
Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces

Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani,

Dushyant Mehta, Chris Lott and Tijmen Blankevoort

Qualcomm AI Research∗

{bmoons,parham,askliar,gmariani,dushmeht,clott,tijmen}@qti.qualcomm.com

Abstract

Current state-of-the-art Neural Architecture Search

(NAS) methods neither efficiently scale to multiple hardware

platforms, nor handle diverse architectural search-spaces.

To remedy this, we present DONNA (Distilling Optimal

Neural Network Architectures), a novel pipeline for rapid,

scalable and diverse NAS, that scales to many user scenar-

ios. DONNA consists of three phases. First, an accuracy

predictor is built using blockwise knowledge distillation

from a reference model. This predictor enables searching

across diverse networks with varying macro-architectural

parameters such as layer types and attention mechanisms,

as well as across micro-architectural parameters such as

block repeats and expansion rates. Second, a rapid evolu-

tionary search finds a set of pareto-optimal architectures for

any scenario using the accuracy predictor and on-device

measurements. Third, optimal models are quickly fine-

tuned to training-from-scratch accuracy. DONNA is up to

100 × faster than MNasNet in finding state-of-the-art ar-

chitectures on-device. Classifying ImageNet, DONNA ar-

chitectures are 20% faster than EfficientNet-B0 and Mo-

bileNetV2 on a Nvidia V100 GPU and 10% faster with

0.5% higher accuracy than MobileNetV2-1.4x on a Sam-

sung S20 smartphone. In addition to NAS, DONNA is

used for search-space extension and exploration, as well as

hardware-aware model compression.

1. Introduction

Although convolutional neural networks (CNN) have

achieved state-of-the-art performance for a wide range of

vision tasks, they do not always execute efficiently on hard-

ware platforms like desktop GPUs or mobile DSPs and

NPUs. To alleviate this issue, CNNs are specifically op-

timized to minimize latency and energy consumption for

on-device performance. However, the optimal CNN archi-

tecture can vary significantly between different platforms.

∗Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

Even on a single platform, their efficiency can change with

different operating conditions or driver versions. To solve

this problem, low-cost methods for automated hardware-

aware neural architecture search (NAS) are required.

Current NAS algorithms, however, suffer from several

limitations. First, many optimization algorithms [32, 12, 31,

20] target only a single deployment scenario : a hardware-

agnostic complexity metric, a hardware platform, or dif-

ferent latency, energy, or accuracy requirements. This

means the search has to be repeated whenever any part

of that scenario changes. Second, many methods cannot

search in truly diverse search spaces, with different types

of convolutional kernels, activation functions and atten-

tion mechanisms. Current methods either search through

large and diverse spaces at a prohibitively expensive search

cost [32, 12], or limit their applicability by trading search

time for a more constrained and less diverse search [3, 31,

33, 41, 23, 22]. Most of such speedups in NAS come

from a reliance on weight sharing mechanisms, which re-

quire all architectures in the search space to be structurally

similar. Thus, these works typically only search among

micro-architectural choices such as kernel sizes, expansion

rates, and block repeats and not among macro-architectural

choices of layer types, attention mechanisms and activation

functions. As such, they rely on prior expensive methods

such as [32, 12] for an optimal choice of macro-architecture.

We present DONNA (Distilling Optimal Neural Net-

work Architectures), a method that addresses both issues: it

scales to multiple deployment scenarios with low additional

cost, and performs rapid NAS in diverse search spaces. The

method starts with a trained reference model. The first is-

sue is resolved by splitting NAS into a scenario-agnostic

training phase, and a scenario-aware search phase that re-

quires only limited training, as depicted in Figure 1. Af-

ter an accuracy predictor is built in the training phase, the

search is executed quickly for each new deployment sce-

nario, typically in the time-frame of hours, and only requir-

ing minimal fine-tuning to finalize optimal models. Second,

DONNA considers diverse macro-architectural choices in

addition to micro-architectural choices, by creating this ac-

12229

Reusable
Accuracy

Predictor

In-the-Loop

Hardware
Measurements

On Device R
a
p
id

G
e

n
e

ti
c

O
p

ti
m

iz
a

ti
o

n

kernel
expand
depth

3,5,7
2,3,4,6
1,2,3,4

attention
activation
cell type
width scale

SE
ReLU/Swish
grouped, DWS
0.5x, 1.0x

Output Accuracy Predictor

D
e

s
ig

n
 C

o
s
t

Number of Deployment Scenarios

M
an

ua
l d

es
ig

n

Diffe
re

ntia
ble A

rc
h. S

earc
h

DONNA

Built Efficiently Through Blockwise
Knowledge Distillation

A

A B

A
c
c
u
ra

c
y

B

P
re

d
ic

te
d

Covers a Diverse Search- Space

Fast Model Search For
Target Devices

Input Accuracy Predictor

(a) (b) (c) (d)

Figure 1. Neural networks are deployed in many scenarios, on various hardware platforms with varying power modes and driver software,

with different speed and accuracy requirements. DONNA scales gracefully towards NAS for many of such scenarios, contrary to most

prior approaches where NAS is repeated for each of them (a). This is achieved by splitting NAS into a scenario-agnostic training phase

building an accuracy predictor through blockwise knowledge distillation (b) and a rapid scenario-aware search phase using this predictor

and hardware measurements (c). This yields a Pareto-front of models on-device, shown here for a Samsung S20 GPU on ImageNet [8] (d).

curacy predictor through Blockwise Knowledge Distillation

(BKD) [18], see Figure 3. This approach imposes little con-

straints on the macro- and micro-architectures under con-

sideration, allowing a vast, diverse, and extensible search

space. The DONNA pipeline yields state of the art network

architectures, as illustrated for a Samsung S20 GPU in Fig-

ure 1(d). Finally, we use DONNA for rapid search space ex-

tension and exploration, and on-device model compression.

This is possible as the DONNA accuracy predictor general-

izes to architectures outside the original search space.

2. Related Work

Over time, methods in the NAS literature have evolved

from prohibitively expensive but holistic and diverse search

methods [42, 43, 32] to lower cost approaches that search

in more restrictive non-diverse search spaces [3, 31]. This

work, DONNA, aims at benefiting from the best of both

worlds: rapid search in diverse spaces. We refer the inter-

ested reader to the existing dedicated survey of Elsken et al.

[10] for a broader discussion of the NAS literature.

Early approaches to NAS rely on reinforcement learning

[42, 43, 32] or evolutionary optimization [29]. These meth-

ods allow for diverse search spaces, but at infeasibly high

costs due to the requirement to train thousands of models for

a number of epochs throughout the search. MNasNet [32]

for example uses up to 40,000 epochs in a single search.

This process can be sped up by using weight sharing among

different models, as in ENAS [28]. However, this comes at

the cost of a less diverse search space, as the subsampled

models have to be similar for the weights to be shareable.

In another line of work, differentiable architecture search

methods such as DARTS [20], FBNet [38], FBNetV2 [35],

ProxylessNAS [4], AtomNAS [24] and Single-Path NAS

[31] simultaneously optimize the weights of a large super-

net and its architectural parameters. This poses several im-

pediments to scalable and scenario-aware NAS in diverse

search spaces. First, in most of these works, different cell

choices have to be available to the algorithm, ultimately

limiting the space’s size and diversity. While several works

address this problem either by trading off the number of ar-

chitecture parameters against the number of weights that are

in GPU memory at a given time [5], by updating only a sub-

set of the weights during the search [40], or by exploiting

more granular forms of weight-sharing [31], the fundamen-

tal problem remains when new operations are introduced.

Second, although differentiable search methods speed up

a single search iteration, the search must be repeated for

every scenario due to their coupling of accuracy and com-

plexity. Differentiable methods also require differentiable

cost models. Typically these models use the sum of layer

latencies as a proxy for the network latency, which can be

inaccurate. This is especially the case in emerging depth-

first processors [11], where intermediate results are stored

in the local memory, making full-graph latency depend on

layer sequences rather than on individual layers.

To improve the scaling performance of NAS across dif-

ferent scenarios, it is critical to decouple the accuracy pre-

diction of a model from the complexity objective. In Once-

for-All (OFA) [3] and [22], a large weight-sharing supernet

is trained using progressive shrinking. This process allows

the sampling of smaller subnets from the trained supernet

that perform comparably with models that have been trained

from scratch. A large number of networks can then be sam-

pled to build an accuracy predictor for this search space,

which in turn can be used in a scenario-aware evolutionary

search, as in Figure 1(c). Although similar to DONNA in

this approach, OFA [3] has several disadvantages. First,

its search space’s diversity is limited due to its reliance on

progressive shrinking and weight sharing, which requires a

fixed macro-architecture in terms of layer types, attention,

12230

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD
ch=32

Conv

1x1
FCAvg

Conv

3x3s2

DW

Conv

kernel
expand
depth

3,5,7
2,3,4,6
1,2,3,4

activation
cell type
width scale

ReLU/Swish
grouped, DW, …
0.5x, 1.0xattention SE, no SE

Choose:

ch=64 ch=96 ch=128 ch=196 ch=256

ch=32 ch=1536

Figure 2. DONNA splits a model in a stem, head and N blocks. The search space is defined over the N blocks with varying kernel size,

expand, depth, activation, cell type, attention and width scale factors. Block strides are kept constant.

activations, and channel widths. Furthermore, progressive

shrinking can only be parallelized in the batch dimension,

limiting the maximum number of GPUs that can process in

parallel. DONNA does not suffer from these constraints.

Similarly, Blockwisely-Supervised NAS (DNA) [18],

splits NAS into two phases: the creation of a ranking model

for a search space and a targeted search to find the highest-

ranked models at a given constraint. To build this ranking

model, DNA uses blockwise knowledge distillation (BKD)

to build a relative ranking of all possible networks in a given

search space. The best networks are then trained and ver-

ified. It is crucial to note that it is BKD that enables the

diverse search for optimal attention mechanisms, activation

functions, and channel scaling. However, DNA has three

disadvantages: (1) the ranking model fails when ranking

large and diverse search spaces (Section 3.2), (2) the rank-

ing only holds within a search space and does not allow

the comparison of different spaces, and (3) because of the

reliance on training subsampled architectures from scratch,

the method is not competitive in terms of search time. This

work, DONNA, addresses all these issues. In summary,

DONNA differs from prior work on these key aspects:

1. Unlike OFA [3], DONNA enables hardware-aware

search in diverse search spaces; differentiable and RL-

/evolutionary-based methods can do this too, but using

much more memory or training time, respectively.

2. DONNA scales to multiple accuracy/latency targets ,

requiring only marginal cost for every new target. This

is in contrast with differentiable or RL-/evolutionary-

based methods, where the search has to be repeated for

every new target.

3. DONNA uses a novel accuracy predictor which cor-

relates better with training-from-scratch accuracy than

prior work like DNA [18] (See Figure 4).

4. Furthermore, the DONNA accuracy predictor gener-

alizes to unseen search spaces due to its reliance on

block quality metrics , not on the network configura-

tion (See Figure 7).

5. DONNA relies on a fast finetuning method that

achieves the same accuracy as training-from-scratch

while being 9 × faster, reducing the training time for

found architectures compared to DNA [18].

3. Distilling Optimal Neural Networks

Starting with a trained reference model, DONNA is a

three step pipeline for NAS. For a given search space (Sec-

tion 3.1), we first build a scenario-agnostic accuracy predic-

tor using Blockwise Knowledge Distillation (BKD) (Sec-

tion 3.2). This amounts to a one-time cost. Second, a

rapid scenario-aware evolutionary search phase finds the

Pareto-optimal network architectures for any specific sce-

nario (Section 3.3). Third, the predicted Pareto-optimal ar-

chitectures can be quickly finetuned up to full accuracy for

deployment (Section 3.4).

3.1. Search Space Structure

Figure 2 illustrates the block-level architecture of our

search spaces and some parameters that can be varied within

it. This search space is comprised of a stem, head, and

N variable blocks, each with a fixed stride. The choice of

stem, head and the stride pattern depends on the choice of

the reference model. The blocks used here are comprised of

repeated layers, linked together by feedforward and resid-

ual connections. The blocks in the search space are denoted

Bn,m, where Bn,m

is the mth potential replacement out

of M choices for block Bn

in the reference model. These

blocks can be of any style of neural architecture (See Ap-

pendix C for Vision Transformers [9]), with very few struc-

tural limitations; only the spatial dimensions of the input

and output tensors of Bn,m

need to match those of the ref-

erence model, which allows for diverse search. Throughout

the text and in Appendix A, other reference models based

on MobileNetV3 [12] and EfficientNet [33] are discussed.

3.2. Building a Model Accuracy Predictor

3.2.1 Blockwise Knowledge Distillation

We discuss Blockwise Knowledge Distillation (BKD) as the

first step in building an accuracy predictor for our search

space, see Figure 3(a). BKD yields a Block Library of

pretrained weights and quality metrics for each of the re-

placement blocks Bn,m. This is later used for fast fine-

tuning (Section 3.4) and to fit the accuracy predictor (Sec-

tion 3.2.2). To build this library, each block Bn,m

is trained

independently as a student using the pretrained reference

block Bn

as a teacher. The errors between the teacher’s

output feature map Yn

and the student’s output feature map

12231

B1 B2 BN
…

… BN,kB2,jB1,i

Soft
CE

CE

labels
Block NSR

B1,0 2

… …
BN,m-1 1.0

BN,m 0.9

Architecture Acc.

70%

75%

Architecture Accuracy

70%

75%

80%

Block NSR

B1,0 2

… …
BN,m-1 1.0

BN,m 0.9

NSR

B1,m

B1,0

NSR

…

B1 B2 BN

BN,m

BN,0

…

…

…

Use Blockwise Knowledge Distillation (BKD) to

Build a Library of Block Weights and Block Metrics

Block Library

with weights and

quality metrics

Sample and Finetune 20-50 Architectures

to Build an Architecture Library

Use Block and Architecture Library To fit a linear

Accuracy Predictor For The Full Search Space

B1,0

B1,m
BN,m

BN,0

…

Sample and Finetune BKD-initialized architectures
with end-to-end Knowledge Distillation (EKD)

Architecture Library
… … Architecture Acc.

72%

80%

…

Accuracy
Predictor

Generalizes to
Unseen

Architectures P
re

d
ic

te
d

A

c
c
u

ra
c
y
 [

%
]

Real Accuracy (%)

…

Linear Accuracy Predictor

(a) (b) (c)

Figure 3. An accuracy predictor is built in three steps. (a) Blockwise knowledge distillation (BKD) is executed to build a library of block-

quality metrics and pretrained weights. (b) A set of full-model architectures is sampled from the search space and finetuned using the BKD

initialization. (c) These results are used as targets to fit a linear accuracy predictor.

Ȳn,m

are used in this process. Formally, this is done by min-

imizing the per-channel noise-to-signal-power ratio (NSR):

L (Wn,m; Yn − 1

, Yn) =

1

C

C∑

c =0

Yn,c

− Ȳn,m,c

2

σ2
n,c

(1)

Here, C is the number of channels in a feature map, Wn,m

are the weights of block Bn,m, Yn

is the target output fea-

ture map of Bn, Ȳn,m

is the output of block Bn,m

and σ2

n,c

is the variance of Yn,c. This metric is closely related to

Mean-Square-Error (MSE) on the feature maps, which [25]

shows to be correlated to the task loss.

Essentially, the blocks Bn,m

are trained to closely repli-

cate the teacher’s non-linear function Yn

= Bn(Yn − 1) . In-

tuitively, larger, more accurate blocks with a larger “model-

ing capacity” or “expressivity” replicate this function more

closely than smaller, less accurate blocks. On ImageNet [8]

such knowledge distillation requires only a single epoch of

training for effective results. After training each block, the

resulting NSR metric is added to the Block library as a qual-

ity metric of the block Bn,m. Note that the total number of

trainable blocks Bn,m

grows linearly as N × M , whereas

the overall search space grows exponentially as M

N , mak-

ing the method scale well even for large search-spaces.

3.2.2 Linear Accuracy Predictor

The key insight behind DONNA is that block-level qual-

ity metrics derived through BKD (e.g., per-block NSR) can

be used to predict the accuracy of all architectures sampled

from the search space. We later show this metric even works

for architectures outside of the search space (Section 4.1.2).

To create an accuracy predictor, we build an Architec-

ture Library of trained models sampled from the search

space, see Figure 3(b). These models can be trained from

scratch or finetuned quickly using weight initialization from

BKD (Section 3.4). Subsequently, we fit a linear regression

70 75 80
ImageNet Top-1 val. Accuracy [%]

68

70

72

74

76

78

80

Pr
ed

ict
ed

 T
op

-1
 A

cc
ur

ac
y

[%
]

DONNA Test Set
 (MSE=0.20, KT=0.91)
DONNA ShiftNet Test Set
 (MSE=0.20, KT=0.80)

70 75 80
ImageNet Top-1 val. Accuracy [%]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 R
an

ki
ng

 [-
]

Ours (MSE=0.20, KT=0.91)
DNA [18] (KT=0.75)

Figure 4. The linear accuracy predictor generalizes to a test-set

of unseen models (left), and is a better ranking predictor than

DNA [18] (right) on the same set: Kendall-Tau [16] of 0.91 in

this work versus 0.75 for DNA.

model, typically using second-order terms, to predict the

full search space’s accuracy using the quality metrics stored

in the Block Library as features and the accuracy from the

Architecture Library as targets. Figure 4(left) shows that

the linear predictor fits well with a test-set of network ar-

chitectures trained on ImageNet [8] in the DONNA space

(MSE=0.2, KT [16]=0.91). This predictor can be under-

stood as a sensitivity model that indicates which blocks

should be large, and which ones can be small, to build net-

works with high accuracy. Appendix A.4.2 discusses the ef-

fectiveness of different derived quality metrics on the qual-

ity of the accuracy prediction.

This process is now compared to DNA [18], where BKD

is used to build a ranking-model rather than an accuracy

model. DNA [18] ranks subsampled architectures i as:

Ri

=

N∑

n =0

Yn

− Ȳn,mi1

σn

(2)

which is sub-optimal due to two reasons. First, a ranking

model only ranks models within the same search space and

does not allow comparing performance of different search

12232

spaces. Second, the simple sum of quality metrics does

not take the potentially different noise-sensitivity of blocks

into account, for which a weighted sensitivity model is re-

quired. The DONNA predictor takes on both roles. Fig-

ure 4(right) illustrates the performance of the linear predic-

tor for the DONNA search space and compares the qual-

ity of its ranking to DNA [18]. Note that the quality of the

DONNA predictor increases over time, as whenever Pareto-

optimal networks are finetuned, they can be added to the

Architecture Library, and the predictor can be fitted again.

3.3. Evolutionary Search

Given the accuracy model and the block library, the

NSGA-II [7, 1] evolutionary algorithm is executed to find

Pareto-optimal architectures that maximize model accuracy

and minimize a target cost function, see Figure 1(c). The

cost function can be scenario-agnostic, such as the number

of operations or the number of parameters in the network,

or scenario-aware, such as on-device latency, throughput, or

energy. In this work, full-network latency is considered as a

cost function by using direct hardware measurements in the

optimization loop. At the end of this process, the Pareto-

optimal models yielded by the NSGA-II are finetuned to

obtain the final models (Section 3.4).

3.4. Finetuning Architectures

Full architectures sampled from the search space can be

quickly finetuned to match the from-scratch training accu-

racy by initializing them with weights from the BKD pro-

cess (Section 3.2.1). Finetuning is further sped up by using

end-to-end knowledge distillation (EKD) using the refer-

ence model as a teacher, see Figure 3(b). In Appendix A.5,

we show such models can be finetuned up to state-of-the-

art accuracy in less than 50 epochs. This is a 9 × speedup

compared to the state-of-the-art 450 epochs required in [37]

for training EfficientNet-style networks from scratch. This

rapid training scheme is crucial to the overall efficiency of

DONNA, since we use it for both, generating training tar-

gets for the linear accuracy predictor in Section 3.2, as well

as to finetune and verify Pareto-optimal architectures.

4. Experiments

This section discusses three use-cases of DONNA:

scenario-aware neural architecture search (Section 4.1.1),

search-space extrapolation and design (Section 4.1.2), and

model compression (Section 4.1.3). We also show that

DONNA can be directly applied to object detection on MS-

COCO [19] and that architectures found by DONNA trans-

fer to optimal detection backbones (Section 4.2). DONNA

is compared to random search in Appendix E.

4.1. ImageNet Classification

We present experiments for different search spaces

for ImageNet classification: DONNA, EfficientNet-

Compression and MobileNetV3 (1.0 × , 1.2 ×). The latter

two search spaces are blockwise versions of the spaces con-

sidered by OFA [2]; that is, parameters such as expansion

ratio and kernel size are modified on the block level rather

than the layer level, rendering the overall search space

coarser than that of OFA. Selected results for these spaces

are discussed in this section, more extensive results can be

found in Appendix A.6. We first show that networks found

by DONNA in the DONNA search space outperform the

state-of-the-art (Figure 5). For example, DONNA is up to

2 . 4% more accurate on ImageNet [8] validation compared

to OFA[3] trained from scratch with the same amount of pa-

rameters. At the same time, DONNA finds models outper-

forming DNA [18] up to 1.5 % on a V100 GPU at the same

latency and MobileNetV2 (1 . 4 ×) by 10 % at 0.5 % higher

accuracy on the Samsung S20 GPU. We also show that

MobileNetV3-style networks found by DONNA achieve

the same quality of models compared to Mnasnet [32] and

OFA [3] when optimizing for the same metric (See Fig. 6

and Tab. 2). All experiments are for ImageNet [8] images

with 224 × 224 input resolution. Training hyperparameters

are discussed in Appendix A.1.

4.1.1 NAS for DONNA on ImageNet

DONNA is used for scenario-aware Neural Architecture

Search on ImageNet [8], quickly finding state-of-the-art

models for a variety of deployment scenarios, see Figure 5.

As shown in Figure 2, all 5 blocks Bn

in the

DONNA space can be replaced by a choice out of

M = 384 options: k ∈ {3,5,7}; expand ∈ {2,3,4,6};

depth ∈ {1,2,3,4}; activation/attention ∈ {ReLU/None,

Swish[12]/SE[13]}; layer-type ∈ {grouped, depthwise in-

verted residual bottleneck}; and channel-scaling ∈ { 0 . 5 × ,

1 . 0 × }. The search-space can be expanded or arbitrarily

constrained to known efficient architectures for a device.

Each of these 5 × 384 = 1920 alternative blocks is trained

using BKD to complete the Block Library. Once the Block

Library is trained, we use the BKD-based ranking metric

from DNA[18] to sample a set of architectures uniformly

spread over the ranking space. For the DONNA search

space, we finally finetune the sampled networks for 50

epochs starting from the BKD initialization, building an Ar-

chitecture Library with accuracy targets used to fit the linear

accuracy predictor. Typically, 20-30 target networks need to

be finetuned to yield good results, see Appendix A.4.

In total, including the training of a reference model (450

epochs), 450 + 1920 + 30 × 50 = 3870 epochs of train-

ing are required to build the accuracy predictor. This is

less than 10 × the cost of training a single network from

12233

2.5 5.0 7.5 10.0 12.5
Parameters [M]

71
72
73
74
75
76
77
78
79
80

Im
ag

eN
et

 T
op

-1
 v

al
. A

cc
ur

ac
y

[%
]

0.25 0.50 0.75 1.00 1.25 1.50
Simulated latency, relative to EffNet-B0

5 10 15 20 25 30
Latency - V100 - BS=32 [ms]

7.5 10.0 12.5 15.0 17.5
Latency - Samsung S20 GPU - BS=1 [ms]

Ours (DONNA) predicted
Ours (DONNA) actual

mnasnet
fbnet

EfficientNet B0/Lite0
MobileNetV3

MobileNetV2
ProxyLessNas

ResNet
DNA

OFA/Scratch
OFA*/Scratch

Figure 5. The predicted Pareto-optimal front and models found by DONNA in the DONNA search space. Results are shown targeting the

number of operations (left), the number of parameters (mid left), latency on a Nvidia V100 GPU (mid right) and latency on a simulator

targeting tensor compute units in a mobile SoC (right). The trend line indicates predicted accuracy, whereas the dots are sampled from the

trend line and finetuned up to the level of from-scratch accuracy. OFA*/Scratch results are our own search results using the framework

in [2] for 224 × 224 images, where the best models are retrained from scratch with DONNA hyperparameters for fair comparison.

Table 1. Comparing the cost of NAS methods, assuming 10 trained architectures per deployment scenario. DONNA can search in a diverse

space similar to MNasNet [32] at a 100 × lower search-cost.

Method

Granularity

Macro-Diversity

Search-cost

Cost / Scenario

Cost / Scenario

1 scenario [epochs]

4 scenarios [epochs]

∞ scenarios [epochs]

OFA [3]

layer-level

fixed

1200 + 10 × [25 − 75]

550 − 1050

250 − 750

NSGANetV2 [22]

layer-level

fixed

1200 + 10 × [25 − 75]

550 − 1050

250 − 750

DNA [18]

layer-level

fixed

770 + 10 × 450

4700

4500

MNasNet [32]

block-level

variable

40000 + 10 × 450

44500

44500

This work

block-level

variable

4000 + 10 × 50

1500

500

scratch to model the accuracy of more than 8 trillion ar-

chitectures. Subsequently, any architecture can be selected

and trained to full accuracy in 50 epochs, starting from the

BKD initialization. Similarly, as further discussed in Ap-

pendix A.4, an accuracy model for MobileNetV3 (1.2 ×)

and EfficientNet-Compressed costs 450+ 135+ 20 × 50 =

1585 epochs, roughly the same as training 4 models from

scratch. Although this is a higher cost than OFA [3], it

covers a much more diverse search space. OFA requires

an equivalent, accounting for dynamic batch sizes [2], of

180+ 125+ 2 × 150+ 4 × 150 = 1205 epochs of progres-

sive shrinking with backpropagation on a large supernet.

BKDNAS [18] requires only 450 + 16 × 20 = 770 epochs

to build its ranking model, but 450 epochs to train models

from scratch. Other methods like MnasNet [32] can han-

dle a similar diversity as DONNA, but typically require an

order of magnitude longer search time (40000 epochs) for

every deployment scenario . DONNA offers MNasNet-level

diversity at a 2 orders of magnitude lower search cost. On

top of that, BKD epochs are significantly faster than epochs

on a full network, as BKD requires only partial computa-

tion of the reference model and backpropagation on a single

block Bn,m. Moreover, and in contrast to OFA, all blocks

Bn,m

can be trained in parallel since they are completely in-

dependent of each other. Table 1 quantifies the differences

in search-time between these approaches.

With the accuracy predictor in place, Pareto-optimal

DONNA models are found for several targets. Figure 5

shows DONNA finds networks that outperform the state of

the art in terms of the number of parameters, on a simu-

lator targeting tensor compute units in a mobile SoC, on a

NVIDIA V100 GPU and on the Samsung S20 GPU. Every

predicted Pareto-optimal front is generated using an evo-

lutionary search with NSGA-II [7, 1] on a population of

100 architectures until convergence. Where applicable, full-

architecture hardware measurements are used in the evolu-

tionary loop. Details on measurements and baseline accu-

racy are given in Appendix A.3.

Similarly, Tab. 2 and Fig. 6 show that DONNA finds

models that are on-par with architectures found by other

state-of-the-art methods such as MnasNet [32] and OFA [3]

in the same spaces. Tab. 2 shows DONNA finds mod-

els in the MobileNetV3 (1.0 ×) space that are on par with

MobileNetV3 [12] in terms of number of operations, al-

though [12] is found using expensive MnasNet [32]. Fig. 6

shows the same for networks found through DONNA in

the MobileNetV3 (1.2 ×) search space, by comparing them

to models found through OFA [3] optimized for the same

12234

200 300 400 500 600 700
Operations [M]

73
74
75
76
77
78
79

Im
ag

eN
et

 to
p-

1
va

l.
ac

cu
ra

cy
 [%

]

Ours, predicted trend
Ours, actual
OFA, Scratch
OFA*, Scratch

0.25 0.50 0.75 1.00 1.25
Simulated latency, relative to EffNet-B0

Figure 6. DONNA-NAS finds models that are on-par with models

found by OFA [3] in the MobileNetV3 (1.2 ×) search-space. Mod-

els are identically trained for fair comparison. OFA* models are

found by us using [2] and trained from scratch.

Table 2. DONNA finds similar models to MobileNetV3 [12] in

the MobileNetV3 (1.0 ×) space.

Network

Number of

ImageNet

Operations [M]

val top-1 [%]

MobileNetV3 [12]

232

75.77@600[37]

Ours (MobNetV3 1 . 0 ×)

242

75.75@50

complexity metric and trained with the same hyperparame-

ters. More results for other search spaces are shown in Fig-

ure 11 in Appendix A.6. We also visualize Pareto-optimal

DONNA models for different platforms in Appendix F.

4.1.2 Search-Space Extension and Exploration

The DONNA approach can also be used for rapid search

space extension and exploration . Using DONNA, a de-

signer can quickly determine whether the search space

should be extended or constrained for optimal performance.

Such extension is possible because the DONNA accu-

racy predictor generalizes to previously unseen architec-

tures, without having to extend the Architecture Library.

This is illustrated in Fig. 4(left), showing the DONNA

predictor achieves good quality, in line with the original

test set, on a ShiftNet-based test set of architectures. Fig-

ure 7(left) further illustrates this extrapolation works by

showing the confirmed results of a search for the ShiftNet

space. Note how the trendline predicts the performance of

full Pareto optimal ShiftNets even though the predictor is

created without any ShiftNet data. Here, ShiftNets are our

implementation, with learned shifts per group of 32 chan-

nels as depthwise-separable replacement. These general-

ization capabilities are obtained because the predictor only

uses quality metrics as an input without requiring any struc-

tural information about the replacement block. This fea-

ture is a major advantage of DONNA compared to OFA [3]

and other methods where the predictor cannot automatically

generalize to completely different layer-types, or to blocks

of the same layer-type with parameters (expansion rate, ker-

nel size, depth, ...) outside of the original search space.

Appendix D illustrates such extension can also be used to

model accuracy of lower precision quantized networks.

200 400 600 800 1000
Operations [M]

71

73

75

77

79

To
p-

1
Ac

cu
ra

cy
 [%

]

DONNA predicted
DONNA/ShiftNet predicted
DONA actual
DONNA/ShiftNet actual

5 10 15 20 25 30
Latency - V100 - BS=32 [ms]

A:k=7, SE
B: A+k=5
C: B+k=3
D: C - SE

E: C + opt. SE
F: E + width x 0.5
DONNA pred.

Figure 7. (left) An accuracy predictor for DONNA generalizes

to an unseen space with ShiftNets [39], without using ShiftNets

to train the predictor. (right) Rapid, model-driven exploration

of models within the original DONNA search-space on a V100

GPU. The figure illustrates the necessity of a diverse search space,

achieving up to 25 % latency gains when attention can be chosen

optimally (line E vs C).

This prototyping capability is also showcased for the

DONNA search space on a V100 GPU in Figure 7(right).

Here we interpolate, using the original accuracy predictor

for exploration . In doing this, Fig. 7 shows search-space

diversity is crucial to achieve good performance. Espe-

cially the impact of optimally adding SE-attention [13] is

very large, predicting a 25 % speedup at 76 % accuracy (line

C vs D), or a 1 % accuracy boost at 26ms (line E vs D).

Every plotted line in Figure 7 (right) is a predicted Pareto-

optimal. A baseline (A) considers SE/Swish in every block

and k ∈ {7}, expand ∈ {3,4,6} and depth ∈ {2,3,4}. Other

lines show results for search spaces built starting from (A),

e.g. (B) considers k ∈ {5,7}, (C) k ∈ {3,5,7}, (D) re-

moves SE/Swish, (E) allows choosing optimal placement

of SE/Swish, (F) adds a channel-width multiplier.

4.1.3 Model Compression

DONNA is also used for hardware-aware compression of

existing neural architectures into faster, more efficient ver-

sions. DONNA can do compression not just in terms of

the number of operations, as is common in literature, but

also for different devices. This is useful for a designer who

has prototyped a network for their application and wants

to run it efficiently on many different devices with various

hardware and software constraints. Figure 8 shows how

EfficientNet-B0 can be compressed into networks that are

10% faster than MnasNet [32] on the Samsung S20 GPU.

In the DONNA compression pipeline, the EfficientNet

search space splits EfficientNet-B0 into 5 blocks and uses

it as the reference model. Every replacement block Bn,m

considered in compression is smaller than the correspond-

ing reference block. 1135 epochs of training are spent in

total to build an accuracy predictor: 135 blocks are trained

12235

using BKD, and 20 architectures are trained for 50 epochs

as prediction targets, a cost equivalent to the resources

needed for training 3 networks from scratch. Figure 8 shows

DONNA finds a set of smaller, Pareto optimal versions of

EfficientNet-B0 both in the number of operations and on-

device. These are on-par with MobileNetV3 [12] in the

number of operations and 10% faster than MnasNet [32]

on device. For Samsung S20, the accuracy predictor is cal-

ibrated, as these models have no SE and Swish in the head

and stem as in the EfficientNet-B0 reference.

Similarly, DONNA can be used to optimally compress

Vision Transformers (ViT [9]), see Appendix C.

4.2. Object Detection on MSCOCO

The DONNA architectures transfer to other tasks such as

object detection on MS COCO [19]. To this end, we use

the EfficientDet-D0 [34] detection architecture, replacing

its backbone with networks optimized through the DONNA

pipeline. For training, we use the hyperparameters given in

[36]. The EfficientDet-D0 initialization comes from [37].

Figure 9 shows the results of multiple of such searches.

First, we optimize backbones on ImageNet in the Mo-

bileNetV3 (1.2 ×) and DONNA spaces (ours-224), target-

ting both the number of operations (left) and latency on a

simulator targeting tensor compute units. In this case, the

input resolution is fixed to 224 × 224 . The backbones are

first finetuned on ImageNet and then transferred to MS-

COCO. Second, we apply the DONNA pipeline directly

on the full DONNA-det0 architecture, building an accu-

racy predictor for MS-COCO. We optimize only the back-

bone and keep the BiFPN head fixed (Ours-COCO-512).

In this case, the resulting networks are directly finetuned

on MS-COCO, following the standard DONNA-flow. For

OFA [3], we consider two sets of models. The first set

consists of models optimized for the number of operations

(FLOP) with varying input resolution coming directly from

the OFA repository [2]. The second set of models, which

we identify by ‘OFA-224’, are obtained by us with the same

tools [2], but with the input resolution fixed to 224 × 224 .

This makes the OFA-224 search space the same as our Mo-

bileNetV3 (1.2 ×) up to the layerwise-vs-blockwise distinc-

200 300 400 500
Operations [M]

71

73

75

77

79

To
p-

1
va

l.
Ac

cu
ra

cy
 [%

]

Ours (DONNA) pred.
Ours (EffNet-B0) pred.

Ours (EffNet-Lite0) pred.
Ours (DONNA) act.

Ours (EffNet-B0) act.
Ours (EffNet-Lite0) act.

MobileNetV3
DNA

4 6 8 10 12
Latency - Samsung S20 GPU - BS=1 [ms]

Figure 8. Compressing EfficientNet-B0 for two targets.

2.25 2.75 3.25 3.75 4.25
Operations [B]

33.0

33.5

34.0

34.5

35.0

CO
CO

 v
al

 m
AP

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Normalized Latency wrt EfficientDet-D0

33

34

35

36

37

OFA-224 (Scratch Init)
OFA (Scratch Init)
OFA (OFA Init)

Ours-224 (MobileNetV3 1.2x Space)
Ours-224 (DONNA Space)
Ours-COCO-512 (DONNA Space)

ResDet-50
EfficientNet-B0

Figure 9. Object detection performance of DONNA backbones, ei-

ther searched on ImageNet and transferred to COCO (Ours-224),

or searched directly on MS COCO (Ours-COCO-512). In the

DONNA search space, our solution has up to 2 . 4% higher mAP

at the same latency as the OFA models.

tion. In the first experiment, we initialize the OFA back-

bone with weights from progressive shrinking released in

[2]. In the second experiment, we initialize the OFA back-

bone with from-scratch trained weights on ImageNet using

hyperparameters from [37]. After such initialization, the

networks are transferred to object detection for comparison.

The comparison of the two experiments shows the benefit of

OFA-style training is limited after transfer to a downstream

task (See Fig. 9.) The gap between OFA-style training and

training from scratch, which is up to 1 . 4% top-1 on Ima-

geNet, decreases to 0 . 2% mAP on COCO, reducing its im-

portance. We discuss this point further in Appendix B.

In comparing with DONNA models, we make three key

observations. First, models transferred after a search using

DONNA are on-par or better than OFA-224 models for both

operations and latency. Second, models transferred from

the DONNA space outperform OFA models up to 2 . 4%

mAP on the validation set in latency. Third, best results are

achieved when applying DONNA directly to MS COCO.

5. Conclusion

In this work, we present DONNA, a novel approach

for rapid scenario-aware NAS in diverse search spaces.

Through the use of a model accuracy predictor, built

through knowledge distillation, DONNA finds state-of-the-

art networks for a variety of deployment scenarios: in terms

of number of parameters and operations, and in terms of

latency on Samsung S20 and the Nvidia V100 GPU. In Im-

ageNet classification, architectures found by DONNA are

20% faster than EfficientNet-B0 and MobileNetV2 on V100

at similar accuracy and 10% faster with 0.5% higher ac-

curacy than MobileNetV2-1.4x on a Samsung S20 smart-

phone. In object detection, DONNA finds networks with up

to 2 . 4% higher mAP at the same latency compared to OFA.

Furthermore, this pipeline can be used for quick search

space extensions (e.g. adding ShiftNets) and exploration,

as well as for on-device network compression.

12236

References

[1] J. Blank and K. Deb. Pymoo: Multi-objective optimization

in python. IEEE Access , 8:89497–89509, 2020. 5, 6

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,

and Song Han. once-for-all. https://github.com/

mit-han-lab/once-for-all , 2020. 5, 6, 7, 8, 11,

12, 14, 15

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once-for-all: Train one network and special-

ize it for efficient deployment. International Conference on

Learning Representations (ICLR) , 2020. 1, 2, 3, 5, 6, 7, 8,

14

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In-

ternational Conference on Learning Representations (ICLR) ,

2019. 2, 11, 12

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive

DARTS: Bridging the optimization gap for nas in the wild.

International Conference on Computer Vision (ICCV) , 2019.

2

[6] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.

Le. RandAugment: Practical automated data augmentation

with a reduced search space. International Conference on

Computer Vision (ICCV) Workshop , 2020. 11

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT

Meyarivan. A fast and elitist multiobjective genetic algo-

rithm: Nsga-ii. IEEE transactions on evolutionary computa-

tion , 6(2):182–197, 2002. 5, 6, 16

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. Conference on Computer Vision and Pattern

Recognition (CVPR) , 2009. 2, 4, 5, 14, 15

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16 × 16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929 , 2020. 3, 8, 14

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.

Neural architecture search: A survey. Journal of Machine

Learning Research , 20:1–21, 2019. 2

[11] K. Goetschalckx and M. Verhelst. Breaking high-resolution

cnn bandwidth barriers with enhanced depth-first execution.

IEEE Journal on Emerging and Selected Topics in Circuits

and Systems (JETCAS) , 9(2):323–331, 2019. 2

[12] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. International Conference

on Computer Vision (ICCV) , 2019. 1, 3, 5, 6, 7, 8, 13

[13] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.

Squeeze-and-excitation networks. Conference on Computer

Vision and Pattern Recognition (CVPR) , 2018. 5, 7, 16

[14] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian

Weinberger. Deep networks with stochastic depth. European

Conference on Computer Vision (ECCV) , 2016. 11

[15] Evan J Hughes. Multi-objective equivalent random search. In

Parallel Problem Solving from Nature-PPSN IX , pages 463–

472. Springer, 2006. 16

[16] Maurice G Kendall. A new measure of rank correlation.

Biometrika , 30(1/2):81–93, 1938. 4, 11, 12, 13, 16

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980 ,

2014. 11

[18] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,

Xiaodan Liang, Liang Lin, and Xiaojun Chang. Blockwisely

supervised neural architecture search with knowledge distil-

lation. Conference on Computer Vision and Pattern Recog-

nition (CVPR) , 2020. 2, 3, 4, 5, 6, 11, 12

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir

Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva

Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft

COCO: Common objects in context. European Conference

on Computer Vision (ECCV) , 2014. 5, 8

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. International Conference

on Learning Representations (ICLR) , 2019. 1, 2

[21] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-

ent descent with warm restarts. International Conference on

Learning Representations (ICLR) , 2017. 11

[22] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang

Banzhaf, and Vishnu Naresh Boddeti. NSGANetV2: Evo-

lutionary multi-objective surrogate-assisted neural architec-

ture search. In European Conference on Computer Vision

(ECCV) , 2020. 1, 2, 6

[23] Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang

Banzhaf, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Neu-

ral architecture transfer. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence , 2021. 1

[24] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie

Yang, Alan Yuille, and Jianchao Yang. AtomNAS: Fine-

grained end-to-end neural architecture search. International

Conference on Learning Representations (ICLR) , 2020. 2

[25] Markus Nagel, Rana Ali Amjad, Marinus van Baalen, Chris-

tos Louizos, and Tijmen Blankevoort. Up or down? adap-

tive rounding for post-training quantization. In International

Conference on Machine Learning (ICML) . 2020. 4

[26] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and

Max Welling. Data-free quantization through weight equal-

ization and bias correction. International Conference on

Computer Vision (ICCV) , 2019. 15

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research ,

12:2825–2830, 2011. 12

[28] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameters

sharing. International Conference on Machine Learning

(ICML) , 2018. 2

[29] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,

Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey

12237

Kurakin. Large-scale evolution of image classifiers. In-

ternational Conference on Machine Learning (ICML) , page

2902–2911, 2017. 2

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of

Machine Learning Research , 15(56):1929–1958, 2014. 11

[31] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dim-

itrios Lymberopoulos, Bodhi Priyantha, Jie Liu, and Di-

ana Marculescu. Single-path nas: Designing hardware-

efficient convnets in less than 4 hours. In arXiv preprint

arXiv:1904.02877 , 2019. 1, 2

[32] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-

Net: Platform-aware neural architecture search for mobile.

Conference on Computer Vision and Pattern Recognition

(CVPR) , 2019. 1, 2, 5, 6, 7, 8, 12

[33] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. Interna-

tional Conference on Machine Learning (ICML) , 2019. 1, 3,

11

[34] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficient-

det: Scalable and efficient object detection. Conference on

Computer Vision and Pattern Recognition (CVPR) , 2020. 8

[35] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-

dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,

Kan Chen, Peter Vajda, and Joseph E. Gonzalez. FB-

NetV2: Differentiable neural architecture search for spatial

and channel dimensions. Conference on Computer Vision

and Pattern Recognition (CVPR) , 2020. 2

[36] Ross Wightman. efficientdet-pytorch.

https://github.com/rwightman/

efficientdet-pytorch , 2020. 8

[37] Ross Wightman. pytorch-image-models.

https://github.com/rwightman/

pytorch-image-models , 2020. 5, 7, 8, 11, 12

[38] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. FBNet: Hardware-aware efficient

convnet design via differentiable neural architecture search.

Conference on Computer Vision and Pattern Recognition

(CVPR) , 2019. 2

[39] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng

Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonza-

lez, and Kurt Keutzer. Shift: A zero flop, zero parameter

alternative to spatial convolutions. Conference on Computer

Vision and Pattern Recognition (CVPR) , June 2018. 7, 15

[40] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: Partial chan-

nel connections for memory-efficient architecture search. In-

ternational Conference on Learning Representations (ICLR) ,

2020. 2

[41] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,

Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-

aodan Song, Ruoming Pang, and Quoc Le. BigNAS: Scaling

up neural architecture search with big single-stage models.

European Conference on Computer Vision (ECCV) , 2020. 1

[42] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. International Conference on Learn-

ing Representations (ICLR) , 2017. 2

[43] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.

Le. Learning transferable architectures for scalable image

recognition. Conference on Computer Vision and Pattern

Recognition (CVPR) , 2018. 2

12238

