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Abstract

Adversarial robustness of deep models is pivotal in en-
suring safe deployment in real world settings, but most mod-
ern defenses have narrow scope and expensive costs. In this
paper, we propose a self-supervised method to detect ad-
versarial attacks and classify them to their respective threat
models, based on a linear model operating on the embed-
dings from a pre-trained self-supervised encoder. We use
a SimCLR encoder in our experiments, since we show the
SimCLR embedding distance is a good proxy for human per-
ceptibility, enabling it to encapsulate many threat models at
once. We call our method SimCat since it uses SimCLR en-
coder to catch and categorize various types of adversarial
attacks, including ℓp and non-ℓp evasion attacks, as well
as data poisonings. The simple nature of a linear clas-
sifier makes our method efficient in both time and sample
complexity. For example, on SVHN, using only five pairs of
clean and adversarial examples computed with a PGD-ℓ∞
attack, SimCat’s detection accuracy is over 85%. More-
over, on ImageNet, using only 25 examples from each threat
model, SimCat can classify eight different attack types such
as PGD-ℓ2, PGD-ℓ∞, CW-ℓ2, PPGD, LPA, StAdv, ReColor,
and JPEG-ℓ∞, with over 40% accuracy. On STL10 data, we
apply SimCat as a defense against poisoning attacks, such
as BP, CP, FC, CLBD, HTBD, halving the success rate while
using only twenty total poisons for training. We find that the
detectors generalize well to unseen threat models. Lastly,
we investigate the performance of our detection method un-
der adaptive attacks and further boost its robustness against
such attacks via adversarial training.

1. Introduction

Deep learning has been applied to many applications
with great success, though a major roadblock to safe de-
ployment of deep models in real world settings is their sus-
ceptibility to adversarial attacks. Targeting a model at the

time of inference is known as an evasion attack [33], where
imperceptible perturbations are made to an input to craft
an adversarial example that is misclassified by the model.
Models can also be attacked during training via poisoning
[11], where a small number of adversarial examples are in-
serted to a training set, so that after training, targeted test
samples are misclassified.

To mitigate these vulnerabilities, many defenses have
been introduced [22, 34, 9, 19]. However, a number of prac-
tical challenges remain. First, most defenses only harden a
model against a specific narrow threat model [16]. Thus,
an attacker can easily evade the defense by using a different
attack. Second, novel attacks are introduced frequently, in
a brisk game of cat and mouse, in which the attacker gen-
erally has the upper hand [2]. When we combine the rapid
development of attacks with the high computational cost of
retraining a model to be robust against even a single threat,
maintaining the robustness of a model to all threats using
typical defenses becomes intractable.

Certain detection based defenses [3] do not require fun-
damentally changing how the model is trained, which al-
lows for easy application of the detector without disrupting
the existing machine learning pipeline. However, many de-
tection based systems require large amounts of data. This
is problematic in practice, as an adversary may employ an
attack that the defender has never seen before, making it dif-
ficult for the defender to have trained the detector to work
against it. Even if the defender obtains some examples of
the novel attack, the training size may not be sufficient to
expand the detector’s ability to include the novel attack.

The advantage of a detector that is both broad in scope
and inexpensive in training requirements is clear. In this
paper, we propose a highly sample efficient detector that
also generalizes well to unforeseen attacks. Further, we ex-
tend our model to classify adversarial attacks to their re-
spective threat models, similar to [23]. The classification al-
lows for additional defenses to be employed, specific to the
attack encountered. Our model is based on pretrained self-
supervised encoders, which are capable of efficiently ex-
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tracting the semantic content of images, as evident by recent
successes in the self-supervised domain that have closed the
gap with supervised models.

Specifically, we use a SimCLR encoder pretrained on
ImageNet, because we observe that distance in the embed-
ding space of this encoder correlates strongly with human
perception (Figure 1). Furthermore, the distance between
the SimCLR representations of a clean image and its ad-
versarially perturbed counterpart is similar across various
threat models, making the SimCLR distance a strong can-
didate to proxy the true perceptual threat model, which en-
capsulates all imperceptible adversarial attacks [19]. While
LPIPS [37] has also been shown to be a strong proxy for
true perceptual distance, the dimensionality of its feature
vectors is massive in comparison to that of SimCLR rep-
resentations. Our method is called SimCat, as it uses a
SimCLR encoder to linearly catch adversarial attacks and
categorize them to their respective threat models.

By utilizing the highly informative low dimensional em-
bedding space of self-supervised encoders, we find that
even a linear model trained on these representations can ef-
fectively detect and classify adversarial attacks of a wide
variety of types. Our experiments over many threat models
and multiple datasets show that, for both evasion and poi-
soning attacks, SimCat greatly outperforms baseline mod-
els. While the method is extremely simple, we argue that its
simplicity is essential for the efficiency of the method both
in terms of time and sample complexities. By freezing the
encoder, SimCat’s optimization is convex and thus its global
optimum can be found effectively. Moreover, SimCat has
low model complexity due to the small dimensionality of
SimCLR representations, allowing for highly efficient train-
ing that also generalizes well. These properties lead to an
impressive empirical performance of SimCat in detection
and classification of various types of adversarial examples
using as few as 5 training samples per class.

For example, on ImageNet, using only 5 samples per
threat model, SimCat’s detection accuracy is 68.5%, im-
proving the baseline method by more than 6.4%. Using the
same setup, SimCat’s classification accuracy of 8 adversar-
ial attacks including PGD-ℓ2, PGD-ℓ∞, CW-ℓ2 [4], PPGD
[19], LPA [19], StAdv [35], ReColor [18], and JPEG-
ℓ∞[16] is 27.1%, improving the baseline performance by
7.7%. Using 25 samples per class, SimCat’s gains over
baseline method grows to 7.4% and 11.8% for detection and
classification problems, respectively.

Interestingly, SimCat can be used to detect and classify
various types of poisoning attacks as well, which we then
apply as an efficient poison defense. We consider five types
of poisonings including bullseye polytope (BP) and convex
polytope (CP) [1, 38]. Using two SimCat detectors trained
with 10 BP and 10 CP poisons respectively, we construct an
ensemble detector to remove any sample that is flagged as

poison by either of the individual detectors. The ensemble
reduces poison success rate over five types of poisoning at-
tacks from 21.8% to 9.7%. Notably, the SimCat poisoning
defense only reduces clean accuracy by 1%.

Lastly, we develop an adaptive attack that creates adver-
sarial examples to evade SimCat detection. We then design
an adversarial training procedure with momentum updates
and data augmentation to improve robustness of SimCat
against adaptive attacks. On ImageNet, the SimCat detec-
tor adversarially trained using 25 samples per threat model
achieves 71.7% robustness to a PGD-ℓ2 (ϵ = 2.0) adaptive
attack, a 32% improvement over vanilla SimCat. Moreover,
the adversarially trained SimCat improves the clean accu-
racy as well, from 73.2% to 73.6%.

In summary, we make the following contributions:

• We identify that pre-trained SimCLR embeddings con-
tain valuable information regarding perceptibility of
adversarial perturbations. Using this intuition, we de-
velop a sample efficient method for detection and clas-
sification of adversarial attacks called SimCat.

• We demonstrate the effectiveness of SimCat in detec-
tion and classification of various types of adversarial
examples in test time (evasion attacks) and training
time (poisoning attacks). SimCat leads to impressive
empirical results on the ImageNet scale using as few
as five training samples per class.

• We study adaptive attacks against SimCat and develop
an adversarial training procedure that dramatically in-
creases its robustness to adaptive attacks while improv-
ing its clean accuracy.

2. Prior Works
2.1. Adversarial Attacks and Defenses

Given an input x ∈ X with label y ∈ Y and a classi-
fier f : X → Y , an adversarial attack x̂ satisfies f(x̂) ̸=
y, d(x̂ − x) ≤ ϵ, for some generally small bound ϵ. Here,
d(·, ·) is a distance metric that defines the threat model (i.e.
the space of allowable perturbations to the input to craft the
adversarial attack). Threat models using ℓ2 and ℓ∞ dis-
tance are well studied [5, 22], though attacks that apply
spatial transformations, recoloring, frequency domain per-
turbations [35, 18, 16] are also effective. Ideally, a defense
would ensure that any two images that are imperceptible to
a human are classified in the same way. This motivates the
neural perceptual threat model of [19], which utilizes LPIPS
distance as a proxy for the true perceptual distance.

Defenses against adversarial attacks either focus on ro-
bust prediction or detection. Adversarial training [22] is
the most common method for robust prediction. It operates
by crafting and training on adversarial examples, with the
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ground truth label. While it improves robustness for a spe-
cific threat model, the gains do not extend to others. Prov-
able defenses based on smoothing have also been proposed,
though they pertain to restricted threat models [29, 9].

Attacks can also be made during training, known as data
poisoning [11], where a training set is corrupted so that the
trained model misclassifies certain target samples. Clean la-
bel poisoning attacks are particularly dangerous and covert,
as poisons have the correct label, so the accuracy of the
model after training remains high. Two of the strongest
clean label poisonings attacks are Convex Polytope (CP)
[38] and Bullseye Polytope (BP) [1], which work by mak-
ing imperceptible changes to a set of baseline images from
an intended class so that the features of the baseline images
surround a target image, who at test time is then classified
to the class of the baseline images. Naturally, robust predic-
tion based defenses can not be applied to data poisoning.

A number of supervised detection methods have been
proposed, based on deep network activations [24, 6], sta-
tistical tests [13, 28], local intrinsic dimensionality [21],
to name a few. Unsupervised methods based on feature
squeezing [36], generative models [32], nearest neighbor
search, KL divergence [25], among others, have also been
suggested. For a comprehensive review, we refer readers
to [3]. Generally, unsupervised methods can be costly to
configure and sensitive to noise, while supervised methods
require lots of data and often fail to generalize to unseen
threats. Many detectors have also been shown to be vulner-
able [5]. To the best of our knowledge, there is no detection
system that uses as few samples as SimCat.

Classifying adversarial examples to their respective
threat models has been explored in [23, 20]. This classi-
fication can allow for more specific defenses to be applied
off the shelf when appropriate, and also give the defender
insight about the attacker.

2.2. Self-Supervised Encoders

Recent work has seen self-supervised models advance
rapidly and in multiple domains [8, 27]. We focus on Sim-
CLR [7], which is trained using contrastive learning.

Contrastive Learning is a simple yet powerful self-
supervised framework for representation learning that has
made large strides in closing the gap with supervised learn-
ing. The contrastive loss seeks to maximize similarity be-
tween representations of two views of an input, and min-
imize similarity to views of other samples. SimCLR uses
this simple framework, along with a multi-step data aug-
mentation pipeline for generating different views of the
same image, to learn very informative visual representa-
tions of images. Specifically, SimCLR indirectly applies
the contrastive loss on the representations by way of a shal-
low MLP projection network appended to the encoder dur-
ing training, and discarded afterwards. While training self-

Figure 1. Perceptibility of adversarial attacks relative to the ℓ2 dis-
tance between the original and perturbed image in the SimCLR
embedding space. Each point in the scatter plot refers to the aver-
age distance between adversarial examples within a single threat
model under one of three bounds. Correlation is r = 0.854.

supervised models can be computationally expensive, in our
experiments, we use a fixed SimCLR encoder pre-trained
on ImageNet, available openly from [10].

A few works have looked into adversarially robust con-
trastive learning [12, 14, 17, 15], though our work differs in
that our encoder is fixed and applied to detection and clas-
sification of adversarial attacks. Most similar to our work is
[31], where SimCLR embeddings are used for anomaly de-
tection. To our knowledge, our work is the first to identify
the SimCLR embedding space as one in which adversarial
examples and clean images seem to be linearly separable.

3. SimCLR distance as proxy for Perceptibility
In this section, we outline the motivation behind using

SimCLR as the self-supervised encoder for SimCat. We
make use of the data from the human perceptual study in
[4]. The data consists of seven threat models, spanning
perceptual, ℓp, spatial, recoloring, and compression attacks,
under three levels of bound on the applied perturbations.
Humans were then used to evaluate how perceptible the per-
turbations were. This was done by presenting a clean and
adversarially perturbed sample side by side for two seconds,
then having the participant choose whether they thought the
images were the same or different. This gives a notion of
perceptibly, measured as the ratio of humans who felt the
attacked image looked distinct from the original.

In figure 1, the mean perceptibility over each threat
model and attack bound pair is plotted, against the mean
ℓ2 distance between SimCLR representations of the clean
and attacked image. We observe a strong correlation, with
Pearson’s r = 0.854. The correlation is reduced by the
high perceptibility of the large coloring attacks. This can
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Figure 2. The distributions of ℓ2 distances between adversarial examples and clean images in pixel space (left) and SimCLR embedding
space (right). Note the different scales; the distributions across threat models are much more uniform when using SimCLR embeddings.

be explained by the fact that SimCLR is trained to be less
sensitive to color shifts, as color jitter is an important aug-
mentation employed in the SimCLR pipeline. Removing
the coloring attacks, the correlation improves to r = 0.892.

Furthermore, SimCLR distance scales similarly for di-
verse attack types. We observe this in figure 2, where some
non-ℓp attacks require much higher bounds on ℓ2 distance
to be encapsulated. On the other hand, SimCLR distance
smoothly distributes the attacks of various types and level.
This makes the SimCLR distance a strong proxy for the per-
ceptual threat model, suggesting that it could be useful in
adversarial training against unseen threat models, though
we leave this to a future work.

We note that the correlation found for ℓ2 distance in im-
age space and LPIPS are both comparable to the correlation
for the SimCLR distance [19]. A key advantage of the Sim-
CLR distance over LPIPS is the low dimensionality of its
embeddings. While SimCLR only uses a 2048 dimensional
representation vector for each input, LPIPS concatenates
flattened feature activations from many layers in a deep net-
work to compute distance, which can lead to a blow up in
the size of the representation vector, due to the ever increas-
ing depths and widths of modern deep networks (e.g. for
LPIPS evaluated on AlexNet, the representation vector has
length upwards of 500,000).

4. Methods
4.1. General SimCat Framework

In this section, we describe our proposed methods. We
use a self-supervised encoder ϕ : RD → Rd. Importantly,
the self-supervised encoder does not need to be trained or
finetuned on the data we wish to apply SimCat to. In our
experiments, we use a SimCLR encoder with a ResNet50
backbone pretrained on ImageNet to map inputs into a
d = 2048 dimensional embedding space. Interestingly, the

same encoder can be applied effectively to images of vary-
ing size (e.g. SVHN (32), STl10 (96), and ImageNet (224)).
We apply a linear transformation on the extracted represen-
tations to obtain logits.

For detection, we call our model SimCatch, and denote
it by dϕ,ω , where ω contains all the d+ 1 trainable param-
eters, consisting of vector weights w ∈ Rd and bias b ∈ R.
The SimCatch detector maps dϕ,ω : X ∪X̂ → Y , where X
is the space of all natural images, X̂ is the space of all im-
perceptible adversarial images, and Y = {0, 1} is the space
of ground truth binary labels, with 1 denoting an adversarial
example. Since it is intractable to capture the entire space
of natural and adversarial examples, we estimate X ∪ X̂
with the dataset D =

⋃N
i=1{(xi, 0), (x̂i, 1)}, where x̂i is

an adversarial example obtained by attacking x. An attack
specific detector is obtained by restraining the threat model
of adversarial examples included in D, and an attack agnos-
tic detector seeks to approximate the space of all adversarial
examples by sampling from multiple diverse threat models.
The output of SimCatch on an input image x is

SimCatch(x) := dϕ,ω(x) = sgn(wTϕ(x) + b) (1)

where sgn is the sign function. Note that D does not need
to consist of clean and attacked pairs; it can also be two un-
related sets of clean and attacked examples. We hypothesize
that training on clean and correspondingly attacked pairs
will lead to a more precise decision boundary, but we find
in practice that using arbitrary clean samples also suffices.

In classification over k threat models, the vector weights
w are replaced with a matrix W ∈ Rk×d.The bias b also
now becomes a d dimensional vector b. We refer to this
model as SimClass with learnable parameters θ = {W,b}
and denote it as gϕ,θ :

⋃k
i=1 X̂di → [k], where X̂di is

the space of adversarially perturbed images under a threat
model defined by distance metric di. The training set D =
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⋃k
i=1

⋃N
j=1{(x̂i

j , i)} consists of N adversarially perturbed
examples from each of the k threat models. The output of
SimCat used as classifier on input x is then

SimClass(x) := gϕ,θ(x) = argmax
i∈[k]

(Wϕ(x) + b)i (2)

Both SimCat models are trained with a cross entropy loss
and ℓ2 regularization. Without loss of generality, we present
the optimization formulation for SimCatch below.

min
ω

∑
(x,y)∈D

Lce(dϕ,ω(x), y) + λ∥ω∥2 (3)

Importantly, in training, the self-supervised encoder ϕ is
fixed. Thus, the number of learnable parameters scales lin-
early with the number of output classes and dimensionality
of the embedding space of ϕ. Moreover, the optimization
is now convex. Due to the low dimensionality of SimCLR’s
encoder and the convex nature of SimCat’s optimization, the
global optimum can be found efficiently, in both time and
sample complexity. In our experiments, we set the regular-
ization constant λ = 1, and use L-BGFS to obtain optimal
parameters for SimCat’s regularized logistic regression.

4.2. SimCat Variants

There are many additional modifications that can be
made to SimCat to further improve its performance. The
majority of the experiments do not use any variants, but in
some cases we include the following:

• Data Augmentation is a common technique to im-
prove generalizability of deep models. Naturally, data
augmentation is very useful when there is limited data
available. We utilize data augmentation to balance the
dataset during adversarial training (algorithm 1). Our
experiments with data augmentation show improve-
ments in extremely low data settings, though only
modest improvement in other cases.

• Ensembling can produce improved models by way
of combining the outputs of multiple independently
trained models. We ensemble detectors for specific
poisoning types to improve the performance of our
SimCatch based defense (table 3).

5. Detection and Classification
5.1. Evasion Attacks

5.1.1 Experimental Set up

We evaluate SimCat’s detection and classification capabili-
ties of evasion attacks from two datasets. We compare Sim-
Cat’s performance to an analagous model that fits a linear
layer atop fixed ResNet50 features learned via supervised
ImageNet pretraining. The baseline differs with SimCat

only in that it uses embeddings in a feature space learned
with label supervision, highlighting how self-supervised
features may better capture distinguishing nuances between
the distributions of natural and adversarial images. We
present results for a second baseline that additionally fine-
tunes the pretrained ResNet50 in the supplemental material.

For SVHN [26], a dataset of street view house numbers
with smaller images (32 × 32), we perform PGD ℓ∞ and
ℓ2 attacks, with budgets of ϵ = 8/255 and ϵ = 1.0 re-
spectively. We train a detector for each PGD attack, and a
classifier to distinguish between the two ℓp threats.

For ImageNet, we use the perceptual study data intro-
duced in Section 3. Specifically, we take the attacks of the
‘large’ bound, which have a budget of ϵ = 8/255 for the
PGD-ℓ∞ attack. The budget for each attack can be found
in the original paper. Additionally, we perform Carlini-
Wagner-ℓ2 attacks on 200 other clean images. We train a
general detector on all eight attack types, and also a classi-
fier to distinguish between the eight attack types.

For each adversarial sample, we also have the original
clean image. The samples are divided so that the pairs re-
main in the same set, ensuring that we never have a test
image that is either the clean or adversarially perturbed ver-
sion of a training image. Thus, the total training set size for
a detection trial is equal to the number of training samples
per attack times 2 times number of attacks, and times k for
k-way classification.

In table 5.1.1, we present results averaged over ten trials,
so to account for variability introduced by sampling such a
small fraction of the data to train each model.

5.1.2 Results

SimCat outperforms the baseline across the board espe-
cially for SVHN, reaching increases in accuracy of as high
as 21.0%. The efficiency of SimCat is highlighted in SVHN
PGD-ℓ∞ detection, where fitting a detector to just two ad-
versarial examples yields 77.3% accuracy. SimCat’s largest
gains over the baseline comes in classification tasks (3), in-
dicating that self-supervised features are more sensitive to
the distinguishing characteristics of specific attack types.

5.2. Poisoning Attacks

5.2.1 Experimental Setup

We test SimCat on five poisoning attacks, including Bulls-
eye Polytope (BP), Convex Polytope (CP), Feature Col-
lision (FC), Clean-label Backdoor (CLBD), and Hidden-
trigger Backdoor (HTBD). Poisons are generated using the
white-box transfer learning set up as described in [30],
where the attacker seeks to poison a fine-tuning set for
transfer learning. This setting is generous to the attacker, as
they only need to poison a linear layer appended to a fixed
feature encoder, that they also have access to. Furthermore,
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SVHN Training Samples per Attack
Task Attacks 2 5 10 25 50

Detection PGD-ℓ2 63.3(+8.8) 71.9(+11.5) 75.0(+11.9) 81.7(+13.1) 85.7(+12.0)
Detection PGD-ℓ∞ 77.3(+15.0) 82.5(+13.9) 88.5(+14.0) 92.4 (+9.9) 94.2(+8.4)

Classification PGD ℓ2, PGD ℓ∞ 60.6(+8.9) 64.1(+12.8) 70.9(+16.3) 77.1(+21.0) 81.5(+19.6)

IMAGENET Training Samples per Attack
Task Attacks 5 10 25 50 100

Detection PGD-ℓ2, PGD-ℓ∞,
PPGD, LPA,
JPEG-ℓ∞, StAdv,
ReColor, CW-ℓ2

68.5(+6.4) 71.5(+7.4) 74.3(+7.4) 76.5(+5.3) 79.2(+4.4)

Classification 27.1 (+7.7) 32.8(+10.2) 40.7(+11.8) 48.9(+12.8) 58.1(+15.3)

Table 1. Performance of SimCat for detection and classification using few training samples on SVHN (top) and ImageNet (bottom). In
parenthesis, we denote the improvement gained by using SimCat compared to a baseline using supervised embeddings. For ImageNet, the
detector is trained and evaluated over all eight attack types at once, and classification is done over all eight attack types.

Figure 3. SimCat classification accuracy over eight diverse attack
types. The classifier is fit on just 25 samples per class. Overall
classification accuracy is 40.7%, an 11.8% increase over baseline.

the training set sizes are small. Specifically, the finetuning
set only uses 2500 images, and the attacker can insert 1%
(25) additional samples. We use the STL10 dataset, as an
intermediary between SVHN and ImageNet. As an addi-
tional challenge, we use the SimCLR encoder as the fixed
feature encoder – this means that the poisoning attacks di-
rectly cause collisions with clean samples in the same space
we wish to use to distinguish them. We test how well clean
target samples can be distinguished from poisons that (by
design) would be in close proximity to the targets in Sim-
CLR space. We also test SimCat as a poison defense.

5.2.2 Results

SimCat again shows strong detection and classification ac-
curacy with high sample efficiency (2), particularly for BP
and CP poisons, which happen to be the strongest. Sim-
Cat struggles with FC poisons, most likely since FC poisons

Detection Classification
Task Accuracy Task Accuracy
BP 85.3 Backdoor vs. 68.9, 78.4∗

CP 84.1 Triggerless
General 64.5, 70.5∗ 5-way 52.4

Table 2. Results for SimCat detection and classification of poison-
ing attacks on STL10 using ten samples per poisoning. Asterisk
indicates removing FC poisons.

Attack
Type

Standard SimCat Ens. SimCat
Acc PSR Acc PSR Acc PSR

BP 86 82 86 54 85 41.3
CP 86 24 86 11.3 85 4
FC 87 0 86 1.3 85 2

CLBD 87 0 86 0.7 85 0
HTBD 86 2 86 2 85 1.3

Avg 86 21.8 86 13.9 85 9.7
Table 3. Poison defense via SimCat detection. PSR is poison suc-
cess rate. SimCat model is trained on CP and BP jointly. Ens.
SimCat trains a CP detector and a BP detector separately, then
filters any samples that are detected as poison by either detector.
Both defenses only use ten samples of CP and BP poisons each.

are designed to directly collide with target representations,
while BP and CP poisons surround a target instead. When
excluding FC poisons, general detection rises to 70.5%.

We then apply SimCat detectors as a poison defense. We
use BP and CP poisons to train the detectors, since those
poisons are most lethal. Using ten samples each, we train
an attack agnostic detector, and two separate detectors spe-
cific to each threat model, which are used as an ensemble
detector, that only admits samples deemed clean by both
detectors. Table 3 shows that both the general detector and
the ensemble detector are effective, with the ensemble de-
tector reducing poison success rate from 21.8% to 9.7%,
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Trained on: # of Samples PGD-ℓ2 PGD-ℓ∞ PPGD LPA CW-ℓ2 ReColor StAdv JPEG-ℓ∞ Avg.
Single Attack 100 68.8 67.9 68.5 69.2 62.2 64.9 65.6 50.2 64.7

Union of
Attacks

5 66.4 70.7 65.6 73.4 51.5 71.4 63.3 69.9 66.5
20 71.1 76.6 69.0 80.1 51.1 74.6 66.1 79.4 71.1

Table 4. Generalization of SimCat detectors to unseen threat models. First row shows accuracy of detector trained on a single attack
evaluated on all other attacks. Other rows contain accuracy of a SimCat detector trained on the union of all other attacks. The second
column indicates the number of samples per threat model used in training.

while also maintaining high clean accuracy.

6. Generalization to Unseen Models

Generalization of defenses to unseen attacks is of utmost
importance because of the constant development of novel
threats. In table 4, we see that SimCat generalizes surpris-
ingly well given its simplicity. Even when trained only on
a single threat model, some of the SimCat detectors achieve
close to 70% detection accuracy on unseen attacks. The
generalization of detectors trained on the union of attacks
is also impressive, particularly given the sample efficiency.
We observe that the detector trained on the union of attacks
with just five samples per threat model (35 total) exceeds the
average accuracy on unseen attacks achieved by detectors
trained on a single threat model with 100 training samples.

In figure 4, we get a closer look at how each threat model
generalize to others. The detectors trained on the perceptual
attacks (PPGD, LPA) generalize the best to unseen threats.
This invokes our motivating observation that the SimCLR
embedding space seems to contain information pertinent to
perceptibility. Understanding how human and machine per-
ceptions differ is at the heart of many vision tasks, includ-
ing adversarial robustness, and we encourage future work to
further investigate the semantic meaning extracted in Sim-
CLR and other self-supervised models.

7. Hardening SimCat to an Adaptive Attack

In this section, we investigate the robustness of SimCat
to an adaptive attack. An adaptive attack is an attack that
is specifically crafted based on knowledge of a model’s de-
fense. By investigating adaptive attacks for SimCat, we can
identify limitations of our model, and work towards miti-
gating them (i.e. via adversarial training) before the vulner-
ability is exposed and exploited by an adversary.

7.1. Attack Formulation

We consider a white box attack setting, where the at-
tacker has knowledge of the base classifier and the SimCat
detector. The ultimate goal is to cause a misclassification
in the base classifier, but the adversary must first evade the
SimCat detector. Denoting the base classifier as f , the de-
tector as d, and an input-label pair as (x, y), we formulate

Figure 4. Generalizability of SimCat detectors to unseen threat
models. Each detector is trained on 100 samples from a single
threat model, and evaluated on all other models.

the adaptive adversarial attack problem as the following.

δ = argmax
δ,∥δ∥≤ϵ

L(f(x̂+ δ), y) + L(dϕ,ω(x̂+ δ), 1) (4)

For both terms, L is the cross entropy loss. The detector
outputs 1 for adversarial examples, so the adaptive attack
seeks to flip this label by maximizing the loss incurred by
it. We solve the above optimization with projected gradi-
ent descent, and find that the adaptive attack is somewhat
effective against an undefended SimCat ImageNet detector,
reducing accuracy by 30% (table 5).

7.2. Adversarial Training

We employ adversarial training (AT) to improve the ro-
bustness of SimCat to the adaptive attacks described in the
previous section. Standard AT seeks to harden a network by
crafting adversarial examples throughout training, and addi-
tionally training the model on the crafted examples with the
original label. For SimCat, this amounts to the following
min-max optimization, where d is the SimCat detector with
parameters ϕ, ω, and f is the base classifier.

min
ω

max
δ;∥δ∥≤ϵ

Lce(f(x̂+δ), y)+λLce(dϕ,ω(x̂+δ), 1) (5)

SimCat AT is different from standard AT in a few ways.
Standard AT usually takes a few steps of finding perturba-
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tions to increase the objective, followed by a few steps of
updating model parameters to reduce the objective. In Sim-
Cat AT, the minimization step is solved to completion after
having crafted adaptive adversarial examples, as opposed to
only taking a few steps. This can be done efficiently due to
the low number of parameters to solve for and the convex-
ity of the minimization problem. A couple other steps are
needed for SimCat AT to be effective.

• Momentum updates are used to stabilize training. The
importance of momentum updates is clear in figure 5,
as the β = ∞ case (where the SimCat detector is re-
placed in each epoch with the optimal solution for de-
tecting the current batch of adaptive adversarial exam-
ples) yields worse robustness than a standard SimCat.

• Along with the additional adaptive adversarial attacks,
the original data is retained in the training set for each
iteration, so to mitigate a robustness-accuracy tradeoff.
To balance the dataset, an augmented copy of the clean
samples is also added to the training set in each epoch.

Algorithm 1 Adversarial Training of SimCat: inputs are the
base classifier f and data

(
{(xi, x̂i)}Ni=1

)
, where x is a clean

sample and x̂ is x after being adversarially perturbed.
Obtain initial parameters via standard SimCat:
ω ← FITSIMCAT

(
{(xi, x̂i)}Ni=1

)
Augment clean data to obtain second copy:
{x̃i}Ni=1 ← AUGMENT

(
{xi}Ni=1

)
for t = 1, . . . , # of epochs do

Craft perturbations for adversarial examples to evade
both detector and base classifier:
{δi,t}Ni=1 = ADAPTIVEPGD

(
{x̂i}Ni=1, f ,dϕ,ω

)
Solve SimCat with expanded dataset:
ωt ← FITSIMCAT

(
{(xi, x̂i), (x̃i, x̂i + δi,t)}Ni=1

)
Apply momentum update to SimCat parameters:
ω ← (ω + βωt)/(1 + β)

end for

7.3. Results

While the adaptive adversarial attack is somewhat ef-
fective (reducing attack detection accuracy by 34%), the
SimCat AT algorithm completely recovers robust accuracy,
while also improving overall accuracy. Table 5 shows the
effect of AT and augmentation, which in tandem become
a very strong defense. Furthermore, the entire adversarial
training procedure takes only about fifteen minutes, and all
SimCat AT model results presented used only 25 training
samples per attack. Thus, the SimCat framework lends it-
self to increased robustness via algorithm 1, without com-
promising training and data efficiency.

Model Accuracy Robustness
SimCat 73.21 39.25

SimCat+Aug 74.87 37.40
SimCat+AT 74.23 67.95

SimCat+AT+Aug 73.55 71.70
Table 5. Ablation study on SimCat AT. Accuracy refers to attack
agnostic ImageNet detection from Section 5.1. Robustness is mea-
sured as the percent of test adversarial samples that can be adap-
tively attacked with PGD-ℓ2, ϵ = 2.0 to be misdetected as clean.
AT is done for 20 epochs. Aug refers to augmenting both the orig-
inal clean and adversarial samples - this is distinct from AT+Aug,
where only the clean samples are augmented to balance out the
addition of adaptive adversarial attacks to the SimCat training set.

Figure 5. SimCat robustness to adaptive PGD-ℓ2 over epochs of
adversarial training with varied values of the hyperparameter β,
which controls the momentum updates. Higher values of β lead
to more emphasis on the linear classifiers solved in later epochs.
Adversarial training is unstable without momentum (β = ∞).

8. Conclusion
In this paper, we introduced SimCat, a sample efficient

method for detection and classification of adversarial at-
tacks. SimCat uses a linear model over embeddings of a
pre-trained self-supervised model, SimCLR. SimCat is suc-
cessful in detecting and classifying various types of adver-
sarial attacks ranging from ℓp and non-ℓp evasion attacks to
poisining attacks, likely because pre-trained SimCLR em-
beddings can be used to uniformly quantify perceptibility
of various types of adversarial perturbations. Over various
experiments on SVHN, ImageNet, and STL10 datasets, we
demonstrate the effectiveness of SimCat using as few as two
training samples per class. We have also studied adaptive at-
tacks against SimCat and developed an adversarial training
procedure that dramatically increases its robustness against
such attacks while improving its clean accuracy.
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