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Abstract

One of the fundamental goals of visual perception is to
allow agents to meaningfully interact with their environment.
In this paper, we take a step towards that long-term goal –
we extract highly localized actionable information related to
elementary actions such as pushing or pulling for articulated
objects with movable parts. For example, given a drawer,
our network predicts that applying a pulling force on the
handle opens the drawer. We propose, discuss, and evaluate
novel network architectures that given image and depth data,
predict the set of actions possible at each pixel, and the
regions over articulated parts that are likely to move under
the force. We propose a learning-from-interaction framework
with an online data sampling strategy that allows us to train
the network in simulation (SAPIEN) and generalizes across
categories. Check the website for code and data release.

1. Introduction

We humans interact with a plethora of objects around us
in our daily lives. What makes this possible is our effortless
understanding of what can be done with each object, where
this interaction may occur, and precisely how our we must
move to accomplish it – we can pull on a handle to open a
drawer, push anywhere on a door to close it, flip a switch to
turn a light on, or push a button to start the microwave. Not
only do we understand what actions will be successful, we
also intuitively know which ones will not e.g. pulling out a
remote’s button is probably not a good idea! In this work,
our goal is to build a perception system which also has a
similar understanding of general objects i.e. given a novel
object, we want a system that can infer the myriad possible
interactions1 that one can perform with it.

The task of predicting possible interactions with objects is

∗The majority of the work was done while Kaichun Mo was a research
intern at Facebook AI Research.

1Gibson proposed the idea of affordances – opportunities of interaction.
Classical notion of object affordance involves consideration of agent’s
morphology. Our interactions are more low-level actions.
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Figure 1. The Proposed Where2Act Task. Given as input an ar-
ticulated 3D object, we learn to propose the actionable information
for different robotic manipulation primitives (e.g. pushing, pulling):
(a) the predicted actionability scores over pixels; (b) the proposed
interaction trajectories, along with (c) their success likelihoods,
for a selected pixel highlighted in red. We show two high-rated
proposals (left) and two with lower scores (right) due to interaction
orientations and potential robot-object collisions.

one of central importance in both, the robotics and the com-
puter vision communities. In robotics, the ability to predict
feasible and desirable actions (e.g. a drawer can be pulled
out) can help in motion planning, efficient exploration and
interactive learning (sampling successful trials faster). On
the other hand, the computer vision community has largely
focused on inferring semantic labels (e.g. part segmentation,
keypoint estimation) from visual input, but such passively
learned representations provide limited understanding. More
specifically, passive learning falls short on the ability of
agents to perform actions, learn prediction models (forward
dynamics) or even semantics in many cases (categories are
more than often defined on affordances themselves!). Our
paper takes a step forward in building a common percep-
tion system across diverse objects, while creating its own
supervision about what actions maybe successful by actively
interacting with the objects.

The first question we must tackle is how one can
parametrize the predicted action space. We note that any

6813



long-term interaction with an object can be considered as
a sequence of short-term ‘atomic’ interactions like pushing
and pulling. We therefore limit our work to considering the
plausible short-term interactions that an agent can perform
given the current state of the object. Each such atomic in-
teraction can further be decomposed into where and how
e.g. where on the cabinet should the robot pull (e.g. drawer
handle or drawer surface) and how should the motion be
executed (e.g. pull parallel or perpendicular to handle). This
observation allows us to formulate our task as one of dense
visual prediction. Given a depth or color image of an object,
we learn to infer for each pixel/point, whether a certain prim-
itive action can be performed at that location, and if so, how
it should be executed.

Concretely, as we illustrate in Figure 1 (a), we learn a
prediction network that given an atomic action type, can
predict for each pixel: a) an ‘actionability’ score, b) action
proposals, and c) success likelihoods. Our approach allows
an agent to learn these by simply interacting with various
objects, and recording the outcomes of its actions – labeling
ones that cause a desirable state change as successful. While
randomly interacting can eventually allow an agent to learn,
we observe that it is not a very efficient exploration strategy.
We therefore propose an on-policy data sampling strategy to
alleviate this issue – by biasing the sampling towards actions
the agents thinks are likely to succeed.

We use the SAPIEN [45] simulator for learning and test-
ing our approach for six types of primitive interaction, cov-
ering 972 shapes over 15 commonly seen indoor object cate-
gories. We empirically show that our method successfully
learns to predict possible actions for novel objects, and does
so even for previously unseen categories.

In summary, our contributions are:
• we formulate the task of inferring affordances for ma-

nipulating 3D articulated objects by predicting per-pixel
action likelihoods and proposals;
• we propose an approach that can learn from interac-

tions while using adaptive sampling to obtain more
informative samples;
• we create benchmarking environments in SAPIEN, and

show that our network learns actionable visual represen-
tations that generalize to novel shapes and even unseen
object categories.

2. Related Works

Predicting Semantic Representations. To successfully in-
teract with a 3D object, an agent must be able to ‘understand’
it given some perceptual input. Several previous works in
the computer vision community have pursued such an un-
derstanding in the form of myriad semantic labels. For
example, predicting category labels [44, 3], or more fine-
grained output such as semantic keypoints [6, 52] or part

segmentations [51, 24] can arguably yield more actionable
representations e.g. allowing one to infer where ‘handles’, or
‘buttons’ etc. are. However, merely obtaining such semantic
labels is clearly not sufficient on its own – an agent must
also understand what needs to be done (e.g. an handle can
be ‘pulled’ to open a door), and how that action should be
accomplished i.e. what precise movements are required to
‘pull open’ the specific object considered.

Inferring Geometric and Physical Properties. Towards
obtaining information more directly useful for how to act,
some methods aim for representations that can be leveraged
by classical robotics techniques. In particular, given geomet-
ric representations such as the shape [3, 22, 45, 47], along-
with the rigid object pose [46, 40, 39, 41, 4], articulated part
pose [12, 50, 42, 49, 18, 45, 15] pose, or shape functional
semantics [17, 13, 14], one can leverage off-the-shelf plan-
ners [23] or prediction systems [21] developed in the robotics
community to obtain action trajectories. Additionally, the
ability to infer physical properties e.g. material [36, 19],
mass [36, 37] etc. can further make this process accurate.
However, this two-stage procedure for acting, involving a
perception system that predicts the object ‘state’, is not ro-
bust to prediction errors and makes the perception system
produce richer output than possibly needed e.g. we don’t
need the full object state to pull out a drawer. Moreover,
while this approach allows an agent to precisely execute an
action, it sidesteps the issue of what action needs to/can be
performed in the first place e.g. how does the agent under-
stand a button can be pushed?

Learning Affordances from Passive Observations. One
interesting approach to allow agents to learn what actions can
be taken in a given context is to leverage (passive) observa-
tions – one can watch videos of other agents interacting with
an object/scene and learn what is possible to do. This tech-
nique has been successfully used to learn scene affordances
(sitting/standing) [8], possible contact locations [2], inter-
action hotspots [26], or even grasp patterns [10]. However,
learning from passive observations is challenging due to sev-
eral reasons e.g. the learning agent may differ in anatomy
thereby requiring appropriate retargeting of demonstrations.
An even more fundamental concern is the distribution shift
common in imitation learning – while the agent may see ex-
amples of what can be done, it may not have seen sufficient
negative examples or even sufficiently varied positive ones.

Learning Perception by Interaction. Most closely related
to our approach is the line of work where an agent learns
to predict affordances by generating its own training data
– by interacting with the world and trying out possible ac-
tions. One important task where this approach has led to
impressive results is that of planar grasping [30, 16], where
the agent can learn which grasp actions would be successful.
While subsequent approaches have attempted to apply these
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ideas to other tasks like object segmentation [29, 20], planar
pushing [31, 53], or non-planar grasps [25], these systems
are limited in the complexity of the actions they model. In
parallel, while some methods have striven for learning more
complex affordances, they do so without modeling for the
low-level actions required and instead frame the task as clas-
sification with oracle manipulators [27]. In our work, driven
by availability of scalable simulation with diverse objects,
we tackle the task of predicting affordances for richer inter-
actions while also learning the low-level actions that induce
the desired change.

3. Problem Statement
We formulate a new challenging problem Where2Act –

inferring per-pixel ‘actionable information’ for manipulating
3D articulated objects. As illustrated in Fig. 1, given a 3D
shape S with articulated parts (e.g. the drawer and door on the
cabinet), we perform per-pixel predictions for (a) where to
interact, (b) how to interact, and (c) the interaction outcomes,
under different action primitives.

In our framework, the input shape can be represented
as a 2D RGB image or a 3D partial point cloud scan. We
parametrize six types of short-term primitive actions (e.g.
pushing, pulling) by the robot grippper pose in the SE(3)
space and consider an interaction successful if it interacts
with the intended contact point on object validly and causes
part motion to a considerable amount.

With respect to every action primitive, we predict for each
pixel/point p over the visible articulated parts of a 3D shape
S the following: (a) an actionability score ap measuring how
likely the pixel p is actionable; (b) a set of interaction pro-
posals

{
Rz|p ∈ SO(3)

}
z to interact with the point p, where z

is randomly drawn from a uniform Gaussian distribution; (c)
one success likelihood score sR|p for each action proposal R.

4. Method
We propose a learning-from-interaction approach to

tackle this task. Taking as input a single RGB image or
a partial 3D point cloud, we employ an encoder-decoder
backbone to extract per-pixel features and design three de-
coding branches to predict the ’actionable information’.

4.1. Network Modules

Fig. 2 presents an overview of the proposed method. Our
pipeline has four main components: a backbone feature ex-
tractor, an actionability scoring module, an action proposal
module, and an action scoring module. We train an individ-
ual network for each primitive action.

Backbone Feature Extractor. We extract dense per-pixel
features

{
fp
}

p over the articulated parts. In the real-world
robotic manipulation both RGB cameras or RGB-D scan-
ners are used. Therefore, we evaluate both settings. For
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Figure 2. Network Architecture. Our network takes an 2D image
or a 3D partial scan as input and extract per-pixel feature fp using
(a) Unet [35] for 2D images and (b) PointNet++ [32] for 3D point
clouds. To decode the per-pixel actionable information, we propose
three decoding heads: (c) an actionability scoring module Da that
predicts a score ap ∈ [0,1]; (d) an action proposal module Dr that
proposes multiple gripper orientations Rz|p ∈ SO(3) sampled from
a uniform Gaussian random noise z; (e) an action scoring module
Ds that rates the confidence sR|p ∈ [0,1] for each proposal.

the 2D case, we use the UNet architecture [35] and imple-
mentation [48] with a ResNet-18 [11] encoder, pretrained
on ImageNet [5], and a symmetric decoder, trained from
scratch, equipped with dense skip links between the encoder
and decoder. For the 3D experiments, we use PointNet++
segmentation network [32] and implementation [43] with
4 set abstraction layers with single-scale grouping for the
encoder and 4 feature propagation layers for the decoder. In
both cases, we finally produce per-pixel feature fp ∈ R128.

Actionability Scoring Module. For each pixel p, we pre-
dict an actionability score ap ∈ [0,1] indicating how likely
the pixel is actionable. We employ a Multilayer Perceptron
(MLP) Da with one hidden layer of size 128 to implement
this module. The network outputs one scalar ap after apply-
ing the Sigmoid function, where a higher score indicates a
higher chance for successful interaction. Namely,

ap = Da ( fp) (1)

Action Proposal Module. For each pixel p, we employ
an action proposal module that is essentially formulated
as a conditional generative model to propose high-recall
interaction parameters

{
Rz|p

}
z. We employ another MLP Dr

with one hidden layer of size 128 to implement this module.
Taking as input the current pixel feature fp and a randomly
sampled Gaussian noise vector z ∈ R10, the network Dp
predicts a gripper end-effector 3-DoF orientation Rz|p in the
SO(3) space

Rz|p = Dr ( fp,z) . (2)

We represent the 3-DoF gripper orientation by the first two
orthonormal axes in the 3×3 rotation matrix, following the
proposed 6D-rotation representation in [54].
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Figure 3. (a) Our interactive simulation environment: we show the
local gripper frame by the red, green and blue axes, which corre-
sponds to the leftward, upward and forward directions respectively;
(b) Six types of action primitives parametrized in the SE(3) space:
we visualize each pre-programmed motion trajectory by showing
the three key frames, where the time steps go from the transparent
grippers to the solid ones, with 3× exaggerated motion ranges.

Action Scoring Module. For an action proposal R at pixel
p, we finally estimate a likelihood sR|p ∈ [0,1] for the suc-
cess of the interaction parametrized by tuple (p,R) ∈ SE(3).
One can use the predicted action scores to filter out low-
rated proposals, or sort all the candidates according to the
predicted scores, analogous to predicting confident scores
for bounding box proposals in the object detection literature.

This network module Ds is also parametrized by an MLP
with one hidden layer of size 128. Given an input tuple
( fp,R), we produce a scalar sR|p ∈ [0,1],

sR|p = Ds ( fp,R) , (3)
where sR|p > 0.5 indicates a positive action proposal R during
the testing time.

4.2. Collecting Training Data

It is extremely difficult to collect human annotations for
the predictions that we are pursuing. Instead, we propose to
let the agent learn by interacting with objects in simulation.
As illustrated in Fig. 3 (a), we create an interactive environ-
ment using SAPIEN [45] where a random 3D articulated
object is selected and placed at the center of the scene. A
flying robot gripper can then interact with the object by spec-
ifying a position p ∈ R3 over the shape geometry surface
with an end-effector orientation R ∈ SO(3). We consider six
types of action primitives (Fig. 3 (b)) with pre-programmed
interaction trajectories, each of which is parameterized by
the gripper pose (p,R) ∈ SE(3) at the beginning.

We employ a hybrid data sampling strategy where we first
sample large amount of offline random interaction trajecto-
ries to bootstrap the learning and then adaptively sample
online interaction data points based on the network predic-
tions for more efficient learning.

Offline Random Data Sampling. We sample most of the
training data in an offline fashion as we can efficiently sam-
ple several data points by parallelizing simulation environ-

ments across multiple CPUs. For each data point, we first
randomly sample a position p over the ground-truth artic-
ulated parts to interact with. Then, we randomly sample
an interaction orientation R ∈ SO(3) from the hemisphere
above the tangent plane around p, oriented consistently to
the positive normal direction, and try to query the outcome
of the interaction parametrized by (p,R). We mark orienta-
tion Rs from the other hemisphere as negative without trials
since the gripper cannot be put inside the object volume.

In our experiments, for each primitive action type, we
sample enough offline data points that give roughly 10,000
positive trajectories to bootstrap the training. Though par-
allelization allows large scale offline data collection, such
random data sampling strategy is highly inefficient in query-
ing the interesting interaction regions to obtain positive data
points. Statistics show that only 1% data samples are positive
for the pulling primitive. This renders a big data imbalance
challenge in training the network and also hints that the most
likely pullable regions occupy really small regions, which
is practically very reasonable since we most likely pull out
doors/drawers by their handles.

Online Adaptive Data Sampling. To address the sampling-
inefficiency of offline random data sampling, we propose to
conduct online adaptive data sampling that samples more
over the subregions that the network that we are learning
predicts to be highly possible to be successful.

In our implementation, during training the network for
the action scoring module Ds with data sample (p,R), we
infer the action score predictions

{
sR|pi

}
i over all pixels

{pi}i on articulated parts. Then, we sample one position p∗
to conduct an additional interaction trial (p∗,R) according
to the SoftMax normalized probability distribution over all
possible interaction positions. By performing such online
adaptive data sampling, we witness an increasingly grow-
ing positive data sample rate since the network is actively
choosing to sample more around the likely successful sub-
regions. Also, we observe that sampling more data around
the interesting regions helps network learn better features at
distinguishing the geometric subtleties around the small but
crucial interactive parts, such as handles, buttons and knobs.

While this online data sampling is beneficial, it may lead
to insufficient exploration of novel regions. Thus, in our
final online data sampling procedure, we sample 50% of data
trajectories from the random data sampling and sample the
other 50% from prediction-biased adaptive data sampling.

4.3. Training and Losses

We empirically find it beneficial to first train the action
scoring module Ds and then train the three decoders jointly.
We maintain separate data queues for feeding same amount
of positive and negative interaction data in each training
batch to address the data imbalance issue. We also balance
sampling shapes from different object categories equally.
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Action Scoring Loss. Given a batch of B interaction data
points {(Si, pi,Ri,ri)}i where ri = 1 (positive) and ri = 0
(negative) denote the ground-truth interaction outcome, we
train the action scoring module Ds with the standard binary
cross entropy loss

Ls =−
1
B ∑

i
ri log

(
Ds( fpi|Si ,Ri)

)
+

(1− ri) log
(
1−Ds( fpi|Si ,Ri)

)
.

(4)

Action Proposal Loss. We leverage the Min-of-N strat-
egy [7] to train the action proposal module Dr, which is
essentially a conditional generative model that maps a pixel
p to a distribution of possible interaction proposals Rz|p’s.
For each positive interaction data, we train Dr to be able to
propose one candidate that matches the ground-truth inter-
action orientation. Concretely, for a batch of B interaction
data points {(Si, pi,Ri,ri)}i where ri = 1, the Min-of-N loss
is defined as

Lr =
1
B ∑

i
min

j=1,··· ,100
dist

((
Dr

(
fpi|Si ;z j

))
,Ri

)
, (5)

where z j is i.i.d randomly sampled Gaussian vectors and
dist denotes a distance function between two 6D-rotation
representations, as defined in [54].

Actionability Scoring Loss. We define the ‘actionability’
score corresponding to a pixel as the expected success rate
when executing a random proposal generated by our proposal
generation module Dr. While one could estimate this by
actually executing these proposals, we note that our learned
action scoring module Ds allows us to directly evaluate this.
We train our ‘actionability’ scoring module to learn this
expected score across proposals from Dr, namely,

âpi|Si =
1

100 ∑
j=1,··· ,100

Ds
(

fpi|Si ,Dr
(

fpi|Si ,z j
))

;

La =
1
B ∑

i

(
Da( fpi|Si)− âpi|Si

)2
.

(6)

This strategy is computationally efficient since we are re-
using the 100 proposals computed in Eq. 5. Also, since
the action proposal network Dr is optimized to cover all
successful interaction orientations, the estimation âpi|Si is
expected to be approaching 1 when most of the proposals are
successful and 0 when the position p is not actionable (i.e.
all proposals are rated with low success likelihood scores).

Final Loss. After adjusting the relative loss scales to the
same level, we obtain the final objective function

L = Ls +Lr +100×La. (7)

5. Experiments

We set up an interactive simulation environment in
SAPIEN [45] and benchmark performance of the proposed
method both qualititively and quantitatively. Results also
show that the networks learn representations that can gener-
alize to novel unseen object categories and real-world data.

5.1. Framework and Settings

We describe our simulation environment, simulation as-
sets and action primitive settings in details below.

Environment. Equipped with a large-scale PartNet-
Mobility dataset, SAPIEN [45] provides a physics-rich sim-
ulation environment that supports robot actuators interacting
with 2,346 3D CAD models from 46 object categories. Ev-
ery articulated 3D object is annotated with articulated parts
of interests (e.g. doors, handles, buttons) and their part mo-
tion information (i.e. motion types, motion axes and motion
ranges). SAPIEN integrates one of the state-of-the-art phys-
ical simulation engines NVIDIA PhysX [28] to simulate
physics-rich interaction details.

We adapt SAPIEN to set up our interactive environ-
ment for our task. For each interaction simulation, we first
randomly select one articulated 3D object, which is zero-
centered and normalized within a unit-sphere, and place it in
the scene. We initialize the starting pose for each articulated
part, with a 50% chance at its rest state (e.g. a fully closed
drawer) and 50% chance with a random pose (e.g. a half-
opened drawer). Then, we use a Franka Panda Flying gripper
with 2 fingers as the robot actuator, which has 8 degree-of-
freedom (DoF) in total, including the 3 DoF position, 3
DoF orientation and 2 DoF for the 2 fingers. The flying
gripper can be initialized at any position and orientation
with a closed or open gripper. We observe the object in the
scene from an RGB-D camera with known intrinsics that is
mounted 5-unit far from the object, facing the object center,
located at the upper hemisphere of the object with a random
azimuth [0◦,360◦) and a random altitude [30◦,60◦]. Fig. 3
(a) visualizes one example of our simulation environment.

Simulation Assets. We conduct our experiments using 15
selected object categories in the PartNet-Mobility dataset,
after removing the objects that are either too small (e.g.
pens, USB drives), requiring multi-gripper collaboration (e.g.
pliers, scissors), or not making sense for robot to manipulate
(e.g. keyboards, fans, clocks). We use 10 categories for
training and reserve the rest 5 categories only for testing, in
order to analyze if the learned representations can generalize
to novel unseen categories. In total, there are 773 objects in
the training categories and 199 objects in the testing ones.
We further divide the training split into 586 training shapes
and 187 testing shapes, and only use the training shapes
from the training categories to train our networks. Table 1
summarizes the detailed statistics of the final data splits.
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Train-Cats All Box Door Faucet Kettle Microwave
Train-Data 586 20 23 65 22 9
Test-Data 187 8 12 19 7 3

Fridge Cabinet Switch TrashCan Window
32 270 53 52 40
11 75 17 17 18

Test-Cats All Bucket Pot Safe Table Washing
Test-Data 199 36 23 29 95 16

Table 1. We summarize the shape counts in our dataset. Here, pot
and washing are short for kitchen pot and washing machine.

Action Settings. We consider six types of primitive ac-
tions: pushing, pushing-up, pushing-left, pulling, pulling-up,
pulling-left. All action primitives are pre-programmed with
hard-coded motion trajectories and parameterized by the
gripper starting pose R ∈ SE(3) in the camera space. At the
beginning of each interaction simulation, we initialize the
robot gripper slightly above a surface position p of interest
approaching from orientation R.

We visualize the action primitives in Fig. 3 (b). For push-
ing, a closed gripper first touches the surface and then pushes
0.05 unit-length forward. For pushing-up and pushing-left,
the closed gripper moves forward by 0.04 unit-length to con-
tact the surface and scratches the surface to the up or left
direction for 0.05 unit-length. For pulling, an open gripper
approaches the surface by moving forward for 0.04 unit-
length, performs grasping by closing the gripper, and pulls
backward for 0.05 unit-length. For pulling-up and pulling-
left, after the attempted grasping, the gripper moves along
the up or left direction for 0.05 unit-length. Notice that
the pulling actions may degrade to the pushing ones if the
gripper grasps nothing but just touches/scratches the surface.

We define one interaction trial successful if the part that
we are interacting with exhibits a considerable part motion
along the intended direction. The intended direction is the
forward or backward direction for pushing and pulling, and
is the up or left direction for the rest four directional action
types. We measure the contact point motion direction and
validate it if the angle between the intended direction and the
actual motion direction is smaller than 60◦. For thresholding
the part motion magnitude, we measure the gap between the
starting and end part 1-DoF pose and claim it successful if
the gap is greater than 0.01 unit-length or 0.5 relative to the
total motion range of the articulated part.

5.2. Metrics and Baselines

We propose two quantitative metrics for evaluating per-
formance of our proposed method, compared with three
baseline methods and one ablated version of our method.
Evaluation Metrics. A natural set of metrics is to evaluate
the binary classification accuracy of the action scoring net-
work Ds. We conduct random interaction simulation trials in
the SAPIEN environment over testing shapes with random
camera viewpoints, interaction positions and orientations.
With random interactions, there are many more failed inter-

action trials than the successful ones. Thus, we report the
F-score balancing precision and recall for the positive class.

To evaluate the action proposal quality, we introduce a
sample-success-rate metric ssr that measures what fraction
of interaction trials proposed by the networks are success-
ful. This metric jointly evaluates all the three network mod-
ules and mimics the final use case of proposing meaningful
actions when a robot actuator wants to operate the object.
Given an input image or partial point cloud, we first use the
actionability scoring module Da to sample a pixel to interact,
then apply the action proposal module Dr to generate sev-
eral interaction proposals, and finally sample one interaction
orientation according to the ratings from the action scoring
module Ds . For both sampling operations, we normalize
the predicted scores over all pixels or all action proposals
as a probabilistic distribution and sample among the ones
with absolute probability greater than 0.5. For the proposal
generation step, we sample 100 action proposals per pixel
by randomly sampling the inputs to Dr from a uniform Gaus-
sian distribution. For each sampled interaction proposal,
we apply it in the simulator and observe the ground-truth
outcome. We define the final measure as below.

ssr =
# successful proposals

# total proposals
(8)

Baselines and Ablation Study. Since we are the first to
propose and formulate the task, there is no previous work
for us to compare with. To validate the effectiveness of the
proposed method and provide benchmarks for the proposed
task, we compare to three baseline methods and one ablated
version of our method:
• B-Random: a random agent that always gives a ran-

dom proposal or scoring;
• B-Normal: a method that replaces the feature fp in

our method with the 3-dimensional ground-truth nor-
mal, with the same decoding heads, losses and training
scheme as our proposed method;
• B-PCPNet: a method that replaces the feature fp in our

method with predicted normals and curvatures, which
are estimated using PCPNet [9] on 3D partial point
cloud inputs, with the same decoding heads, losses and
training scheme as our proposed method;
• Ours w/o OS: an ablated version of our method that

removes the online adaptive data sampling strategy and
only samples online data with random exploration. We
make sure that the total number of interaction queries
is the same as our method for a fair comparison.

Among baseline methods, B-Random presents lower
bound references for the proposed metrics, while B-Normal
is designed to validate that our network learns localized
but interaction-oriented features, rather than simple geomet-
ric features such as normal directions. B-PCPNet further
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Figure 4. We visualize the per-pixel action scoring predictions over the articulated parts given certain gripper orientations for interaction. In
each set of results, the left two shapes shown in blue are testing shapes from training categories, while the middle two shapes highlighted in
dark red are shapes from testing categories. The rightmost columns show the results for the 2D experiments.

F-score (%) Sample-Succ (%)

pushing
B-Random 12.02 / 7.40 6.80 / 3.79
B-Normal 31.94 / 17.39 21.72 / 11.57
B-PCPNet 32.01 / 18.21 18.04 / 9.15
2D-ours 34.21 / 22.68 21.36 / 10.58
3D-ours 43.76 / 26.61 28.54 / 14.74

pushing-up
B-Random 4.92 / 3.31 2.70 / 1.62
B-Normal 13.37 / 7.56 8.93 / 4.81
B-PCPNet 15.08 / 7.50 8.09 / 4.86
2D-ours 15.35 / 8.69 8.70 / 5.76
3D-ours 21.64 / 11.20 12.06 / 6.56

pushing-left
B-Random 6.18 / 4.05 3.08 / 2.26
B-Normal 18.52 / 10.72 11.59 / 5.72
B-PCPNet 18.66 / 10.81 9.69 / 4.43
2D-ours 18.93 / 12.04 11.68 / 7.22
3D-ours 26.04 / 16.06 15.95 / 9.31

pulling
B-Random 2.26 / 3.19 1.07 / 1.55
B-Normal 6.20 / 8.02 3.79 / 4.18
B-PCPNet 7.19 / 8.57 4.15 / 3.71
2D-ours 7.04 / 8.98 4.07 / 4.70
3D-ours 10.95 / 12.88 7.51 / 7.85

pulling-up
B-Random 5.01 / 4.13 2.22 / 2.41
B-Normal 13.64 / 9.40 8.67 / 6.08
B-PCPNet 14.73 / 10.98 8.37 / 6.19
2D-ours 15.74 / 12.88 9.71 / 7.10
3D-ours 22.24 / 16.28 13.53 / 9.28

pulling-left
B-Random 5.83 / 4.16 3.06 / 2.31
B-Normal 17.52 / 10.51 11.14 / 5.82
B-PCPNet 18.89 / 11.00 9.12 / 5.19
2D-ours 16.20 / 10.16 10.15 / 6.05
3D-ours 25.22 / 14.49 14.25 / 7.10

Table 2. Quantitative Evaluations and Comparisons. We com-
pare our method to three baseline methods (i.e. B-Random, B-
Normal and B-PCPNet). In each entry, we report the numbers
evaluated over the testing shapes from training categories (before
slash) and the shapes from the test categories (after slash). We
use 3D- and 2D- to indicate the data input modalities. The base-
line methods are not sensitive to the input kinds. We observe that
3D-ours achieves the best performance.

validates that our network learns geometric features more
than local normals and curvatures. An ablated version Ours
w/o OS further proves the improvement provided by the
proposed online adaptive data sampling (OS) strategy.

F-score (%) Sample-Succ (%)

pushing Ours w/o OS 40.54 / 25.66 25.18 / 11.76
Ours 43.76 / 26.61 28.54 / 14.74

pushing-up Ours w/o OS 21.03 / 11.57 12.88 / 6.43
Ours 21.64 / 11.20 12.06 / 6.56

pushing-left Ours w/o OS 24.71 / 14.91 14.12 / 7.02
Ours 26.04 / 16.06 15.95 / 9.31

pulling Ours w/o OS 10.28 / 12.09 5.62 / 5.87
Ours 10.95 / 12.88 7.51 / 7.85

pulling-up Ours w/o OS 20.51 / 13.70 12.18 / 7.96
Ours 22.24 / 16.28 13.53 / 9.28

pulling-left Ours w/o OS 23.41 / 15.07 14.23 / 6.81
Ours 25.22 / 14.49 14.25 / 7.10

Table 3. Ablation Study. We compare our method to an ablated
version, where we remove the online adaptive sampling. It is clear
to see that using online data sampling (OS) helps in most cases.

5.3. Results and Analysis

Table 2 presents quantitative comparisons of our method
to the three baselines, where we observe that 3D-Ours per-
forms the best. Our network learns localized but interaction-
oriented geometric features, performing better than B-
Normal and B-PCPNet which only use normals and cur-
vatures as features. Though lacking of explicit 3D informa-
tion and thus performing worse than the 3D networks, we
observe competitive results from the 2D-version 2D-Ours.
Our networks also learn representations that generalize suc-
cessfully to unseen novel object categories. The ablation
study shown in Table 3 further validates that the online data
sampling (OS) strategy helps boost the performance.

We visualize the predicted action scores in Fig. 4, where
we clearly see that given different primitive action types and
gripper orientations, our network learns to extract geometric
features that are action-specific and gripper-aware. For exam-
ple, for pulling, we predict higher scores over high-curvature
regions such as part boundaries and handles, while for push-
ing, almost all flat surface pixels belonging to a pushable part
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(b) (b)
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push-up push-left

(a)(a)

(b)(b)

Figure 5. We visualize (a) the actionability scoring and (b) the
action proposal predictions on an example cabinet with a door that
can be slipped to open. We show the top-4 rated proposals.

are equally highlighted and the pixels around handles are
reasonably predicted to be not pushable due to object-gripper
collisions. For the directional interaction types, it is obvious
to see that the action direction is of important consideration
to the predictions. For instance, the pushing-left agent learns
to scratch the side surface pixels of the cabinet drawers to
close them (third-row, the leftmost column) and the pulling-
up one learns to lift up the handle of a bucket by grasping it
and pulling up (second-row, the rightmost column).

We illustrate the estimated actionability scores over the ar-
ticulated part for the six action primitives in Fig. 1 and Fig. 5.
We obverse that the door/drawer handles and part boundaries
are highlighted, especially for pulling and pulling-up, where
reasonable interaction proposals are produced. Fig. 1 clearly
shows the different actionability predictions over the door
pixels, where the door surface pixels are in general pushable,
while only the handle part is pullable. Fig. 5 presents com-
parisons among the four directional interaction types. We
observe similar actionability predictions for pushing-up and
pushing-left but different orientation proposals for interact-
ing with the same pixel. Interestingly, comparing pulling-up
and pulling-left, we see that the operation of grasping is
in function for pulling-up, making it more actionable than
pulling-left when attempting to slide open the cabinet door.
We present more results in the supplementary.

5.4. Real-world Data

We directly applied our networks trained on synthetic
data to real-world data. Fig. 6 presents our predictions of
the action scoring module on real 3D scans and 2D images,
which shows promising results that our networks transfer the
learned actionable information to real-world data.

Replica Google Scanned Objects

in
pu

t
pu

sh
pu

ll

Real Images

Figure 6. We visualize our action scoring predictions given certain
gripper orientations over three real-world 3D scans from the Replica
dataset [38] and Google Scanned Objects [34, 33], as well as on two
2D real images [1]. Results are shown over all pixels because of no
access to the articulated part masks. Though there is no guarantee
for the predictions over pixels outside the articulated parts, the
results make sense if we allow motion for the entire objects.

6. Conclusion
We formulate a new challenging task to predict per-pixel

actionable information for manipulating articulated 3D ob-
jects. Using an interactive environment built upon SAPIEN
and the PartNet-Mobility dataset, we train neural networks
that map pixels to actions: for each pixel on a articulated part
of an object, we predict the actionability of the pixel related
to six primitive actions and propose candidate interaction
parameters. We present extensive quantitative evaluations
and qualitative analysis of the proposed method. Results
show that the learned knowledges are highly localized and
thus generalizable to novel unseen object categories.
Limitations and Future Works. We see many possibilities
for future extensions. First, our network takes single frame
visual input, which naturally introduces ambiguities for the
solution spaces if the articulated part mobility information
cannot be fully determined from a single snapshot. Second,
we limit our experiments to six types of action primitives
with hard-coded motion trajectories. One future extension
is to generalize the framework to free-form interactions. Fi-
nally, our method does not explicitly model the part segmen-
tation and part motion axis, which may be incorporated in
the future works to further improve the performance.
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