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Abstract 

Current state-of-the-art Neural Architecture Search 

(NAS) methods neither efficiently scale to multiple hardware 

platforms, nor handle diverse architectural search-spaces. 

To remedy this, we present DONNA (Distilling Optimal 

Neural Network Architectures), a novel pipeline for rapid, 

scalable and diverse NAS, that scales to many user scenar- 

ios. DONNA consists of three phases. First, an accuracy 

predictor is built using blockwise knowledge distillation 

from a reference model. This predictor enables searching 

across diverse networks with varying macro-architectural 

parameters such as layer types and attention mechanisms, 

as well as across micro-architectural parameters such as 

block repeats and expansion rates. Second, a rapid evolu- 

tionary search finds a set of pareto-optimal architectures for 

any scenario using the accuracy predictor and on-device 

measurements. Third, optimal models are quickly fine- 

tuned to training-from-scratch accuracy. DONNA is up to 

100 ×  faster than MNasNet in finding state-of-the-art ar- 

chitectures on-device. Classifying ImageNet, DONNA ar- 

chitectures are 20% faster than EfficientNet-B0 and Mo- 

bileNetV2 on a Nvidia V100 GPU and 10% faster with 

0.5% higher accuracy than MobileNetV2-1.4x on a Sam- 

sung S20 smartphone. In addition to NAS, DONNA is 

used for search-space extension and exploration, as well as 

hardware-aware model compression. 

1. Introduction 

Although convolutional neural networks (CNN) have 

achieved state-of-the-art performance for a wide range of 

vision tasks, they do not always execute efficiently on hard- 

ware platforms like desktop GPUs or mobile DSPs and 

NPUs. To alleviate this issue, CNNs are specifically op- 

timized to minimize latency and energy consumption for 

on-device performance. However, the optimal CNN archi- 

tecture can vary significantly between different platforms.

 

∗Qualcomm AI Research is an initiative of Qualcomm Technologies, 

Inc. 

Even on a single platform, their efficiency can change with 

different operating conditions or driver versions. To solve 

this problem, low-cost methods for automated hardware- 

aware neural architecture search (NAS) are required. 

Current NAS algorithms, however, suffer from several 

limitations. First, many optimization algorithms [32, 12, 31,  

20] target only a single deployment scenario : a hardware- 

agnostic complexity metric, a hardware platform, or dif- 

ferent latency, energy, or accuracy requirements. This 

means the search has to be repeated whenever any part 

of that scenario changes. Second, many methods cannot 

search in truly diverse search spaces, with different types 

of convolutional kernels, activation functions and atten- 

tion mechanisms. Current methods either search through 

large and diverse spaces at a prohibitively expensive search 

cost [32, 12], or limit their applicability by trading search 

time for a more constrained and less diverse search [3, 31,  

33, 41,  23, 22]. Most of such speedups in NAS come 

from a reliance on weight sharing mechanisms, which re- 

quire all architectures in the search space to be structurally 

similar. Thus, these works typically only search among 

micro-architectural choices such as kernel sizes, expansion 

rates, and block repeats and not among macro-architectural 

choices of layer types, attention mechanisms and activation 

functions. As such, they rely on prior expensive methods 

such as [32, 12] for an optimal choice of macro-architecture. 

We present DONNA (Distilling Optimal Neural Net- 

work Architectures), a method that addresses both issues: it 

scales to multiple deployment scenarios with low additional 

cost, and performs rapid NAS in diverse search spaces. The 

method starts with a trained reference model. The first is- 

sue is resolved by splitting NAS into a scenario-agnostic 

training phase, and a scenario-aware search phase that re- 

quires only limited training, as depicted in Figure 1. Af- 

ter an accuracy predictor is built in the training phase, the 

search is executed quickly for each new deployment sce- 

nario, typically in the time-frame of hours, and only requir- 

ing minimal fine-tuning to finalize optimal models. Second, 

DONNA considers diverse macro-architectural choices in 

addition to micro-architectural choices, by creating this ac-
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Figure 1. Neural networks are deployed in many scenarios, on various hardware platforms with varying power modes and driver software, 

with different speed and accuracy requirements. DONNA scales gracefully towards NAS for many of such scenarios, contrary to most 

prior approaches where NAS is repeated for each of them (a). This is achieved by splitting NAS into a scenario-agnostic training phase 

building an accuracy predictor through blockwise knowledge distillation (b) and a rapid scenario-aware search phase using this predictor 

and hardware measurements (c). This yields a Pareto-front of models on-device, shown here for a Samsung S20 GPU on ImageNet [8] (d). 

curacy predictor through Blockwise Knowledge Distillation 

(BKD) [18], see Figure 3. This approach imposes little con- 

straints on the macro- and micro-architectures under con- 

sideration, allowing a vast, diverse, and extensible search 

space. The DONNA pipeline yields state of the art network 

architectures, as illustrated for a Samsung S20 GPU in Fig- 

ure 1(d). Finally, we use DONNA for rapid search space ex- 

tension and exploration, and on-device model compression. 

This is possible as the DONNA accuracy predictor general- 

izes to architectures outside the original search space. 

2. Related Work 

Over time, methods in the NAS literature have evolved 

from prohibitively expensive but holistic and diverse search 

methods [42,  43,  32] to lower cost approaches that search 

in more restrictive non-diverse search spaces [3, 31]. This 

work, DONNA, aims at benefiting from the best of both 

worlds: rapid search in diverse spaces. We refer the inter- 

ested reader to the existing dedicated survey of Elsken et al. 

[10] for a broader discussion of the NAS literature. 

Early approaches to NAS rely on reinforcement learning 

[42, 43, 32] or evolutionary optimization [29]. These meth- 

ods allow for diverse search spaces, but at infeasibly high 

costs due to the requirement to train thousands of models for 

a number of epochs throughout the search. MNasNet [32] 

for example uses up to 40,000 epochs in a single search. 

This process can be sped up by using weight sharing among 

different models, as in ENAS [28]. However, this comes at 

the cost of a less diverse search space, as the subsampled 

models have to be similar for the weights to be shareable. 

In another line of work, differentiable architecture search 

methods such as DARTS [20], FBNet [38], FBNetV2 [35], 

ProxylessNAS [4], AtomNAS [24] and Single-Path NAS 

[31] simultaneously optimize the weights of a large super- 

net and its architectural parameters. This poses several im- 

pediments to scalable and scenario-aware NAS in diverse 

search spaces. First, in most of these works, different cell 

choices have to be available to the algorithm, ultimately 

limiting the space’s size and diversity. While several works 

address this problem either by trading off the number of ar- 

chitecture parameters against the number of weights that are 

in GPU memory at a given time [5], by updating only a sub- 

set of the weights during the search [40], or by exploiting 

more granular forms of weight-sharing [31], the fundamen- 

tal problem remains when new operations are introduced. 

Second, although differentiable search methods speed up 

a single search iteration, the search must be repeated for 

every scenario due to their coupling of accuracy and com- 

plexity. Differentiable methods also require differentiable 

cost models. Typically these models use the sum of layer 

latencies as a proxy for the network latency, which can be 

inaccurate. This is especially the case in emerging depth- 

first processors [11], where intermediate results are stored 

in the local memory, making full-graph latency depend on 

layer sequences rather than on individual layers. 

To improve the scaling performance of NAS across dif- 

ferent scenarios, it is critical to decouple the accuracy pre- 

diction of a model from the complexity objective. In Once- 

for-All (OFA) [3] and [22], a large weight-sharing supernet 

is trained using progressive shrinking. This process allows 

the sampling of smaller subnets from the trained supernet 

that perform comparably with models that have been trained 

from scratch. A large number of networks can then be sam- 

pled to build an accuracy predictor for this search space, 

which in turn can be used in a scenario-aware evolutionary 

search, as in Figure 1(c). Although similar to DONNA in 

this approach, OFA [3] has several disadvantages. First, 

its search space’s diversity is limited due to its reliance on 

progressive shrinking and weight sharing, which requires a 

fixed macro-architecture in terms of layer types, attention,
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Figure 2. DONNA splits a model in a stem, head and N blocks. The search space is defined over the N blocks with varying kernel size, 

expand, depth, activation, cell type, attention and width scale factors. Block strides are kept constant. 

activations, and channel widths. Furthermore, progressive 

shrinking can only be parallelized in the batch dimension, 

limiting the maximum number of GPUs that can process in 

parallel. DONNA does not suffer from these constraints. 

Similarly, Blockwisely-Supervised NAS (DNA) [18], 

splits NAS into two phases: the creation of a ranking model 

for a search space and a targeted search to find the highest- 

ranked models at a given constraint. To build this ranking 

model, DNA uses blockwise knowledge distillation (BKD) 

to build a relative ranking of all possible networks in a given 

search space. The best networks are then trained and ver- 

ified. It is crucial to note that it is BKD that enables the 

diverse search for optimal attention mechanisms, activation 

functions, and channel scaling. However, DNA has three 

disadvantages: (1) the ranking model fails when ranking 

large and diverse search spaces (Section 3.2), (2) the rank- 

ing only holds within a search space and does not allow 

the comparison of different spaces, and (3) because of the 

reliance on training subsampled architectures from scratch, 

the method is not competitive in terms of search time. This 

work, DONNA, addresses all these issues. In summary, 

DONNA differs from prior work on these key aspects: 

1. Unlike OFA [3], DONNA enables hardware-aware 

search in diverse search spaces; differentiable and RL- 

/evolutionary-based methods can do this too, but using 

much more memory or training time, respectively. 

2. DONNA scales to multiple accuracy/latency targets , 

requiring only marginal cost for every new target. This 

is in contrast with differentiable or RL-/evolutionary- 

based methods, where the search has to be repeated for 

every new target. 

3. DONNA uses a novel accuracy predictor which cor- 

relates better with training-from-scratch accuracy than 

prior work like DNA [18] (See Figure 4). 

4. Furthermore, the DONNA accuracy predictor gener- 

alizes to unseen search spaces due to its reliance on 

block quality metrics , not on the network configura- 

tion (See Figure  7). 

5. DONNA relies on a fast finetuning method that 

achieves the same accuracy as training-from-scratch 

while being 9 ×  faster, reducing the training time for 

found architectures compared to DNA [18]. 

3. Distilling Optimal Neural Networks 

Starting with a trained reference model, DONNA is a 

three step pipeline for NAS. For a given search space (Sec- 

tion 3.1), we first build a scenario-agnostic accuracy predic- 

tor using Blockwise Knowledge Distillation (BKD) (Sec- 

tion 3.2). This amounts to a one-time cost. Second, a 

rapid scenario-aware evolutionary search phase finds the 

Pareto-optimal network architectures for any specific sce- 

nario (Section 3.3). Third, the predicted Pareto-optimal ar- 

chitectures can be quickly finetuned up to full accuracy for 

deployment (Section 3.4). 

3.1. Search Space Structure 

Figure 2  illustrates the block-level architecture of our 

search spaces and some parameters that can be varied within 

it. This search space is comprised of a stem, head, and 

N  variable blocks, each with a fixed stride. The choice of 

stem, head and the stride pattern depends on the choice of 

the reference model. The blocks used here are comprised of 

repeated layers, linked together by feedforward and resid- 

ual connections. The blocks in the search space are denoted 

Bn,m, where Bn,m  

is the mth  potential replacement out 

of M  choices for block Bn  

in the reference model. These 

blocks can be of any style of neural architecture (See Ap- 

pendix C  for Vision Transformers [9]), with very few struc- 

tural limitations; only the spatial dimensions of the input 

and output tensors of Bn,m  

need to match those of the ref- 

erence model, which allows for diverse search. Throughout 

the text and in Appendix A, other reference models based 

on MobileNetV3 [12] and EfficientNet [33] are discussed. 

3.2. Building a Model Accuracy Predictor 

3.2.1 Blockwise Knowledge Distillation 

We discuss Blockwise Knowledge Distillation (BKD) as the 

first step in building an accuracy predictor for our search 

space, see Figure 3(a). BKD yields a Block Library of 

pretrained weights and quality metrics for each of the re- 

placement blocks Bn,m. This is later used for fast fine- 

tuning (Section 3.4) and to fit the accuracy predictor (Sec- 

tion 3.2.2). To build this library, each block Bn,m  

is trained 

independently as a student using the pretrained reference 

block Bn  

as a teacher. The errors between the teacher’s 

output feature map Yn  

and the student’s output feature map
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Figure 3. An accuracy predictor is built in three steps. (a) Blockwise knowledge distillation (BKD) is executed to build a library of block- 

quality metrics and pretrained weights. (b) A set of full-model architectures is sampled from the search space and finetuned using the BKD 

initialization. (c) These results are used as targets to fit a linear accuracy predictor. 

Ȳn,m  

are used in this process. Formally, this is done by min- 

imizing the per-channel noise-to-signal-power ratio (NSR):

 

L  (  Wn,m;  Yn  −  1  

,  Yn)  =  

1

 

C  

C∑  

c  =0  

Yn,c  

−  Ȳn,m,c  

2

 

σ2
n,c

 

(1) 

Here, C  is the number of channels in a feature map, Wn,m  

are the weights of block Bn,m, Yn  

is the target output fea- 

ture map of Bn, Ȳn,m  

is the output of block Bn,m  

and σ2  

n,c  

is the variance of Yn,c. This metric is closely related to 

Mean-Square-Error (MSE) on the feature maps, which [25] 

shows to be correlated to the task loss. 

Essentially, the blocks Bn,m  

are trained to closely repli- 

cate the teacher’s non-linear function Yn  

=  Bn(  Yn  −  1)  . In- 

tuitively, larger, more accurate blocks with a larger “model- 

ing capacity” or “expressivity” replicate this function more 

closely than smaller, less accurate blocks. On ImageNet [8] 

such knowledge distillation requires only a single epoch of 

training for effective results. After training each block, the 

resulting NSR metric is added to the Block library as a qual- 

ity metric of the block Bn,m. Note that the total number of 

trainable blocks Bn,m  

grows linearly as N  ×  M  , whereas 

the overall search space grows exponentially as M  

N , mak- 

ing the method scale well even for large search-spaces. 

3.2.2 Linear Accuracy Predictor 

The key insight behind DONNA is that block-level qual- 

ity metrics derived through BKD (e.g., per-block NSR) can 

be used to predict the accuracy of all architectures sampled 

from the search space. We later show this metric even works 

for architectures outside of the search space (Section 4.1.2). 

To create an accuracy predictor, we build an Architec- 

ture Library of trained models sampled from the search 

space, see Figure 3(b). These models can be trained from 

scratch or finetuned quickly using weight initialization from 

BKD (Section 3.4). Subsequently, we fit a linear regression
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Figure 4. The linear accuracy predictor generalizes to a test-set 

of unseen models (left), and is a better ranking predictor than 

DNA [18] (right) on the same set: Kendall-Tau [16] of 0.91 in 

this work versus 0.75 for DNA. 

model, typically using second-order terms, to predict the 

full search space’s accuracy using the quality metrics stored 

in the Block Library as features and the accuracy from the 

Architecture Library as targets. Figure 4(left) shows that 

the linear predictor fits well with a test-set of network ar- 

chitectures trained on ImageNet [8] in the DONNA space 

(MSE=0.2, KT [16]=0.91). This predictor can be under- 

stood as a sensitivity model that indicates which blocks 

should be large, and which ones can be small, to build net- 

works with high accuracy. Appendix  A.4.2 discusses the ef- 

fectiveness of different derived quality metrics on the qual- 

ity of the accuracy prediction. 

This process is now compared to DNA [18], where BKD 

is used to build a ranking-model rather than an accuracy 

model. DNA [18] ranks subsampled architectures i  as:

 

Ri  

=  

N∑  

n  =0  

Yn  

−  Ȳn,mi1

 

σn

 

(2) 

which is sub-optimal due to two reasons. First, a ranking 

model only ranks models within the same search space and 

does not allow comparing performance of different search
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spaces. Second, the simple sum of quality metrics does 

not take the potentially different noise-sensitivity of blocks 

into account, for which a weighted sensitivity model is re- 

quired. The DONNA predictor takes on both roles. Fig- 

ure 4(right) illustrates the performance of the linear predic- 

tor for the DONNA search space and compares the qual- 

ity of its ranking to DNA [18]. Note that the quality of the 

DONNA predictor increases over time, as whenever Pareto- 

optimal networks are finetuned, they can be added to the 

Architecture Library, and the predictor can be fitted again. 

3.3. Evolutionary Search 

Given the accuracy model and the block library, the 

NSGA-II [7, 1] evolutionary algorithm is executed to find 

Pareto-optimal architectures that maximize model accuracy 

and minimize a target cost function, see Figure  1(c). The 

cost function can be scenario-agnostic, such as the number 

of operations or the number of parameters in the network, 

or scenario-aware, such as on-device latency, throughput, or 

energy. In this work, full-network latency is considered as a 

cost function by using direct hardware measurements in the 

optimization loop. At the end of this process, the Pareto- 

optimal models yielded by the NSGA-II are finetuned to 

obtain the final models (Section 3.4). 

3.4. Finetuning Architectures 

Full architectures sampled from the search space can be 

quickly finetuned to match the from-scratch training accu- 

racy by initializing them with weights from the BKD pro- 

cess (Section  3.2.1). Finetuning is further sped up by using 

end-to-end knowledge distillation (EKD) using the refer- 

ence model as a teacher, see Figure  3(b). In Appendix  A.5, 

we show such models can be finetuned up to state-of-the- 

art accuracy in less than 50 epochs. This is a 9 ×  speedup 

compared to the state-of-the-art 450 epochs required in [37] 

for training EfficientNet-style networks from scratch. This 

rapid training scheme is crucial to the overall efficiency of 

DONNA, since we use it for both, generating training tar- 

gets for the linear accuracy predictor in Section  3.2, as well 

as to finetune and verify Pareto-optimal architectures. 

4. Experiments 

This section discusses three use-cases of DONNA: 

scenario-aware neural architecture search (Section 4.1.1), 

search-space extrapolation and design (Section 4.1.2), and 

model compression (Section  4.1.3). We also show that 

DONNA can be directly applied to object detection on MS- 

COCO [19] and that architectures found by DONNA trans- 

fer to optimal detection backbones (Section 4.2). DONNA 

is compared to random search in Appendix E. 

4.1. ImageNet Classification 

We present experiments for different search spaces 

for ImageNet classification: DONNA, EfficientNet- 

Compression and MobileNetV3 (1.0 ×  , 1.2 ×  ). The latter 

two search spaces are blockwise versions of the spaces con- 

sidered by OFA [2]; that is, parameters such as expansion 

ratio and kernel size are modified on the block level rather 

than the layer level, rendering the overall search space 

coarser than that of OFA. Selected results for these spaces 

are discussed in this section, more extensive results can be 

found in Appendix  A.6. We first show that networks found 

by DONNA in the DONNA search space outperform the 

state-of-the-art (Figure  5). For example, DONNA is up to 

2 .  4%  more accurate on ImageNet [8] validation compared 

to OFA[3] trained from scratch with the same amount of pa- 

rameters. At the same time, DONNA finds models outper- 

forming DNA [18] up to 1.5 %  on a V100 GPU at the same 

latency and MobileNetV2 ( 1 .  4 ×  ) by 10 %  at 0.5 %  higher 

accuracy on the Samsung S20 GPU. We also show that 

MobileNetV3-style networks found by DONNA achieve 

the same quality of models compared to Mnasnet [32] and 

OFA [3] when optimizing for the same metric (See Fig. 6 

and Tab. 2). All experiments are for ImageNet [8] images 

with 224 ×  224 input resolution. Training hyperparameters 

are discussed in Appendix A.1. 

4.1.1 NAS for DONNA on ImageNet 

DONNA is used for scenario-aware Neural Architecture 

Search on ImageNet [8], quickly finding state-of-the-art 

models for a variety of deployment scenarios, see Figure 5. 

As shown in Figure 2, all 5 blocks Bn  

in the 

DONNA space can be replaced by a choice out of 

M  =  384 options: k ∈  {3,5,7}; expand ∈  {2,3,4,6}; 

depth ∈  {1,2,3,4}; activation/attention ∈  {ReLU/None, 

Swish[12]/SE[13]}; layer-type ∈  {grouped, depthwise in- 

verted residual bottleneck}; and channel-scaling ∈  { 0 .  5 ×  , 

1 .  0 ×  }. The search-space can be expanded or arbitrarily 

constrained to known efficient architectures for a device. 

Each of these 5 ×  384 =  1920 alternative blocks is trained 

using BKD to complete the Block Library. Once the Block 

Library is trained, we use the BKD-based ranking metric 

from DNA[18] to sample a set of architectures uniformly 

spread over the ranking space. For the DONNA search 

space, we finally finetune the sampled networks for 50 

epochs starting from the BKD initialization, building an Ar- 

chitecture Library with accuracy targets used to fit the linear 

accuracy predictor. Typically, 20-30 target networks need to 

be finetuned to yield good results, see Appendix A.4. 

In total, including the training of a reference model ( 450 

epochs), 450 +  1920 +  30 ×  50 =  3870 epochs of train- 

ing are required to build the accuracy predictor. This is 

less than 10 ×  the cost of training a single network from
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Figure 5. The predicted Pareto-optimal front and models found by DONNA in the DONNA search space. Results are shown targeting the 

number of operations (left), the number of parameters (mid left), latency on a Nvidia V100 GPU (mid right) and latency on a simulator 

targeting tensor compute units in a mobile SoC (right). The trend line indicates predicted accuracy, whereas the dots are sampled from the 

trend line and finetuned up to the level of from-scratch accuracy. OFA*/Scratch results are our own search results using the framework 

in [2] for 224  ×  224  images, where the best models are retrained from scratch with DONNA hyperparameters for fair comparison. 

Table 1. Comparing the cost of NAS methods, assuming 10 trained architectures per deployment scenario. DONNA can search in a diverse 

space similar to MNasNet [32] at a 100  ×  lower search-cost. 

Method

 

Granularity
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Search-cost

 

Cost / Scenario

 

Cost / Scenario

 

1 scenario [epochs]

 

4 scenarios [epochs]
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layer-level
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1200 +  10 ×  [25 −  75]
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250 −  750 
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layer-level
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DNA [18]

 

layer-level

 

fixed
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4700
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MNasNet [32]

 

block-level

 

variable

 

40000 +  10 ×  450

 

44500

 

44500

 

This work

 

block-level

 

variable

 

4000 +  10 ×  50

 

1500

 

500 

scratch to model the accuracy of more than 8 trillion ar- 

chitectures. Subsequently, any architecture can be selected 

and trained to full accuracy in 50 epochs, starting from the 

BKD initialization. Similarly, as further discussed in Ap- 

pendix  A.4, an accuracy model for MobileNetV3 (1.2 ×  ) 

and EfficientNet-Compressed  costs 450+ 135+ 20 ×  50 =  

1585 epochs, roughly the same as training 4 models from 

scratch. Although this is a higher cost than OFA [3], it 

covers a much more diverse search space. OFA requires 

an equivalent, accounting for dynamic batch sizes [2], of 

180+ 125+ 2 ×  150+ 4 ×  150 =  1205 epochs of progres- 

sive shrinking with backpropagation on a large supernet. 

BKDNAS [18] requires only 450 +  16 ×  20 =  770 epochs 

to build its ranking model, but 450 epochs to train models 

from scratch. Other methods like MnasNet [32] can han- 

dle a similar diversity as DONNA, but typically require an 

order of magnitude longer search time ( 40000 epochs) for 

every deployment scenario . DONNA offers MNasNet-level 

diversity at a 2 orders of magnitude lower search cost. On 

top of that, BKD epochs are significantly faster than epochs 

on a full network, as BKD requires only partial computa- 

tion of the reference model and backpropagation on a single 

block Bn,m. Moreover, and in contrast to OFA, all blocks 

Bn,m  

can be trained in parallel since they are completely in- 

dependent of each other. Table 1 quantifies the differences 

in search-time between these approaches. 

With the accuracy predictor in place, Pareto-optimal 

DONNA models are found for several targets. Figure 5 

shows DONNA finds networks that outperform the state of 

the art in terms of the number of parameters, on a simu- 

lator targeting tensor compute units in a mobile SoC, on a 

NVIDIA V100 GPU and on the Samsung S20 GPU. Every 

predicted Pareto-optimal front is generated using an evo- 

lutionary search with NSGA-II [7,  1] on a population of 

100 architectures until convergence. Where applicable, full- 

architecture hardware measurements are used in the evolu- 

tionary loop. Details on measurements and baseline accu- 

racy are given in Appendix  A.3. 

Similarly, Tab. 2 and Fig.  6 show that DONNA finds 

models that are on-par with architectures found by other 

state-of-the-art methods such as MnasNet [32] and OFA [3] 

in the same spaces. Tab. 2 shows DONNA finds mod- 

els in the MobileNetV3 (1.0 ×  ) space that are on par with 

MobileNetV3 [12] in terms of number of operations, al- 

though [12] is found using expensive MnasNet [32]. Fig. 6  

shows the same for networks found through DONNA in 

the MobileNetV3 (1.2 ×  ) search space, by comparing them 

to models found through OFA [3] optimized for the same
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Figure 6. DONNA-NAS finds models that are on-par with models 

found by OFA [3] in the MobileNetV3 (1.2 ×  ) search-space. Mod- 

els are identically trained for fair comparison. OFA* models are 

found by us using [2] and trained from scratch. 

Table 2. DONNA finds similar models to MobileNetV3 [12] in 

the MobileNetV3 (1.0 ×  ) space. 

Network

 

Number of

 

ImageNet

 

Operations [M]

 

val top-1 [%]

 

MobileNetV3 [12]

 

232

 

75.77@600[37] 

Ours (MobNetV3 1  .  0  ×  )

 

242

 

75.75@50 

complexity metric and trained with the same hyperparame- 

ters. More results for other search spaces are shown in Fig- 

ure  11 in Appendix  A.6. We also visualize Pareto-optimal 

DONNA models for different platforms in Appendix F. 

4.1.2 Search-Space Extension and Exploration 

The DONNA approach can also be used for rapid search 

space extension and exploration . Using DONNA, a de- 

signer can quickly determine whether the search space 

should be extended or constrained for optimal performance. 

Such extension is possible because the DONNA accu- 

racy predictor generalizes to previously unseen architec- 

tures, without having to extend the Architecture Library. 

This is illustrated in Fig.  4(left), showing the DONNA 

predictor achieves good quality, in line with the original 

test set, on a ShiftNet-based test set of architectures. Fig- 

ure  7(left) further illustrates this extrapolation works by 

showing the confirmed results of a search for the ShiftNet 

space. Note how the trendline predicts the performance of 

full Pareto optimal ShiftNets even though the predictor is 

created without any ShiftNet data. Here, ShiftNets are our 

implementation, with learned shifts per group of 32 chan- 

nels as depthwise-separable replacement. These general- 

ization capabilities are obtained because the predictor only 

uses quality metrics as an input without requiring any struc- 

tural information about the replacement block. This fea- 

ture is a major advantage of DONNA compared to OFA [3] 

and other methods where the predictor cannot automatically 

generalize to completely different layer-types, or to blocks 

of the same layer-type with parameters (expansion rate, ker- 

nel size, depth, ...) outside of the original search space. 

Appendix D illustrates such extension can also be used to 

model accuracy of lower precision quantized networks.
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Figure 7. (left) An accuracy predictor for DONNA generalizes 

to an unseen space with ShiftNets [39], without using ShiftNets 

to train the predictor. (right) Rapid, model-driven exploration 

of models within the original DONNA search-space on a V100 

GPU. The figure illustrates the necessity of a diverse search space, 

achieving up to 25 %  latency gains when attention can be chosen 

optimally (line E vs C). 

This prototyping capability is also showcased for the 

DONNA search space on a V100 GPU in Figure 7(right). 

Here we interpolate, using the original accuracy predictor 

for exploration . In doing this, Fig. 7 shows search-space 

diversity is crucial to achieve good performance. Espe- 

cially the impact of optimally adding SE-attention [13] is 

very large, predicting a 25 %  speedup at 76 %  accuracy (line 

C vs D), or a 1 %  accuracy boost at 26ms (line E vs D). 

Every plotted line in Figure 7 (right) is a predicted Pareto- 

optimal. A baseline (A) considers SE/Swish in every block 

and k ∈  {7}, expand ∈  {3,4,6} and depth ∈  {2,3,4}. Other 

lines show results for search spaces built starting from (A), 

e.g. (B) considers k ∈  {5,7}, (C) k ∈  {3,5,7}, (D) re- 

moves SE/Swish, (E) allows choosing optimal placement 

of SE/Swish, (F) adds a channel-width multiplier. 

4.1.3 Model Compression 

DONNA is also used for hardware-aware compression of 

existing neural architectures into faster, more efficient ver- 

sions. DONNA can do compression not just in terms of 

the number of operations, as is common in literature, but 

also for different devices. This is useful for a designer who 

has prototyped a network for their application and wants 

to run it efficiently on many different devices with various 

hardware and software constraints. Figure  8 shows how 

EfficientNet-B0 can be compressed into networks that are 

10%  faster than MnasNet [32] on the Samsung S20 GPU. 

In the DONNA compression pipeline, the EfficientNet 

search space splits EfficientNet-B0 into 5 blocks and uses 

it as the reference model. Every replacement block Bn,m  

considered in compression is smaller than the correspond- 

ing reference block. 1135 epochs of training are spent in 

total to build an accuracy predictor: 135 blocks are trained
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using BKD, and 20 architectures are trained for 50 epochs 

as prediction targets, a cost equivalent to the resources 

needed for training 3 networks from scratch. Figure 8 shows 

DONNA finds a set of smaller, Pareto optimal versions of 

EfficientNet-B0 both in the number of operations and on- 

device. These are on-par with MobileNetV3 [12] in the 

number of operations and 10%  faster than MnasNet [32] 

on device. For Samsung S20, the accuracy predictor is cal- 

ibrated, as these models have no SE and Swish in the head 

and stem as in the EfficientNet-B0 reference. 

Similarly, DONNA can be used to optimally compress 

Vision Transformers (ViT [9]), see Appendix C. 

4.2. Object Detection on MSCOCO 

The DONNA architectures transfer to other tasks such as 

object detection on MS COCO [19]. To this end, we use 

the EfficientDet-D0 [34] detection architecture, replacing 

its backbone with networks optimized through the DONNA 

pipeline. For training, we use the hyperparameters given in 

[36]. The EfficientDet-D0 initialization comes from [37]. 

Figure 9 shows the results of multiple of such searches. 

First, we optimize backbones on ImageNet in the Mo- 

bileNetV3 (1.2 ×  ) and DONNA spaces (ours-224), target- 

ting both the number of operations (left) and latency on a 

simulator targeting tensor compute units. In this case, the 

input resolution is fixed to 224 ×  224 . The backbones are 

first finetuned on ImageNet and then transferred to MS- 

COCO. Second, we apply the DONNA pipeline directly 

on the full DONNA-det0 architecture, building an accu- 

racy predictor for MS-COCO. We optimize only the back- 

bone and keep the BiFPN head fixed (Ours-COCO-512). 

In this case, the resulting networks are directly finetuned 

on MS-COCO, following the standard DONNA-flow. For 

OFA [3], we consider two sets of models. The first set 

consists of models optimized for the number of operations 

(FLOP) with varying input resolution coming directly from 

the OFA repository [2]. The second set of models, which 

we identify by ‘OFA-224’, are obtained by us with the same 

tools [2], but with the input resolution fixed to 224 ×  224 . 

This makes the OFA-224 search space the same as our Mo- 

bileNetV3 (1.2 ×  ) up to the layerwise-vs-blockwise distinc-
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Figure 8. Compressing EfficientNet-B0 for two targets.

2.25 2.75 3.25 3.75 4.25
# Operations [B]

33.0

33.5

34.0

34.5

35.0

CO
CO

 v
al

 m
AP

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
# Normalized Latency wrt EfficientDet-D0

33

34

35

36

37

OFA-224 (Scratch Init)
OFA (Scratch Init)
OFA (OFA Init)

Ours-224 (MobileNetV3 1.2x Space)
Ours-224 (DONNA Space)
Ours-COCO-512 (DONNA Space)

ResDet-50
EfficientNet-B0

 

Figure 9. Object detection performance of DONNA backbones, ei- 

ther searched on ImageNet and transferred to COCO (Ours-224), 

or searched directly on MS COCO (Ours-COCO-512). In the 

DONNA search space, our solution has up to 2  .  4%  higher mAP 

at the same latency as the OFA models. 

tion. In the first experiment, we initialize the OFA back- 

bone with weights from progressive shrinking released in 

[2]. In the second experiment, we initialize the OFA back- 

bone with from-scratch trained weights on ImageNet using 

hyperparameters from [37]. After such initialization, the 

networks are transferred to object detection for comparison. 

The comparison of the two experiments shows the benefit of 

OFA-style training is limited after transfer to a downstream 

task (See Fig.  9.) The gap between OFA-style training and 

training from scratch, which is up to 1 .  4%  top-1 on Ima- 

geNet, decreases to 0 .  2%  mAP on COCO, reducing its im- 

portance. We discuss this point further in Appendix B. 

In comparing with DONNA models, we make three key 

observations. First, models transferred after a search using 

DONNA are on-par or better than OFA-224 models for both 

operations and latency. Second, models transferred from 

the DONNA space outperform OFA models up to 2 .  4%  

mAP on the validation set in latency. Third, best results are 

achieved when applying DONNA directly to MS COCO. 

5. Conclusion 

In this work, we present DONNA, a novel approach 

for rapid scenario-aware NAS in diverse search spaces. 

Through the use of a model accuracy predictor, built 

through knowledge distillation, DONNA finds state-of-the- 

art networks for a variety of deployment scenarios: in terms 

of number of parameters and operations, and in terms of 

latency on Samsung S20 and the Nvidia V100 GPU. In Im- 

ageNet classification, architectures found by DONNA are 

20% faster than EfficientNet-B0 and MobileNetV2 on V100 

at similar accuracy and 10% faster with 0.5% higher ac- 

curacy than MobileNetV2-1.4x on a Samsung S20 smart- 

phone. In object detection, DONNA finds networks with up 

to 2 .  4%  higher mAP at the same latency compared to OFA. 

Furthermore, this pipeline can be used for quick search 

space extensions (e.g. adding ShiftNets) and exploration, 

as well as for on-device network compression.
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