
An End-to-End Transformer Model for 3D Object Detection

Ishan Misra Rohit Girdhar Armand Joulin

Facebook AI Research

https://facebookresearch.github.io/3detr

Abstract

We propose 3DETR, an end-to-end Transformer based

object detection model for 3D point clouds. Compared to

existing detection methods that employ a number of 3D-

specific inductive biases, 3DETR requires minimal mod-

ifications to the vanilla Transformer block. Specifically,

we find that a standard Transformer with non-parametric

queries and Fourier positional embeddings is competitive

with specialized architectures that employ libraries of 3D-

specific operators with hand-tuned hyperparameters. Nev-

ertheless, 3DETR is conceptually simple and easy to im-

plement, enabling further improvements by incorporating

3D domain knowledge. Through extensive experiments, we

show 3DETR outperforms the well-established and highly

optimized VoteNet baselines on the challenging ScanNetV2

dataset by 9.5%. Furthermore, we show 3DETR is applica-

ble to 3D tasks beyond detection, and can serve as a build-

ing block for future research.

1. Introduction

3D object detection aims to identify and localize ob-

jects in 3D scenes. Such scenes, often represented us-

ing point clouds, contain an unordered, sparse and irregu-

lar set of points captured using a depth scanner. This set-

like nature makes point clouds significantly different from

the traditional grid-like vision data like images and videos.

While there are other 3D representations such as multiple-

views [60], voxels [1] or meshes [8], they require additional

post-processing to be constructed, and often loose informa-

tion due to quantization. Hence, point clouds have emerged

as a popular 3D representation, and spurred the develop-

ment of specialized 3D architectures.

Many recent 3D detection models directly work on the

3D points to produce the bounding boxes. Of particular in-

terest, VoteNet [42] casts 3D detection as a set-to-set prob-

lem, i.e., transforming an unordered set of inputs (point

cloud), into an unordered set of outputs (bounding boxes).

VoteNet uses an encoder-decoder architecture: the encoder

is a PointNet++ network [44] which converts the unordered
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Figure 1: 3DETR. We train an end-to-end Transformer model for

3D object detection on point clouds. Our model has a Transformer

encoder for feature encoding and a Transformer decoder for pre-

dicting boxes. For an unseen input, we compute the self-attention

from the reference point (blue dot) to all points in the scene and

display the points with the highest attention values in red. The de-

coder attention groups points within an instance which presumably

makes it easier to predict bounding boxes.

point set into a unordered set of point features. The point

features are then input to a decoder that produces the 3D

bounding boxes. While effective, such architectures have

required years of careful development by hand-encoding

inductive biases, radii, and designing special 3D operators

and loss functions.

In parallel to 3D, set-to-set encoder-decoder models have

emerged as a competitive way to model 2D object detec-

tion. In particular, the recent Transformer [68] based model,

called DETR [4], casts 2D object detection as a set-to-set

problem. The self-attention operation in Transformers is de-

signed to be permutation-invariant and capture long range

contexts, making them a natural candidate for processing

unordered 3D point cloud data. Inspired by this observation,

we ask the following question: can we leverage Transform-

ers to learn a 3D object detector without relying on hand-

designed inductive biases?

To that end, we develop 3D DEtection TRansformer

(3DETR) a simple to implement 3D detection method that

uses fewer hand-coded design decisions and also casts de-

tection as a set-to-set problem. We explore the similarities

between VoteNet and DETR, as well as between the core

mechanisms of PointNet++ and the self-attention of Trans-
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formers to build our end-to-end Transformer-based detec-

tion model. Our model follows the general encoder-decoder

structure that is common to both DETR and VoteNet. For

the encoder, we replace the PointNet++ by a standard Trans-

former applied directly on the point clouds. For the decoder,

we consider the parallel decoding strategy from DETR with

Transformer layers making two important changes to adapt

it to 3D detection, namely non-parametric query embed-

dings and Fourier positional embeddings [64].

3DETR removes many of the hard coded design deci-

sions in VoteNet and PointNet++ while being simple to im-

plement and understand. Unlike DETR, 3DETR does not

employ a ConvNet backbone, and solely relies on Trans-

formers trained from scratch. Our transformer-based de-

tection pipeline is flexible, and as in VoteNet, any compo-

nent can be replaced by other existing modules. Finally, we

show that 3D specific inductive biases can be easily incor-

porated in 3DETR to further improve its performance. On

two standard indoor 3D detection benchmarks, ScanNetV2

and SUN RGB-D we achieve 65.0% AP and 59.0% AP re-

spectively, outperforming an improved VoteNet baseline by

9.5% AP50 on ScanNetV2.

2. Related Work
We propose a 3D object detection model composed of

Transformer blocks. We build upon prior work in 3D archi-

tectures, detection, and Transformers.

Grid-based 3D Architectures. Convolution networks can

be applied to irregular 3D data after converting it into reg-

ular grids. Projection methods [3, 19, 25, 26, 59, 60, 65]

project 3D data into 2D planes and convert it into 2D grids.

3D data can also be converted into a volumetric 3D grid by

voxelization [1, 12, 15, 28, 35, 49, 56, 66]. We use 3D point

clouds directly since they are suitable for set based archi-

tectures such as the transformer.

Point cloud Architectures. 3D sensors often acquire data

in the form of unordered point clouds. When using un-

ordered point clouds as input, it is desirable to obtain per-

mutation invariant features. Point-wise MLP based archi-

tectures [17, 83] such as PointNet [44] and PointNet++ [45]

use permutation equivariant set aggregation (downsam-

pling) and pointwise MLPs to learn effective representa-

tions. We use a single downsampling operation from [45]

to keep the number of input points tractable in our model.

Graph-based models [27, 73] can operate on unordered

3D data. Graphs are constructed from 3D data in a variety

of ways – DGCNN [77] and PointWeb [90] use local neigh-

borhoods of points, SPG [24] uses attribute and context sim-

ilarity and Jiang et al. [18] use point-edge interactions.

Finally, continuous point convolution based architec-

tures can also operate on point clouds. The continu-

ous weights can be defined using polynomial functions

as in SpiderCNN [80] or linear functions as in Flex-

Convolutions [13]. Convolutions can also be applied by

soft-assignment matrices [69] or specific ordering [28].

PointConv [78] and KPConv [67] dynamically generate

convolutional weights based on the input point coordinates,

while InterpCNN [34] uses these coordinates to interpolate

weights. We build upon the Transformer [68] which is ap-

plicable for sets but not tailored for 3D.

3D Object Detection is a well studied research area where

methods predict three dimensional bounding boxes from 3D

input data [23, 41, 43, 52, 54, 55, 70, 72, 93]. Many meth-

ods avoid expensive 3D operations by using 2D projection.

MV3D [6], VoxelNet [92] use a combination of 3D and

2D convolutions. Yan et al. [81] simplify the 3D opera-

tion while [82] uses a 2D projection, and [76] uses ‘pil-

lars’ of voxels. We focus on methods that directly use 3D

point clouds [40, 51, 75, 85]. PointRCNN [51] and PVR-

CNN [50] are 2-stage detection pipelines similar to the pop-

ular R-CNN framework [47] for 2D images. While these

methods are related to our work, for simplicity we build a

single stage detection model as done in [11, 14, 42, 84].

VoteNet [42] uses Hough Voting on sparse point cloud in-

puts and detects boxes by feature sampling, grouping and

voting operations designed for 3D data. VoteNet is a build-

ing block for many follow up works. 3D-MPA [11] com-

bines voting with a graph ConvNet for refining object pro-

posals and uses specially designed 3D geometric features

for aggregating detections. HGNet [5] improves Hough

Voting and uses a hierarchical graph network with feature

pyramids. H3DNet [89] improves VoteNet by predicting

3D primitives and uses a geometric loss function. We pro-

pose a simple detection method that can serve as a building

block for such innovations in 3D detection.

Transformers in Vision. The Transformer architecture by

Vaswani et al. [68] has been immensely successful across

domains like NLP [9, 46], speech recognition [33, 62], im-

age recognition [4, 10, 16, 38, 74], and for cross-domain

applications [32, 61, 63]. Transformers are well suited for

operating on 3D points since they are naturally permuta-

tion invariant. Attention based methods have been used for

building 3D point representations for retrieval [87], outdoor

3D detection [29, 36, 86], object classification [83]. Con-

current work [37, 91] also uses the Transformer architec-

ture for 3D. While these methods use 3D specific informa-

tion to modify the Transformer, we push the limits of the

standard Transformer. Our work is inspired by the recent

DETR model [4] for object detection in images by Carion

et al. [4]. Different from Carion et al., our model is an end-

to-end transformer (no convolutional backbone) that can be

trained from scratch and has important design differences

such as non-parametric queries to enable 3D detection.

3. Approach

We briefly review prior work in 3D detection and

their conceptual similarities to 3DETR. Next, we describe
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Figure 2: Approach. (Left) 3DETR is an end-to-end trainable Transformer that takes a set of 3D points (point cloud) as input and outputs

a set of 3D bounding boxes. The Transformer encoder produces a set of per-point features using multiple layers of self-attention. The point

features and a set of ‘query’ embeddings are input to the Transformer decoder that produces a set of boxes. We match the predicted boxes

to the ground truth and optimize a set loss. Our model does not use color information (used for visualization only). (Right) We randomly

sample a set of ‘query’ points that are embedded and then converted into bounding box predictions by the decoder.

3DETR, simplifications in bounding box parametrization

and the simpler set-to-set objective function.

3.1. Preliminaries

The recent VoteNet [42] framework forms the basis for

many detection models in 3D, and like our method, is a

set-to-set prediction framework. VoteNet uses a special-

ized 3D encoder and decoder architecture for detection. It

combines these models with a Hough Voting loss designed

for sparse point clouds. The encoder is a PointNet++ [45]

model that uses a combination of multiple downsampling

(set-aggregation) and upsampling (feature-propagation) op-

erations that are specifically designed for 3D point clouds.

The VoteNet “decoder” predicts bounding boxes in three

steps - 1) each point ‘votes’ for the center coordinate of a

box; 2) votes are aggregated within a fixed radius to obtain

‘centers’; 3) bounding boxes are predicted around ‘centers’.

BoxNet [42] is a non-voting alternative to VoteNet that ran-

domly samples ‘seed’ points from the input and treats them

as ‘centers’. However, BoxNet achieves much worse perfor-

mance than VoteNet as the voting captures additional con-

text in sparse point clouds and yields better ‘center’ points.

As noted by the authors [42], the multiple hand-encoded

radii used in the encoder, decoder, and the loss function are

important for detection performance and have been care-

fully tuned [44, 45].

The Transformer [68] is a generic architecture that can

work on set inputs and capture large contexts by comput-

ing self-attention between all pairs of input points. Both

these properties make it a good candidate model for 3D

point clouds. Next, we present our 3DETR model which

uses a Transformer for both the encoder and decoder with

minimal modifications and has minimal hand-coded infor-

mation for 3D. 3DETR uses a simpler training and inference

procedure. We also highlight similarities and differences to

the DETR model for 2D detection.

3.2. 3DETR: Encoder­decoder Transformer

3DETR takes as input a 3D point cloud and predicts

the positions of objects in the form of 3D bounding boxes.

A point cloud is a unordered set of N points where each

point is associated with its 3-dimensional XYZ coordinates.

The number of points is very large and we use the set-

aggregation downsampling operation from [45] to down-

sample the points and project them to N ′ dimensional fea-

tures. The resulting subset of N ′ features is passed through

an encoder to also obtain a set of N ′ features. A decoder

takes these features as input and predicts multiple bound-

ing boxes using a parallel decoding scheme inspired by [4].

Both encoder and decoder use standard Transformer blocks

with ‘pre-norm’ [21] and we refer the reader to Vaswani et

al. [68] for details. Fig 2 illustrates our model.

Encoder. The downsample and set-aggregation steps pro-

vide a set of N ′ features of d = 256 dimensions using an

MLP with two hidden layers of 64, 128 dimensions. The

set of N ′ features is then passed to a Transformer to also

produce a set of N ′ features of d = 256 dimensions. The

Transformer applies multiple layers of self-attention and

non-linear projections. We do not use downsampling opera-

tions in the Transformer, and use the standard self-attention

formulation [68]. Thus, the Transformer encoder has no

specific modifications for 3D data. We omit positional em-

beddings of the coordinates from the encoder since the input

already contains information about the XYZ coordinates.

Decoder. Following Carion et al. [4], we frame detection

as a set prediction problem, i.e., we simultaneously predict

a set of boxes with no particular ordering. This is achieved

with a parallel decoder composed of Transformer blocks.

This decoder takes as input the N ′ point features and a set

of B query embeddings {qe
1, . . . ,q

e

B
} to produce a set of

B features that are then used to predict 3D-bounding boxes.

In our framework, the query embeddings qe represent lo-

cations in 3D space around which our final 3D bounding

boxes are predicted. We use positional embeddings in the

decoder as it does not have direct access to the coordinates

(operates on encoder features and query embeddings).

Non-parametric query embeddings. Inspired by seed

points used in VoteNet and BoxNet [42], we use non-

parametric embeddings computed from ‘seed’ XYZ loca-

tions. We sample a set of B ‘query’ points {qi}
B

i=1 ran-

domly from the N ′ input points (see Fig 2). We use Farthest

Point Sampling [45] for the random samples as it ensures a

good coverage of the original set of points. We associate

each query point qi with a query embedding qe

i
, by con-
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verting the coordinates of qi into Fourier positional embed-

dings [64] followed by projection with a MLP.

3DETR-m: Inductive biases into 3DETR. As a proof of

concept that our model is flexible, we modify our encoder

to include inductive biases in 3D data, while keeping the de-

coder and loss fixed. We leverage a weak inductive bias in-

spired by PointNet++, i.e., local feature aggregation matters

more than global aggregation. Such an inductive bias can

be easily implemented in Transformers by applying a mask

to the self-attention [68]. The resulting model, 3DETR-m

has a masked self-attention encoder with the same decoder

and loss function as 3DETR. 3DETR-m uses a three layer

encoder which has an additional downsampling operation

(from N ′ =2048 to N ′′ =1024 points) after the first layer.

Every encoder layer applies a binary mask of N ′′ × N ′′ to

the self-attention operation. Row i in the mask indicates

which of the N ′′ points lie within the ℓ2 radius of point i.

We use the radius values of [0.16, 0.64, 1.44]. Compared to

PointNet++, 3DETR-m does not rely on multiple layers of

3D feature aggregation and 3D upsampling.

3.3. Bounding box parametrization and prediction

The encoder-decoder architecture produces a set of B

features, that are fed into prediction MLPs to predict bound-

ing boxes. A 3D bounding box has the attributes (a) its loca-

tion, (b) size, (c) orientation, and (d) the class of the object

contained in it. We describe the parametrization of these

attributes and their associated prediction problems.

The prediction MLPs produce a box around every query

coordinate q. (a) Location: We use the XYZ coordinates

of box’s center c. We predict this in terms of an offset ∆q

that is added to the query coordinates, i.e., c = q+∆q.

(b) Size: Every box is a 3D rectangle and we define its size

around the center coordinate c using XYZ dimensions d.

(c) Orientation: In some settings [53], we must predict the

orientation of the box, i.e., the angle it forms compared to

a given referential. We follow [42] and quantize the angles

into 12 bins from [0, 2π) and note the quantization resid-

ual. Angular prediction involves predicting the the quan-

tized ‘class’ of the angle and the residual to obtain the con-

tinuous angle a. (d) Semantic Class: We use a one-hot

vector s to encode the object class contained in the bound-

ing box. We include a ‘background’ or ‘not an object’ class

as some of the predicted boxes may not contain an object.

Putting together the attributes of a box, we have two

quantities: the predicted boxes b̂ and the ground truth boxes

b. Each predicted box b̂ = [ĉ, d̂, â, ŝ] consists of (1) geo-

metric terms ĉ, d̂ ∈ [0, 1]3 that define the box center and

dimensions respectively, â = [âc, âr] that defines the quan-

tized class and residual for the angle; (2) semantic term

ŝ = [0, 1]K+1 that contains the probability distribution over

the K semantic object classes and the ‘background’ class.

The ground truth boxes b also have the same terms.

3.4. Set Matching and Loss Function

To train the model, we first match the set of B predicted

3D bounding boxes {b̂} to the ground truth bounding boxes

{b}. While VoteNet uses hand-defined radii to do such set

matching, we follow [4] to perform a bipartite graph match-

ing which is simpler, generic (see § 4.2.1) and robust to

Non-Maximal Suppression. We compute a loss for each

predicted box using its matched ground truth box.

Bipartite Matching. We define a matching cost for a pair

of boxes, predicted box b̂ and ground truth box b, using a

geometric and a semantic term.

Cmatch(b̂,b) = −λ1GIoU(b̂,b) + λ2‖ĉ− c‖1
︸ ︷︷ ︸

geometric

− λ3ŝ[sgt] + λ4(1− ŝ[sbg])
︸ ︷︷ ︸

semantic

(1)

These terms are similar to the loss functions used for

training the model and λs are scalars used for a weighted

combination. The geometric cost measures the box over-

lap using GIoU [48] and the distance between the centers

of the boxes. Box overlap automatically accounts for the

box dimensions, angular rotation and is scale invariant. The

semantic cost measures the likelihood of the ground truth

class sgt under the predicted distribution ŝ and the likeli-

hood of the box features belonging to a foreground class,

i.e., of not belonging to the background class sbg.

We compute the optimal bipartite matching between all

the predicted boxes {b̂} and ground truth boxes {b} using

the Hungarian algorithm [22] as in prior work [4, 58]. As

we predict a larger number of boxes than the ground truth,

the predicted boxes that do not get matched are considered

matched to the ‘background’ class. This encourages the

model to not over-predict, a property that helps our model

be robust to Non-Maximal Suppression (see § 5).

Loss function. We use ℓ1 regression losses for the center

and box dimensions, normalizing them both in the range

[0, 1] for scale invariance. We use Huber regression loss

for the angular residuals and cross-entropy losses for the

angular classification and semantic classification.

L3DETR = λc‖ĉ−c‖1+λd‖d̂−d‖1+λar‖âr−ar‖huber

− λaca
⊺

c
log âc − λss

⊺

c
log ŝc (2)

Our final loss function is a weighted combination of the

above five terms and we provide the full details in the ap-

pendix. For predicted boxes matched to the ‘background’

class, we only compute the semantic classification loss with

the background class ground truth label. For datasets with

axis-aligned 3D bounding boxes, we also use a loss directly
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on the GIoU as in [4, 48]. We do not use the GIoU loss

for oriented 3D bounding boxes as it is computationally in-

volved.

Intermediate decoder layers. At training time, we use the

same bounding box prediction MLPs to predict bounding

boxes at every layer in the decoder. We compute the set

loss for each layer independently and sum all the losses to

train the model. At test time, we only use the bounding

boxes predicted from the last decoder layer.

3.5. Implementation Details

We implement 3DETR using PyTorch [39] and use the

standard nn.MultiHeadAttention module to implement

the Transformer. We use a single set aggregation opera-

tion [45] to subsample N ′=2048 points and obtain 256 di-

mensional point features. The 3DETR encoder has 3 layers

where each layer uses multiheaded attention with four heads

and a two layer MLP with a ‘bottleneck’ of 128 hidden di-

mensions. The 3DETR decoder has 8 layers and closely fol-

lows the encoder, except that the MLP hidden dimensions

are 256. We use Fourier positional encodings [64] of the

XYZ coordinates in the decoder. The bounding box predic-

tion MLPs are two layer MLPs with a hidden dimension of

256. Full architecture details in the appendix Appendix A.1.

All the MLPs and self-attention modules in the model

use a dropout [57] of 0.1 except in the decoder where we

use a higher dropout of 0.3. 3DETR is optimized using

the AdamW optimizer [31] with the learning rate decayed

by a cosine learning rate schedule [30] to 10−6, a weight

decay of 0.1, and gradient clipping at an ℓ2 norm of 0.1. We

train the model on a single V100 GPU with a batchsize of 8
for 1080 epochs. We use the RandomCuboid augmentation

from [88] which reduces overfitting.

4. Experiments

Dataset and metrics. We evaluate models on two stan-

dard 3D indoor detection benchmarks - ScanNetV2 [7] and

SUN RGB-D-v1 [53]. SUN RGB-D has 5K single-view

RGB-D training samples with oriented bounding box an-

notations for 37 object categories. ScanNetV2 has 1.2K

training samples (reconstructed meshes converted to point

clouds) with axis-aligned bounding box labels for 18 object

categories. For both datasets, we follow the experimental

protocol from [42]: we report the detection performance on

the val set using mean Average Precision (mAP) at two dif-

ferent IoU thresholds of 0.25 and 0.5, denoted as AP25 and

AP50. Along with the metric, their protocol evaluates on the

10 most frequent categories for SUN RGB-D.

4.1. 3DETR on 3D Detection

In this set of experiments, we validate 3DETR for 3D de-

tection. We compare it to the BoxNet and VoteNet models

since they are conceptually similar to 3DETR and are the

Method ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50

BoxNet† [42] 49.0 21.1 52.4 25.1

3DETR 62.7 37.5 56.8 30.1

VoteNet† [42] 60.4 37.5 58.3 33.4

3DETR-m 65.0 47.0 59.0 32.7

H3DNet [89] 67.2 48.1 60.1 39.0

Table 1: Evaluating 3DETR on 3D detection. We compare

3DETR with BoxNet and VoteNet methods and denote by † our

improved implementation of these baselines. 3DETR achieves

comparable or better performance to these improved baselines de-

spite having fewer hand-coded 3D or detection specific decisions.

We report state-of-the-art performance from [89] that improves

VoteNet by using 3D primitives. Detailed state-of-the-art com-

parison in Appendix B.

foundations of many recent detection models. For fair com-

parison, we use our own implementation of these models

with the same optimization improvements used in 3DETR–

leading to a boost of +2-4% AP over the original paper (de-

tails in supplemental). We also compare against a state-of-

the-art method H3DNet [89] and provide a more detailed

comparison against other recent methods in the appendix.

3DETR models use 256 and 128 queries for ScanNetV2 and

SUN RGB-D datasets.

Observations. We summarize results in Table 1. The com-

parison between BoxNet and 3DETR is particularly rel-

evant since both methods predict boxes around location

queries while VoteNet uses 3D Hough Voting to obtain

queries. Our method significantly outperforms BoxNet on

both the datasets with a gain of +13% AP25 on ScanNetV2

and +3.9% AP25 on SUN RGB-D. Even when compared

with VoteNet, our model achieves competitive performance,

with +2.3% AP25 on ScanNetV2 and −1.5% AP25 on SUN

RGB-D. 3DETR-m, which uses the masked Transformer

encoder, achieves comparable performance to VoteNet on

SUN RGB-D and a gain of +4.6% AP25 and +9.5% AP50

on ScanNetV2.

Compared to a state-of-the-art method, H3DNet [89],

that builds upon VoteNet, 3DETR-m is within a couple of

AP25 points on both datasets (more detailed comparison

in Appendix B). These experiments validate that a encoder-

decoder detection model based on the standard Transformer

is competitive with similar models tailored for 3D data. Just

as the VoteNet model was improved by the innovations of

H3DNet [89], HGNet [5], 3D-MPA [11], similar innova-

tions could be integrated to our model in the future.

Qualitative Results. In Fig 3, we visualize a few detections

and ground truth boxes from SUN RGB-D. 3DETR detects

boxes despite the partial (single-view) depth scans and also

predicts amodal bounding boxes or missing annotations on

SUN RGB-D.
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Figure 3: Qualitative Results using 3DETR. Detection results for scenes from the val set of the SUN RGB-D dataset. 3DETR does not

use color information (used only for visualization) and predicts boxes from point clouds. 3DETR can detect objects even with single-view

depth scans and predicts amodal boxes e.g., the full extent of the bed (top left) including objects missing in the ground truth (top right).

Method Encoder Decoder Loss ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50

3DETR Tx. Tx. Set 62.7 37.5 56.8 30.1

PN++ Tx. Set 61.4 34.7 56.8 26.9

PN++: PointNet++ [45], Tx.: Transformer, Set loss § 3.4

Table 2: 3DETR with different encoders. We vary the encoder

used in 3DETR and observe that the performance is unchanged

or slightly worse when moving to a PointNet++ encoder. This

suggests that the decoder design and the loss function in 3DETR

are compatible with prior 3D specific encoders.

4.2. Analyzing 3DETR

We conduct a series of experiments to understand

3DETR. In § 4.2.1, we explore the similarities between

3DETR, VoteNet and BoxNet. Next, in § 4.2.2, we compare

the design decisions in 3DETR that enable 3D detection to

the original components in DETR.

4.2.1 Modules of VoteNet and BoxNet vs. 3DETR

The encoder-decoder paradigm is flexible and we can test

if the different modules in VoteNet, BoxNet and 3DETR

are interchangeable. We focus on the encoders, decoders

and losses and report the detection performance in Tables 2

and 3. For simplicity, we denote the decoders and the losses

used in BoxNet and VoteNet as Box and Vote respectively.

We use PointNet++ to refer to the modified PointNet++ ar-

chitecture used in VoteNet [42].

Replacing the encoder. We train 3DETR with a Point-

Net++ encoder (Table 2) and observe that the detection

performance is unchanged or slightly worse compared to

3DETR with a transformer encoder. This shows that the de-

sign decisions in 3DETR are broadly compatible with prior

work, and can be used for designing better encoder models.

Replacing the decoder. In Table 3, we observe that re-

placing our Transformer-based decoders by Box or Vote de-

coders leads to poor detection performance on both bench-

# Method Encoder Decoder Loss ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50

Comparing different decoders

1 3DETR Tx. Tx. Set 62.7 37.5 56.8 30.1

2 Tx. Box Box 31.0 10.2 36.4 14.4

3 Tx. Vote Vote 46.1 23.4 47.5 24.9

Comparing different losses

4 Tx. Tx. Box 49.6 20.5 49.5 21.1

5 Tx. Tx. Vote 54.0 31.9 53.4 28.3

Tx.: Transformer, Vote/Box loss [42], Set loss § 3.4

Table 3: 3DETR with different decoders and losses. We vary

the decoder and losses used with our transformer encoder. As the

Box and Vote decoders are only compatible with their losses, we

vary the loss function while using them. The Vote loss is compat-

ible with our Transformer encoder-decoder, however a simpler set

loss performs the best.

marks. Additionally, the Box and Vote decoders work only

with their respective losses and our preliminary experiments

using set loss on these decoders led to worse results. Thus,

the drop of performance could be attributed to changing the

decoder used with our transformer encoder. We inspect this

next by replacing the loss in 3DETR while using the trans-

former encoder and decoder.

Replacing the loss. We train 3DETR, i.e., both Trans-

former encoder and decoder with the Box and Vote losses.

We observe (Table 3 rows 4 and 5) that this leads to sim-

ilar degradation in performance, suggesting that the losses

are not applicable to our model. This is not surprising since

the design decisions, e.g., voting radius, aggregation radius

etc. in the Vote loss was specifically designed for radius pa-

rameters in the PointNet++ encoder [45]. This set of obser-

vations exposes that the decoder and loss function used in

VoteNet depend greatly on the nature of the encoder (addi-

tional results in Appendix B.4). In contrast, our set loss has

no design decisions specific to our encoder-decoder.
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Method input mAcc OA

PointNet++ [45] point – 91.9

SpecGCN [71] point – 92.1

DGCNN [77] point 90.2 92.2

PointWeb [90] point 89.4 92.3

SpiderCNN [80] point – 92.4

PointConv [78] point – 92.5

KPConv [67] point – 92.9

InterpCNN [34] point – 93.0

3DETR encoder (Ours) point 89.1 92.1

3DETR-m encoder (Ours) point 89.9 91.9

Table 4: Shape classification. We report shape classification re-

sults by training our Transformer encoder model. Our model per-

forms competitively with architectures designed for 3D suggesting

that our design decisions can extend beyond detection and be use-

ful for other tasks.

Visualizing self-attention. We visualize the self-attention

in the decoder in Fig 1. The decoder focuses on whole in-

stances and groups points within instances. This presum-

ably makes it easier to predict bounding boxes for each

instance. We provide visualizations for the encoder self-

attention in the supplemental.

Encoder applied to Shape classification. To verify that

our encoder design is not specific to the detection task we

test the encoder on shape classification of of models includ-

ing 3D Warehouse [79].

We use the three layer encoder from 3DETR with vanilla

self-attention (no decoder) or the three layer encoder from

3DETR-m. To obtain global features for the point cloud,

we use the ‘CLS token’ formulation from Transformer, i.e.,

append a constant point to the input and use this point’s

output encoder features as global features (see supplemental

for details). The global features from the encoder are input

to a 2-layer MLP to perform shape classification. Table 4

shows that both the 3DETR and 3DETR-m encoders are

competitive with state-of-the-art encoders tailored for 3D.

These results suggest that our encoder design is not specific

to detection and can be used for other 3D tasks.

4.2.2 Design decisions in 3DETR

Our model is inspired by the DETR [4] architecture but has

major differences - (1) it is an end-to-end transformer with-

out a ConvNet, (2) it is trained from scratch (3) uses non-

parametric queries and (4) Fourier positional embeddings.

In Table 5, we show the impact of the last two differences

by evaluating various versions of our model on ScanNetV2.

The version with minimal modifications is a DETR model

applied to 3D with our training and loss function.

First, this version does not perform well on the Scan-

NetV2 benchmark, achieving 15% AP25. However, when

replacing the parametric queries by non-parametric queries,

# Method Positional Embedding Query Type ScanNetV2

Encoder Decoder AP25 AP50

1 3DETR - Fourier np + Fourier 62.7 37.5

2 Fourier Fourier np + Fourier 61.8 37.0

3 Sine Sine np + Sine 55.8 30.9

4 - - np + Sine 31.3 10.8

5 DETR [4]† Sine Sine parametric [4] 15.4 5.3

np: non-parametric query ( § 3.2)

Table 5: Decoder Query Type and Positional Embedding.

We how using non-parametric queries and Fourier positional em-

beddings [64] affect detection performance. DETR’s parametric

queries do not work well for 3D detection (rows 3, 5). The stan-

dard choice [4, 68] of sinusoidal positional embeddings is worse

than Fourier embeddings (rows 2, 3). † - DETR is designed for 2D

image detection and we adapt it for 3D detection.

Method NMS No NMS

VoteNet [42] 60.4 10.7

3DETR (ours) 62.7 59.5

Table 6: Effect of NMS. We report the detection performance

(AP25) for 3DETR and VoteNet on ScanNetV2. 3DETR works

without NMS at test time because the set matching loss discour-

ages excess predicted boxes.

we observe a significant improvement of +40% in AP25 (Ta-

ble 5 rows 3 and 5). In fact, only using the non-parametric

queries (row 4) without positional embeddings doubles the

performance. This shows the importance of using non-

parametric queries with 3D point clouds. A reason is that

point clouds are irregular and sparse, making the learning

of parametric queries harder than on a 2D image grids.

Non-parametric queries are directly sampled from the point

clouds and hence are less impacted by these irregularities.

Unlike the fixed number of parametric queries in DETR,

non-parametric queries easily enable the use different num-

ber of queries at train and test time (see § 5.1).

Finally, replacing the sinusoidal positional embedding

by the low-frequency Fourier encodings of [64] provides

an additional improvement of +5% in AP25 (Table 5 rows

2 and 3). As a side note, using positional encodings bene-

fits the decoder more than the encoder because the decoder

does not have direct access to coordinates.

5. Ablations

We conduct a series of ablation experiments to under-

stand the components of 3DETR with settings from § 4.

Effect of NMS. 3DETR uses the set loss of DETR (§ 3.4)

that forces a 1-to-1 mapping between the ground truth box

and the predicted box. This loss penalizes models that

predict too many boxes, since excess predictions are not

matched to ground truth. In contrast, the loss used in

VoteNet [42] does not discourage multiple predictions of

the same object and thus relies on Non-Maximal Suppres-
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Figure 4: Varying number of layers for encoder and decoder.

We train different models with varying number of encoder and de-

coder layers and analyze the impact on detection performance on

ScanNetV2. Increasing the number of layers in either the encoder

or decoder has a positive effect, but a higher number of decoder

layers matters more than the encoder layers.
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Figure 5: Adapting compute at test time. We change the number

of decoder layers or the number of queries used at test time for

a 3DETR model (‘same model’). We compare this to different

models trained with reduced depth of the decoder (left) or with

different number of queries (right). 3DETR can adapt to different

test time conditions and performs favorably compared to different

models trained for the test time conditions.

sion to remove them as a post-processing step. We compare

3DETR and VoteNet with and without NMS in Table 6 with

the detection AP metric, which penalizes duplicate detec-

tions. Without NMS, 3DETR drops in performance by only

3% AP while VoteNet drops by 50%, showing our set loss

works without NMS.

Effect of encoder/decoder layers. We assess the impor-

tance of the number of layers in the encoder and decoder

in Fig 4. While a higher number of layers improves de-

tection performance in general, adding the layers in the de-

coder instead of the encoder has a greater impact on perfor-

mance. For instance, for a model with three encoder and

three decoder layers, adding five decoder layers improves

performance by +7% AP50 while adding five encoder layers

improves by +2%AP50. This preference toward the decoder

arises because in our parallel decoder, each layer further re-

fines the prediction quality of the bounding boxes.

5.1. Adapting computation to inference constraints

An advantage of our model is that we can adapt its com-

putation during inference by using less layers in the decoder

or queries to predict boxes without retraining.

Adapting decoder depth. The parallel decoder of 3DETR

is trained to predict boxes at each layer with the same

bounding box prediction MLPs. Thus far, in all our results

we used the predictions only from the last decoder layer.

We now test the performance of the intermediate layers for

a decoder with six layers in Fig 5 (left). We compare this to

training different models with a varying number of decoder

layers. We make two observations - (1) similar to Fig 4, de-

tection performance increases with the number of decoder

layers; and (2) more importantly, the same model with re-

duced depth at test time performs as well or better than mod-

els trained from scratch with reduced depth. This second

property is shared with the DETR, but not with VoteNet.

It allows adapting the number of layers in the decoder to a

computation budget during inference without retraining.

Adapting number of queries. As we increase the num-

ber of queries, 3DETR predicts more bounding boxes, re-

sulting in better performance at a cost of longer running

time. However, our non-parametric queries in 3DETR al-

low us to adapt the number of box predictions to trade per-

formance for running time. Note that this is also possible

with VoteNet, but not with DETR. In Fig 5 (right), we com-

pare changing the number of queries at test time to different

models trained with varying number of queries. The same

3DETR model can adapt to a varying number of queries at

test time and performs comparably to different models. Per-

formance increases until the number of queries is enough

to cover the point cloud well. We found this adaptation to

number of queries at test time works best with a 3DETR

model trained with 128 queries (see Appendix B for other

models). This adaptive computation is promising and re-

search into efficient self-attention should benefit our model.

We provide inference time comparisons to VoteNet in Ap-

pendix A.1 for different versions of the 3DETR model.

6. Conclusion

We presented 3DETR, an end-to-end Transformer model
for 3D detection on point clouds. 3DETR requires few 3D
specific design decisions or hyperparameters. We show that
using non-parametric queries and Fourier encodings is crit-
ical for good 3D detection performance. Our proposed de-
sign decisions enable powerful Transformers for 3D detec-
tion, and also benefit other 3D tasks like shape classifica-
tion. Additionally, our set loss function generalizes to prior
3D architectures. In general, 3DETR is a flexible frame-
work and can easily incorporate prior components used in
3D detection and can be leveraged to build more advanced
3D detectors. Finally, it also combines the flexibility of both
VoteNet and DETR, allowing for a variable number of pre-
dictions at test time (like VoteNet) with a variable number
of decoder layers (like DETR).

Acknowledgments: We thank Zaiwei Zhang for helpful discus-

sions and Laurens van der Maaten for feedback on the paper.
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