediction. Note that both prototypical
and graph-based methods fundamentally focus on learn-
ing to find reliable correspondences between support and
query images for accurate mask prediction. In this work, we
advance this idea and focus on learning to analyze corre-
spondences using adequately designed learnable layers, e.g.,
4D convolutions [58], for effective semantic segmentation.

Learning visual correspondences. The task of visual corre-
spondence aims to find reliable correspondences under chal-
lenging degree of variations [3, 14, 15, 43, 60]. Many meth-
ods [21, 22, 30, 38, 42, 44, 56, 58, 81] typically built upon
convolutional features pretrained on classification task [©],
showing they serve as good transferable representations. Re-
cent approaches to semantic correspondence [21, 38, 42, 44]
show that efficiently exploiting different levels of convo-
lutional features distributed over all intermediate layers
clearly benefits matching accuracy. In wide-baseline match-
ing literature, a trending choice is to employ 4D convolu-
tions [30,41, 57, 58, 71] on dense feature matches to identify
spatially consistent matches by analyzing local patterns in
4D space. The use of multi-level features and relational
pattern analysis using 4D convs are the two widely adopted
techniques in the field of visual correspondence.

In this paper we adapt the two most influential method-
ologies in visual correspondence to tackle few-shot segmen-
tation: multi-level features and 4D convolutions. Inspired
by the previous matching methods [42, 44, 27], which use
multi-level features to build effective “appearance features”,
we construct high-dimensional “relational features” using
intermediate CNN features and process them with a series
of 4D convolutions. However, their quadratic complexity
still remains a major bottleneck in designing cost-effective
deep networks, constraining many previous matching meth-
ods [30, 57, 58, 71] to use only a few 4D conv layers. To
resolve the issue, we develop a light-weight 4D convolutional
kernel by collecting only a small subset of vital parameters
for effective pattern recognition, which eventually leads to an
efficient decomposition into a pair of 2D conv kernels with
a linear complexity. Our contributions can be summarized
as follows:

e We present the Hypercorrelation Squeeze Networks
that analyze dense feature matches of diverse visual
aspects using deeply stacked 4D conv layers.

* We propose center-pivot 4D conv kernel which is more
effective than the existing one in terms both accuracy
and speed, achieving real-time inference.

» The proposed method sets a new state of the art on three
standard few-shot segmentation benchmarks: PASCAL-
5% [61], COCO-20¢ [35], and FSS-1000 [33].
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Figure 2: Overall architecture of the proposed network which consists of three main parts: hypercorrelation construction, 4D-convolutional
pyramid encoder, and 2D-convolutional context decoder. We refer the readers to Sec. 4 for details of the architecture.

3. Problem Setup

The goal of few-shot semantic segmentation is to perform
segmentation given only a few annotated examples. To avoid
the risk of overfitting due to insufficient training data, we
adopt widely used meta-learning approach called episodic
training [73]. Let us denote respective training and test sets
as Dyin and Dy, which are disjoint with respect to object
classes. Both sets consist of multiple episodes each of which
is composed of a support set S = (I, M®) and a query
set @ = (19, M9) where I'* and M* are an image and its
corresponding mask label respectively. During training, our
model iteratively samples an episode from Dy, to learn a
mapping from (I®, M? I4) to query mask M9. Once the
model is trained, it uses the learned mapping for evaluation
without further optimization, i.e., the model takes randomly
sampled (1%, M3, I?) from Dy to predict query mask.

4. Proposed Approach

In this section, we present a novel few-shot segmentation
architecture, Hypercorrelation Squeeze Networks (HSNet),
which capture relevant patterns in multi-level feature correla-
tions between a pair of input images to predict fine-grained
segmentation mask in a query image. As illustrated in Fig. 2,
we adopt an encoder-decoder structure in our architecture;
the encoder gradually squeezes dimension of the input hy-
percorrelations by aggregating their local information to a
global context, and the decoder processes the encoded con-
text to predict a query mask. In Sec. 4.1-4.3, we demonstrate
each pipeline in one-shot setting, i.e., the model predicts
the query mask given ¢ and S = (I°, M®). In Sec. 4.4, to
mitigate large resource demands of 4D convs, we present a
light-weight 4D kernel which greatly improves model effi-
ciency in terms of both memory and time. In Sec. 4.5, we
demonstrate how the model can be easily extended to K -shot
setting, i.e., S = {(I3, M) }_,, without loss of generality.

4.1. Hypercorrelation construction

Inspired by recent semantic matching approaches [38,

, 441, our model exploits a rich set of features from the
intermediate layers of a convolutional neural network to
capture multi-level semantic and geometric patterns of sim-
ilarities between the support and query images. Given a
pair of query and support images, I9, [5 € R3*XW 'the
backbone network produces a sequence of L pairs of inter-
mediate feature maps {(F}',F5)}%~ . We mask each sup-
port feature map F§ € R H1xWi yging the support mask
M € {0, 1}*W (o discard irrelevant activations for reli-
able mask prediction:

F; = F; © (M), (1)

where ® is Hadamard product and (;(-) is a function that
bilinearly interpolates input tensor to the spatial size of the
feature map F7 at layer [ followed by expansion along chan-
nel dimension such that ¢; : RE*XW — REOXHxWi  For
the subsequent hypercorrleation construction, a pair of query
and masked support features at each layer forms a 4D corre-
lation tensor C; € RHtxWixHixWi ysing cosine similarity:

. ) Fd(xa .],_A;\s s
Ci(x%,x%) = ReLU é(x ) Fix ‘)
(|7 (x)[F7 (=) |

(@)

where x% and x°® denote 2-dimensional spatial positions
of feature maps F}' and f‘; respectively, and ReLU sup-
presses noisy correlation scores. From the resultant set of
4D correlations {C;} - |, we collect 4D tensors if they have
the same spatial sizes and denote the subset as {Cl}le c,
where £, is a subset of CNN layer indices {1, ..., L} at
some pyramidal layer p. Finally, all the 4D tensors in
{ (o] }ier, are concatenated along channel dimension to form
a hypercorrelation C, € RIEp X Hpx Wy x Hy x Wy yhere
(H,, W,, H,,W,), with abuse of notation, represents the
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spatial resolution of the hypercorrelation at pyramidal layer
p. Given P pyramidal layers, we denote hypercorrelation

pyramid as C = {C,}]"_,, representing a rich collection of
feature correlations from multiple visual aspects.

4.2. 4D-convolutional pyramid encoder

Our encoder network takes the hypercorrelation pyra-
mid C = {C,}}_, to effectively squeeze it into a con-
densed feature map Z € R!28*Hi1xWi_ We achieve this
correlation learning using two types of building blocks: a
squeezing block f»* and a mixing block fi™*. Each block
consists of three sequences of multi-channel 4D convolu-
tion, group normalization [78], and ReLU activation as
illustrated in Fig. 3. In the squeezing block f,", large
strides periodically squeeze the last two (support) spatial
dimensions of C, down to (H,, W) while the first two
spatial (query) dimensions remain the same as (H,, W,,),
ie., fZS)qZ - RILp| X Hp x Wy x Hp xWp _y R128XHpXWp X He XWe
where H, > H. and W}, > W,. Similar to FPN [34] struc-
ture, two outputs from adjacent pyramidal layers, p and p+1,
are merged by element-wise addition after upsampling the
(query) spatial dimensions of the upper layer output by a fac-
tor of 2. The mixing block fj™* : R128xHpxWpx HexWe _y
R128xHpxWpx HexWe then processes this mixture with 4D
convolutions to propagate relevant information to lower lay-
ers in a top-down fashion. After the iterative propagation,
the output tensor of the lowest mixing block f X is fur-
ther compressed by average-pooling its last two (support)
spatial dimensions, which in turn provides a 2-dimensional
feature map Z € RIZ8XH1xWi that signifies a condensed
representation of the hypercorrelation C.

4.3. 2D-convolutional context decoder

The decoder network consists of a series of 2D convo-
lutions, ReLU, and upsampling layers followed by soft-
max function as illustrated in Fig. 2. The network takes
the context representation Z and predicts two-channel map
M € [0,1]2%F*W where two channel values indicate prob-
abilities of foreground and background. During training, the
network parameters are optimized using the mean of cross-
entropy loss between the prediction M and the ground-truth
M over all pixel locations. During testing, we take the max-
imum channel value at each pixel to obtain final query mask
prediction M9 € {0, 1}#*W for evaluation.

4.4. Center-pivot 4D convolution

Apparently, our network with such a large number of
4D convolutions demands a substantial amount of resources
due to the curse of dimensionality, which constrained many
visual correspondence methods [22, 30, 32, 58, 71] to use
only a few 4D conv layers. To address the concern, we revisit
the 4D convolution operation and delve into its limitations.
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Figure 3: Building blocks in Hypercorrelation Squeeze Networks.
s and g denotes strides of 4D conv and the number of groups in
group normalization [78] respectively. Note p € {1, 2} for f"*.

Then we demonstrate how a unique weight-sparsification
scheme effectively resolves the issues.

4D convolution and its limitation. Typical 4D convolution
parameterized by a kernel k& € RExkxkxk on 3 correlation
tensor ¢ € REXWXHXW 4t position (x,x’) € R** is for-
mulated as

(cxk)xx)= > cp,p)k(p—xp —x),
(p,p")EP(x,x')

3)

where P(x,x’) denotes a set of neighbourhood regions
within the local 4D window centered on position (x,x’),
i.e., P(x,x') = P(x) x P(x') as visualized in Fig. 4. Al-
though the use of 4D convolutions on a correlation tensor
has shown its efficacy with good empirical performance
in correspondence-related domains [22, 30, 32, 58, 711, its
quadratic complexity with respect to the size of input fea-
tures still remains a primary bottleneck. Another limiting
factor is over-parameterization of the high-dimensional ker-
nel: Consider a single activation in an nD tensor convolved
by nD conv kernel. The number of times that the kernel
processes this activation is exponentially proportional to n.
This implies some unreliable input activations with large
magnitudes may entail some noise in capturing reliable pat-
terns as a result of their excessive exposure to the high-
dimensional kernel. The work of [81] resolves the former
problem (quadratic complexity) using spatially separable 4D
kernels to approximate the 4D conv with two separate 2D
kernels along with additional batch normalization layers [23]

*The correlation tensor c is the output of cosine similarity (Eqn. 2)
between a pair of feature maps, F, F/ € REXW and x and x’ denote
2-dimensional spatial positions of the respective feature maps.
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4-dimensional
feature space

4D convolution convolved at position (x,x")

Figure 4: 4D convolution (left) and weights of 4D kernel [58,

4D convolutional kernel

Pep(x,x) = {(p,p") € P(x,x):p =xVp' =X} ‘

Center-pivot 4D convolutional kernel

] (middle) and center-pivot 4D kernel (right). Each black wire that connects

two different pixel locations represents a single weight of the 4D kernel. The kernel size used in this example is (3, 3, 3, 3), i.e., k=3.

that settle the latter problem (numerical instability). In this
work we introduce a novel weight-sparsification scheme to
address both issues at the same time.

Center-pivot 4D convolution. Our goal is to design a light-
weight 4D kernel that is efficient in terms of both mem-
ory and time while effectively approximating the existing
ones [58, 81]. We achieve this via a reasonable weight-
sparsification; from a set of neighborhood positions within a
local 4D window of interest, our kernel aims to disregard a
large number of activations located at fairly insignificant po-
sitions in the 4D window, thereby focusing on a small subset
of relevant activations only. Specifically, we consider the ac-
tivations at positions that pivets either one of 2-dimensional
centers, e.g., x or x’, as the foremost influential ones as
illustrated in Fig. 4. Given 4D position (x,x’), we collect
its neighbors if and only if they are adjacent to either x or
x’ in its corresponding 2D subspace and define two respec-
tive sets as P.(x,x’) = {(p,p’) € P(x,x') : p = x}
and Py (x,x") = {(p,p’) € P(x,x') : p’ = x'}. The
set of center-pivot neighbours is defined as Pcp(x,x’) =
P.(x,x") UPu(x,x"). Based on these two subsets of neigh-
bors, center-pivot 4D convolution can be formulated as a
union of two separate 4D convolutions:

(c*kep)(x,x') = (c* ke)(x,X') + (c* ke ) (x,X")  (4)

where k. and k. are 4D kernels convolved on P,(x,x’) and
P (x,x") respectively. Note that (cxk.)(x,x") is equivalent
to convolutions with a 2D kernel k2P = k(0,:) € Rk*k
performed on 2D slice of 4D tensor ¢(x, :). Similarly, with

k2P = k(:,0) € RF** | we reformulate Eqn. 4 as follows

(cxkep)(x,x) = D cx,p)EP(@ —%) )

p'EP(x')

+ Z C(p,x’)kzp(p—x),
PEP(x)

which performs two different convolutions on separate 2D
subspaces, having a linear complexity. In Sec. 5.2, we exper-
imentally demonstrate the superiority of the center-pivot 4D
kernels over the existing ones [58, 81] in terms of accuracy,
memory, and time. We refer the readers to our supplementary
materials for a complete derivation of Eqn. 5.

4.5. Extension to K-shot setting

Our network can be easily extended to K -shot setting:
Given K support image-mask pairs S = {(I3, M3)}_ and
a query image /9, model performs K forward passes to pro-
vide a set of K mask predictions {M{}}X ;. We perform
voting at every pixel location by summing all the K predic-
tions and divide each output score by the maximum voting
score. We assign foreground labels to pixels if their values
are larger than some threshold 7 whereas the others are clas-
sified as background. We set 7 = (.5 in our experiments.

5. Experiment

In this section we evaluate the proposed method, compare
it with recent state of the arts, and provide in-depth analyses
of the results with ablation study.

Implementation details. For the backbone network, we
employ VGG [64] and ResNet [!7] families pre-trained
on ImageNet [9], e.g., VGG16, ResNet50, and ResNet101.
For VGG16 backbone, we extract features after every conv
layer in the last two building blocks: from conv4_x to
conv5_x, and after the last maxpooling layer. For ResNet
backbones, we extract features at the end of each bottle-
neck before ReLU activation: from conv3_x to conv5_ x.
This feature extracting scheme results in 3 pyramidal layers
(P = 3) for each backbone. We set spatial sizes of both
support and query images to 400 x 400, i.e., H, W = 400,
thus having H., Wy =50, Hy, Wy = 25,and H3, W3 = 13.
The network is implemented in PyTorch [51] and optimized
using Adam [24] with learning rate of 1e-3. We freeze the
pre-trained backbone networks to prevent them from learn-
ing class-specific representations of the training data.

Datasets. We evaluate the proposed network on three stan-
dard few-shot segmentation datasets: PASCAL-5' [61],
COCO-207 [35], and FSS-1000 [33]. PASCAL-5 is cre-
ated from PASCAL VOC 2012 [1 1] with extra mask anno-
tations [16], consisting of 20 object classes that are evenly
divided into 4 folds: {5° : i € {0,1,2,3}}. COCO-20°
consists of mask-annotated images from 80 object classes
divided into 4 folds: {20° : i € {0,1,2,3}}. Following
common training/evaluation scheme [37, 46, 70, 74, 80], we
conduct cross-validation over all the folds; for each fold 7,
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Backbone Methods 1-shot 5-shot # learnable
network ; 50 5t 52 5%  mean FB-IoU | 5° 5t 52 5%  mean FB-IoU | params
OSLSM [61] 336 553 409 335 408 61.3 359 58.1 427 39.1 439 61.5 276.7TM
co-FCN [54] 36.7 50.6 449 324 41.1 60.1 375 500 441 339 414 60.2 34.2M
VGG16 [64] AMP-2 [63] 419 502 46.7 347 434 61.9 403 553 499 40.1 464 62.1 15.8M
PANet [75] 423 580 51.1 412 48.1 66.5 51.8 64.6 59.8 465 557 70.7 14.7M
PFENet[70] | 56.9 68.2 544 524 580 720 |59.0 69.1 548 529 59.0 723 10.4M
HSNet (ours) ‘ 59.6 657 59.6 54.0 59.7 73.4 ‘ 649 690 64.1 58.6 64.1 76.6 2.6M
PANet [75] 44.0 575 508 44.0 49.1 - 553 672 61.3 532 593 - 23.5M
PGNet [806] 56.0 669 50.6 504 56.0 69.9 577 68.7 529 546 585 70.5 17.2M
ResNet50 [17] PPNet [37] 48.6 60.6 557 46.5 52.8 69.2 589 683 66.8 580 630 75.8 31.5M
PFENet [70] 61.7 69.5 554 563 60.8 73.3 63.1 70.7 558 579 619 73.9 10.8M
RePRI [4] 59.8 68.3 62.1 485 59.7 - 64.6 714 711 593 66.6 - -
HSNet (ours) ‘ 643 707 603 60.5 64.0 76.7 ‘ 703 732 674 671 69.5 80.6 ‘ 2.6M
FWB [46] 513 645 56.7 522 562 - 548 674 622 553 599 - 43.0M
PPNet [37] 527 628 574 477 552 70.9 60.3 70.0 694 60.7 65.1 71.5 50.5M
DAN [74] 547 68.6 57.8 516 582 71.9 579 69.0 60.1 549 60.5 72.3 -
ResNetl101 [17]  PFENet [70] 60.5 694 544 559 60.1 72.9 62.8 704 549 576 614 73.5 10.8M
RePRI [4] 596 68.6 622 472 594 - 662 714 67.0 577 656 - -
HSNet (ours) 67.3 723 62.0 63.1 66.2 77.6 71.8 744 67.0 683 704 80.6 2.6M
HSNet' (ours) | 66.2 69.5 539 562 61.5 72.5 689 719 563 579 63.7 73.8 2.6M
Table 1: Performance on PASCAL-5% [61] in mIoU and FB-IoU. Some results are from [4, 37, 70, 74, 80]. Superscript T denotes our model

without support feature masking (Eqn. 1). Numbers in bold indicate the best performance and underlined ones are the second best.

Backbone 1-shot

5-shot

s Backbone mloU
network Methods 20 20' 20 20° mean FB-IoU | 20° 20! 20> 20° mean FB-IoU network Methods lshot 5-shot
PPNet[37] | 28.1 308 295 277 29.0 390 408 371 373 385
PMM[50] | 293 348 271 273 296 330 406 303 333 343 g;LSM[ 1 Z?; 34314(3)
ResNeso 7] RPMMIE0] | 295 368 289 270 306 338 420 330 333 355 et [55] - -
PFENet [70] | 36.5 38.6 34.5 33.8 358 365 433 378 384 390 VGGI6[64]  FSS [33] 735 80.1
RePRI [4] 320 387 327 331 341 - 393 454 397 418 416 - DoG-LSTM [2] | 80.8  83.4
HSNet (ours) | 36.3 43.1 387 387 392 682 |433 513 482 450 469 707 HSNet (ours) | 823 858
FWB[46] | 170 180 210 289 212 - |190 215 239 300 237 - ResNet50 [17]  HSNet (ours) | 85.5  87.8
DAN [74] S . 244 623 | - - - - 296 639
ResNedOVUT] prENet(70] | 368 418 387 367 385 630 |404 468 432 405 427 658 ResNetto1 [17] -DANDY) | 852 881
HSNet(ours) | 37.2 441 424 413 412 69.1 | 459 530 518 471 495 724 HSNet (ours) | 86.5 885
Table 2: Performance on COCO-20" [46] in mIoU and FB-IoU. The results of other methods Table 3: Mean IoU comparison on FSS-
are from [4, 37, 70, 74, 80]. 1000 [33]. Some results are from [2, 74].

samples from the other remaining folds are used for train-
ing and 1,000 episodes from the target fold ¢ are randomly
sampled for evaluation. For every fold, we use the same
model with the same hyperparameter setup following the
standard cross-validation protocol. FSS-1000 contains mask-
annotated images from 1,000 classes divided into training,
validation and test splits having 520, 240, and 240 classes
respectively.

Evaluation metrics. We adopt mean intersection over union
(mlIoU) and foreground-background IoU (FB-IoU) as our
evaluation metrics. The mloU metric averages over IoU
values of all classes in a fold: mIoU = é 25:1 IoU. where
C is the number of classes in the target fold and IoU. is the
intersection over union of class c. FB-IoU ignores object
classes and computes average of foreground and background
IoUs: FB-IoU = %(IOUF + IoUg) where IoUp and IoUp
are respectively foreground and background IoU values in
the target fold. As mloU better reflects model generaliza-
tion capability and prediction quality than FB-IoU does, we
mainly focus on mloU in our experiments.

5.1. Results and analysis

We evaluate the proposed model on PASCAL-5¢, COCO-
207, and FSS-1000 and compare the results with recent meth-
ods [4, 37, 46, 54, 61, 63, 70, 74, 75, 86]. Table 1 summa-
rizes 1-shot and 5-shot results on PASCAL-5%; all of our
models with three different backbones clearly set new state
of the arts with the smallest the number of learnable pa-
rameters. With ResNet101 backbone, our 1-shot and 5-shot
results respectively achieve 6.1%p and 4.8%p of mloU im-
provements over [70] and [4], verifying its superiority in
few-shot segmentation task. As shown in Tab. 2, our model
outperforms recent methods with a sizable margin on COCO-
20" as well, achieving 2.7%p (1-shot) and 6.8%p (5-shot) of
mloU improvements over [70] with ResNet101 backbone.
Also on the last benchmark, FSS-1000, our method sets a
new state of the art, outperforming [2, 74] as shown in Tab. 3.

We conduct additional experiments without support fea-
ture masking (Eqn. 1). Note that this setup is similar to
co-segmentation problem [8, 68, 82] with stronger demands
for generalizibility since the model is evaluated on novel
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COCO—PASCAL #params  data augmentation

Method

1-shot 5-shot totrain  used during training
PFENet,.ss0 [70] 61.1 63.4 10.8M flip, rotate, crop
RePRIesso [4] 63.2 67.7 46.7M flip
HSNet,ss0(0urs) 61.6 68.7 2.6M none
HSNet,es101(ours)  64.1 70.3 2.6M none

Table 4: Domain shift results. Subscripts denote backbone.
classes. As seen in the bottom row of Tab. 1, our model
without support masking still performs remarkably well,
achieving 1.4%p mloU improvement over the previous best
method [70] in 1-shot setting whereas it rivals [4, 70] in
5-shot setting. This interesting result reveals that our model
is also capable of identifying ‘common’ instances across
different input images as well as predicting fine-grained seg-
mentation masks.

Robustness to domain shift. To demonstrate the robustness
of our method to domain shift, we evaluate COCO-trained
HSNet on each fold of PASCAL-5¢ following the recent
work of [4]. We use the same training/test folds as in [4]
where object classes in training and testing do not overlap.
As seen in Tab. 4, our model, which is trained without any
data augmentation methods with 18 times smaller number
of trainable parameters compared to [4] (2.6M vs. 46.7M),
performs robustly in presence of large domain gaps between
COCO-20¢ and PASCAL-5¢, surpassing [4] by 1.0%p in
5-shot setting, and further improves with a larger backbone,
e.g., ResNetl01. The results clearly show the robustness of
our method to domain shift, and may further increase when
trained with data augmentations used in [4, 70].

5.2. Ablation study

We conduct extensive ablation study to investigate the im-
pacts of major components in our model: hypercorrelations,
pyramidal architecture, and center-pivot 4D kernels. We also
study how freezing backbone networks prevents overfitting
and helps generalization on novel classes. All ablation study
experiments are performed with ResNet101 backbone on
PASCAL-5? [61] dataset.

Ablation study on hypercorrelations. To study the effect
of intermediate correlations {Cl}le c, in hypercorrelation
C, € RIEp X HpxWyxHyxWy e form single-channel hy-
percorrelations using only a single intermediate correla-
tion. Specifically, we form two different single-channel
hypercorrelations using the smallest (shallow) and largest
(deep) layer indices in £, and denote the hypercorrelations
as C;hanow, Cffep € RVHpxWypxHpxWy and compare the
results with ours (C,) in Fig. 5. The large performance gaps
between C,, and the single-channel hypercorrelations con-
firm that capturing diverse correlation patterns from dense
intermediate CNN layers is crucial in effective pattern anal-
yses. Performance degradation from Co® to Challow indi-
cates that reliable feature representations typically appear at
deeper layers of a CNN.
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Figure 5: Ablation study on hypercorrelations on PASCAL-5° [61]
dataset in 1-shot (left) and 5-shot (right) mIoU results.
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Figure 6: Ablation study on pyramid layers on PASCAL-5% [61]
dataset in 1-shot (left) and 5-shot (right) mIoU results.

Support set

Query set

C (ours) c@3) c®

Figure 7: Ablation study on hypercorrelation pyramid layers.

Ablation study on pyramid layers. To see the impact of
hypercorrelation C,, at each layer p, we perform experiments
in absence of each pyramidal layer. We train and evaluate
our model using two different hypercorrelation pyramids,
C(?3) = {Cy, C3} and C®) = {C3}, and compare the re-
sults with ours C = {C,}3_,. Figure 6 summarizes the
results; given hypercorrelation pyramid without geometric
information (C(?)), our model fails to refine object bound-
aries in the final mask prediction as visualized in Fig. 7.
Given a single hypercorrelation that only encodes semantic
relations (C(*)), the model predictions are severely damaged,
providing only rough localization of the target objects. These
results indicate that capturing patterns of both semantic and
geometric cues is essential for fine-grained localization.

Comparison between three different 4D kernels. We con-
duct ablation study on 4D kernel by replacing the proposed
center-pivot 4D kernel with the original [58] and spatially
separable [81] 4D kernels and compare their model size,
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1-shot 5-shot # learnable time memory footprint FLOPs
Kernel type ‘ 50 51 52 5 mean | 50 52 5% mean | Params (g (GB) (G)
Original 4D kernel [55] 645 714 623 617 649 | 70.8 674 675 70.1 113M 51217 4.12 702.35
Separable 4D kernel [81] 661 720 632 626 659 |712 672 681 702 4.4M 28.48 150 28.40
Center-pivot 4D kernel (ours) | 67.3 723 620 63.1 662 | 71.8 670 683 704 | 2.6M 25.51 1.39 20.56

Table 5: Comparison between three different 4D conv kernels in model size, per-episode inference time, memory consumption and FLOPs.
For fair comparison, the inference times of all the models are measured on a machine with an Intel i7-7820X and an NVIDIA Titan-XP.

=8 1-shot

mloU
&

22
(9) "swesed #

=@ 5-shot

# params.

# layers in each building block

Figure 8: The effect of depths in building blocks: f;* and fz',"ix.

per-episode inference time (1-shot), memory consumption,
and floating point operations per second (FLOPs) with ours.
Table 5 summarizes the results. The proposed kernel records
the fastest inference time with the smallest memory/FLOPs
requirements while being comparably effective than the other
two. The results clearly support our claim that a large part
of parameters in a high-dimensional kernel can safely be
discarded without harming the quality of predictions; only
a few relevant parameters are sufficient and even better for
the purpose. While both the separable [81] and our center-
pivot 4D convolutions operate on two separate 2D convo-
lutions, auxiliary transformation layers with multiple batch
normalizations that make the separable 4D conv numerically
stable in its sequential design result in twice larger number
of parameters (4.4M vs. 2.6M) and slower inference time
(28.48ms vs. 25.51ms) than ours.

The number of 4D layers in building blocks. We also
perform experiments with varying number of 4D conv layers
in the two building blocks: f,* and fi™*. Figure 8 plots 1-
shot and 5-shot mIoU results on PASCAL-5¢ with the model
sizes. In the experiments, appending additional 4D layers
(with a group norm and a ReLU activation) in the building
blocks provides clear performance improvements up to three
layers but the accuracy eventually saturates after all. Hence

we use a stack of three 4D layers for both.

Finetuning backbone networks. To investigate the signifi-
cance of learning ‘feature correlations’ over learning ‘feature
representation’ in few-shot regime, we finetune our back-
bone network and compare learning processes of the fine-
tuned model and ours (frozen backbone). Figure 9 plots the
training/validation curves of the finetuned model and ours
on every fold of PASCAL-5°. The finetuned model rapidly
overfits to the training data, losing generic, comprehensive
visual representations learned from large-scale dataset [9].
Meanwhile, our model with frozen backbone provides better
generalizibility with large trade-offs between training and
validation accuracies. The results reveal that learning new
appearances under limited supervision requires understand-
ing their ‘relations’ to diverse visual patterns acquired from

100 100
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100
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mioU on 5%
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= Training curve (ours) = Training curve (finetuned)

Validation curve (ours) Validation curve (finetuned)

Figure 9: Learning curves (x-axis: epoch, y-axis: mloU) on
PASCAL-5". We carefully tuned the learning rate of the backbone
and set it to 100 times smaller than the layers in HSNet (1e-5).

a vast amount of past experiences, e.g., ImageNet classifica-
tion. This is quite analogous to human vision perspective in
the sense that we generalize novel concepts (what we see)
by analyzing their relations to the past observations (what
we know) [40].

For additional experimental details, results and analyses,
we refer the readers to our supplementary materials.

6. Conclusion

We have presented a novel framework that analyzes com-
plex feature correlations in a fully-convolutional manner
using light-weight 4D convolutions. The significant perfor-
mance improvements on three standard benchmarks demon-
strate that learning patterns of feature relations from multiple
visual aspects is effective in fine-grained segmentation under
limited supervision. We also demonstrated a unique way
of discarding insignificant weights leads to an efficient de-
composition of a 4D kernel into a pair of 2D kernels, thus
allowing extensive use of 4D conv layers at a significantly
small cost. We believe our investigation will further facili-
tate the use of 4D convolutions in other domains that require
learning to analyze high-dimensional correlations.
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