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Abstract

Event cameras can report scene movements as an asyn-
chronous stream of data called the events. Unlike tradi-
tional cameras, event cameras have very low latency (mi-
croseconds vs milliseconds) very high dynamic range (140
dB vs 60 dB), and low power consumption, as they report
changes of a scene and not a complete frame. As they re-
port per pixel feature-like events and not the whole inten-
sity frame they are immune to motion blur. However, event
cameras require movement between the scene and camera
to fire events, i.e., they have no output when the scene is
relatively static. Traditional cameras, however, report the
whole frame of pixels at once in fixed intervals but have
lower dynamic range and are prone to motion blur in case
of rapid movements. We get the best from both worlds and
use events and intensity images together in our complemen-
tary design and estimate dense disparity from this combina-
tion. The proposed end-to-end design combines events and
images in a sequential manner and correlates them to esti-
mate dense depth values. Our various experimental settings
in real-world and simulated scenarios exploit the superior-
ity of our method in predicting accurate depth values with
fine details. We further extend our method to extreme cases
of missing the left or right event or stereo pair and also in-
vestigate stereo depth estimation with inconsistent dynamic
ranges or event thresholds on the left and right pairs.

1. Introduction

Stereo depth estimation is inspired from the human
binocular vision. Estimating the depth from two or more
views is one of the long-persisting topics that is tackled in
many ways [24]. Early-stage stereo depth estimation meth-
ods consider matching all the pixels in a pair of stereo im-
ages to estimate the underlying 3D geometry of the scene.
The camera parameters and the stereo setup are mainly
available through calibration, and the task is to triangulate
the matched pairs to recover the disparity or depth [33].
Stereo matching is still challenging because of the ill-posed
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Figure 1. Estimating dense depth using our event-intensity stereo
depth estimation framework. Our end-to-end network can esti-
mate depth from the combination of Event-Intensity Stereo (b),
Intensity-only stereo (c), or Event-only stereo (d) pairs. Using
event-intensity stereo, we can reach higher quality depth in com-
parison to event-only or intensity-only inputs, as it can surpass the
shortcomings of each source while gathering the best from them.

nature of the problem, occlusions, imperfect imaging set-
tings, blurred or low dynamic range images, repetitive pat-
terns, and texture-less regions [24]. Recent methods es-
timate depth using learning-based frameworks without re-
lying on hand-crafted parameters, and can also estimate
metric depth based on the prior knowledge of the network
[4, 5, 20, 41], thanks to the modern GPUs, creative archi-
tectures, and public-available large scale datasets.

In spite of the significant progress, poor lighting condi-
tions and complex materials properties are issues that have
been less studied [24]. Infusing new sensing devices to en-
rich the input media is a direction worth researching. To this
end we investigate in event-intensity cameras as a comple-
mentary source to enrich details captured from the scene.

Event cameras are new vision sensors that report changes
of intensity individually per pixel, and asynchronous to
other pixels, at the time of such changes. The output of
an event camera, the events, are reported as a stream that
varies based on the movement speed and direction of the
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camera and the scene. Event cameras are intrinsically im-
mune to motion blur, thus an ideal candidate for tasks in-
volving rapid movements such as driving scenes. These
cameras cover a much higher dynamic range (HDR) when
compared to traditional intensity cameras, making them ap-
plicable for extreme lighting conditions.

Events are mainly fired at object edges, as intensity
changes usually happen on edges, making event cameras an
ideal tool for estimating sharp depth values on such bound-
aries. However, event cameras do not directly report in-
tensity values, as they only sense the changes in intensity.
Event cameras remain silent when the scene is static, e.g.,
when we stop behind a traffic junction in which parts of the
scene become invisible to an event camera. Other sample
scenarios that contrast the pros and cons of using event or
intensity cameras are presented in Fig. 2.

Considering the pros and cons of traditional and event
cameras, we investigate in finding a way to go beyond the
trade-off between events and images and utilize the bene-
fits of these widely differing sensors at the same time. In
our settings, we use a stereo pair of event-intensity sensors
to estimate depth in different movement and lighting condi-
tions. We propose a network that unifies events and inten-
sity images through a recycling unit and applies deformable
aggregations and multiscale refinements to estimate precise
depth. Our system can work with all combination of avail-
able sensors so it is robust to failures of either modality.

To our knowledge, we are the first to investigate in
the combination of events and intensity images to estimate
dense stereo depth as in Fig. 1. We show the practical ad-
vantages of this combination in estimating depth by con-
trasting with event-only and image-only stereo depth esti-
mation methods on synthetic and real-world datasets.

2. Preliminary
An event camera reports the scene as a tuple of: x and y

locations, timestamp of the change in intensity (t) and sign
of the change (σ) which indicates whether the sensed inten-
sity is higher (positive event) or lower (negative event) than
a predefined intensity threshold (τ ). This stream of asyn-
chronous events can reach near microseconds resolution of
latency making it suitable for fast movement scenes.

As each pixel location of the event stream only holds the
timestamp and sign information, an edge-like representa-
tion is produced when visualizing the event stream in short
periods of time. Unlike ordinary cameras, event cameras
report changes of a scene instead of the whole frame, thus,
they require lower storage, bandwidth, and power. Recent
event sensors report the event stream and intensity image,
the active pixel sensor (APS), on a single device. They share
a common grid-line of pixels for the events and intensity
images, making them free from requiring further transfor-
mations when matching events to the image locations.

(a) Abs. movement (b) No movement (c) Motion blur (d) LDR

Figure 2. Expressing the pros (green) and cons (red) of intensity
cameras (top) and event cameras (bot) on different scenes. Unlike
the intensity camera, the event camera cannot capture scenes when
absolute changes are zero such as two cars moving with the same
speed ((a) Abs. movement), or a car stopped at a junction ((b) No
movement). Unlike the event camera, the intensity camera creates
blurred edges when the camera or objects are moving ((c) Motion
blur), and has a lower dynamic range ((d) LDR). The data belong
to the MVSEC dataset [49] as explained in sec. 5.1.

3. Related Work

3.1. Stereo depth estimation on images

Stereo depth estimation methods can be divided into two
main classes: Traditional stereo-matching techniques, and
learning-based methods.Traditional methods learn how to
correspond pixels in the input images together and estimate
per-pixel disparity, and usually contain modules for feature
extraction, feature matching, cost aggregation, and depth
estimation sequentially [33]. Stereo matching methods, ei-
ther consider global objective optimization such as belief
propagation [37], and graph-cuts [22]; or local correspon-
dence such as the adaptive support-weight approach [42],
and cost-volume filtering [16]. Further refinement modules
[10] can be leveraged to refine the estimated depth using
prior learned knowledge or from new incoming images.

Learning-based approaches perform stereo matching,
cost aggregation, disparity computation and refinements in
an end-to-end fashion without handcrafted parameters by
3D convolutions [25, 20, 4]. Although further accuracy can
be reached by utilizing more 3D convolutions in a pyramid
design [5], recent papers have focused on increasing the
accuracy while consuming less memory. The less compu-
tationally expensive methods use deformable convolutions
[19] as guided or adaptive aggregating layers [43, 41].

3.2. Stereo depth estimation on events

Stereo depth estimation emerged as one of the early ap-
plications of event cameras, as the fired events in each cam-
era can be synchronized and matched in a short amount of
time by their timestamps [35]. Early attempts utilized the
low latency and power consumption of event cameras to
perform fast and efficient stereo matching [21, 32]; where
the matched events followed a triangulation stage in 3D to
estimate the depth. However, imperfect timestamp synchro-
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Figure 3. Architecture overview. The input to our network comes from the left and right stereo event-intensity cameras which are synchro-
nized base on their timestamps. We use the three most recent event stacks preceding the intensity image together with the intensity image
itself as the input to the event-intensity recycling network, that unifies events and images sequentially. Next, the features in each unified
tensor is extracted in multiple pyramid scales. The left and right features are correlated by a multi-scale correlation layer to create the cost
volumes. The cost volumes are given to the aggregation network which utilizes deformable convolutions to regress the disparity in multiple
scales. Finally the intermediate predictions are refined scale-wise until reaching the original input image size using the unified tensor.

nization, real-world noise and different threshold sensitivity
of the camera pairs caused ambiguous matching results.

Later methods improve the accuracy by incorporating
orientation sensitive filters [3], cooperative regularization
[29, 11], and spiking neural networks [28, 6, 1]. Semi-
dense depth by incorporating the camera velocity for event
synchronization was proposed in [48]. Depth estimation
without explicit event matching was introduced in [46]. A
new sequence embedding based on spatio-temporal aggre-
gations was presented in [38]and was the first learning-
based method to estimate dense depth from stereo events.

3.3. Joint Event-Intensity Applications

Recent event sensors report the event stream and inten-
sity images within the same device. We use this already
available source of images to fill in the gaps that the event
camera alone cannot cover. Note that images from separate
event-intensity stereo cameras, such as the DSEC dataset
[12], can also be utilized after proper transformations. The
event-intensity combination is studied previously in feature
detection and tracking for visual SLAM [39], event to image
reconstruction by high-pass filtering [34], super-resolution
from a sequence of event stacks and intensity image [27, 17]
and image enhancement by unifying the low dynamic range
image with an event map [14].

4. Approach: Event-Intensity Stereo
4.1. Event preparation

We start from a pair of rectified tuples of intensity
Il,Ir and event stacks Sl,Sr from an event-intensity stereo

camera pair with the size of W×H . We first transform
the event stream to a machine interpretable representation
called event stack following [40, 27]. Although many other
event representation techniques exists [47, 38], we follow
this simple representation to show that our method produces
good results even with a less complicated stacking method.

We stack the events preceding the intensity frame and
use “stacking based on number” (SBN) [40] to make the
event tensors as shown in the upper left region of Fig. 3.
In this figure, the event stream is also visualized with the
positive (red) and negative events (blue) and the intensity
from APS is located at the end of this stream. The size of
stacked event tensors are W×H×C and are created in a
sequence which ends at the timestamp of the APS frame.
We use N=3, 000 events in each stack for the MVSEC data
which is adjusted linearly to other camera sizes.

We stack by SBN for C = 3 channels, and set the initial
tensor values to 128. By each incoming event, we update
its landing location with 0 (negative events) or 256 (posi-
tive events), while newer events override previous events.
We fill each channel by N/C events in this type of stack-
ing, therefore it is important to choose N and C wisely to
prevent overwriting many events.

4.2. Event-Intensity Recycling

Our event-intensity recycling network is inspired from
the complementary intensity reconstruction methods ex-
plained in Sec. 3.3. We unify the event stacks and inten-
sity images in a recycling network to complementary recon-
struct a blur-free image-like output that has the has high dy-
namic range properties of events and sensed intensity values
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Figure 4. Event-intensity recycling network. We use an image
(APS) frame and a sequence of its preceding event stacks. In the
initial pass, an event stack is used (Event In) together with the
intensity image (Image In) as the inputs. After that we recycle
the inner state of the network (State In) and use the next stack
(Event In) and continue in the same manner with the next stack
and the updated state. The number of recycling cycles depends on
the number of event stacks (e.g. 3).

from the ordinary camera when there is no scene changes.
Our event-intensity recycling network is demonstrated

in details in Fig. 4, which is also presented abstractly as
four sequential arrows in Fig. 3, that actually shows how
data is provided, and how the hidden state is passed to
the next stage. The four sequential arrows are the APS
frame, followed by three stacks. In Fig. 4, we start from
the APS frame (image), e.g., for the left camera, Il0, which
goes to the image input Image In. At the same time,
the most nearby stack to the APS frame that is synchro-
nized by its timestamp, Sl0 (Stack 0), goes to the event in-
put, Event In. This creates the first hidden state Statel0
at StateOut. In the next step, the next stack (Stack 1)
Sl1 goes to the the event input, Event In. At the same
time, instead of any other image, the previous state Statel0
gets recycled and goes to the State In (which was called
Image In in the previous step) and creates state Statel1 at
StateOut. In the last step, the final stack (Stack 2) Sl2

goes to the the event input, Event In, while the previous
state Statel1 gets recycled and goes to the State In and
creates the unified event-intensity output Reconstruction.

The sequence order is not important, e.g., we can first
provide Stack 2, then the next stacks until reaching the APS
frame, however the same order used in training should be
used in inference as the network adapts itself to the se-
quence order. Please note that we do not aim for intensity
reconstruction (Sec. 4.5), and rather unify the events and
APS frames in a manner that can keep distinctive details
from each camera to perform stereo matching. We call the
unified outputs of our recycling network, Ul and Ur.

Our sequential design for unifying the event stacks and
intensity images, the recycling network, is adopted from
e2sri [27, 17]. We unify the events-intensity information

(a) Event stack (b) Reconstruction [31] (c) Event-intensity recycling

(d) APS frame (e) Reconstruction [27] (f) Complementary [27]

Figure 5. Comparing the structural details from event cameras,
normal cameras and reconstruction methods from these inputs.
Our event-intensity recycling method (c) combines the events and
APS frames and shows more structural details in comparison to
the (a) events (d) APS frame (b) event-only reconstruction in [31],
resized event-only reconstruction in [27], (e) and also resized com-
plementary reconstruction in [27] that mostly follows the APS.

of the left and right pair separate to each other, but at the
same time in separate threads. However, unlike e2sri, we
utilize much less trainable parameters (almost ten times
smaller than e2sri) for faster inference. Moreover, our
event-intensity recycling is aimed for same-size reconstruc-
tion directly without any super-resolving components.

We do not aim for event only image reconstruction as
events alone (top left) may miss static scene details. Fur-
thermore, unlike the training scheme of e2sri, we do di-
rectly utilize clear intensity frames in training and further
use blurred intensity images with altered dynamic ranges
to dynamically unify the event and intensity images. We
do this so that the network learns to reconstruct structural
details from both events and images, even if such detail is
completely missing, partially available or imperfect in one
of the inputs.

We compare our results to e2sri visually in Fig. 5 and
show event-intensity recycling method can create HDR de-
tails that the APS frame cannot capture. This sample is a
night driving scene of a car when stopping at a junction.
Unlike the event camera, the rear stop lights are not cap-
tured as the APS frame has limited dynamic range. How-
ever, the event camera also misses some parts as the car is
stopping and overall scene-camera movement is not avail-
able to trigger the event camera. We visually compare to the
event-to-image reconstruction method e2vid [31] and e2sri
[27]. Both of the event-only reconstruction methods did not
capture parts of the car and its surrounding area shown in
the yellow region. The complementary method proposed in
e2sri also creates white regions around the lights as it fol-
lows the APS frame in reconstruction. However, our event-
intensity recycling method can unify details captured from
the event camera and intensity camera adaptively and ex-
hibits further scene details.
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4.3. Deformable Aggregation

The feature extraction and cost volume creations are
adopted from the well-designed depth estimation networks.
Our feature extractor follows the Res-Net architecture [15],
and we utilize feature pyramids [5] to create our cost vol-
umes through feature correlation [7] instead of concatena-
tion. Once we have our cost volumes, we can aggregate
them using intra-scale and cross-scale aggregation modules,
inspired from [41], for our three pyramid levels.

As explained in Sec. 2, event cameras mainly sense
edges while missing other details, and intensity cameras
sense multiple areas of the scene, while edge details may
be missed as a result of lower dynamic range, occlusions or
motion blur. Thus, we utilize deformable convolutions as
they aim to go further than the fixed geometric structures
of ordinary convolutional networks, and learn dense spatial
transformations with additional offsets [19]. We utilizes de-
formable convolutions to adaptively aggregate the cost vol-
umes using local and global aggregations[43]. We also uti-
lize intra-scale aggregations [41], as higher-quality results
can be obtained on object boundaries and thin structures.

Another fact that encourages us to utilize this design is
that all edges are not sensed at once in an event camera, and
it depends on the direction of movement between the event
camera and the scene. Thus, discontinuities on the location
of such edges may appear in the event stack. Downsampling
the event stack can help connect this kind of gap on the
edges. In stereo-depth estimation, cross-scale aggregation,
aims for searching the correspondence in the downsampled
images as low-texture or textureless regions will be more
discriminative at a coarse scale [44].

4.4. Disparity Estimation

Our last stage utilizes stereo depth refinement modules
[4] to upsample lower scales to higher intermediate scales
and then to our final output scale in our framework. We use
the left and right unified event-intensity images (Ul andUr),
that are presented in Fig. 3 by the dash-lines between our
event-intensity recycling stage, and the refinement stage.
We utilize soft argmin disparity estimation [20], to regress
the per-pixel disparity from the final cost volume.

4.5. Learning objectives

We train our fully supervised model end-to-end and start
from a random initialization. As the unified event-intensity
reconstruction quality affects our depth results, we train our
network for the first few epochs using an “image reconstruc-
tion loss” to encourage the network to create high-quality
image-like tensors as side results presented in Fig. 5. How-
ever, as our final intention is to estimate depth we do not
actually need our network to reconstruct images, therefore,
we stop utilizing the image reconstruction loss mid way and
only use the end-point-error (EPE) as or main loss.

End-point-error. We use the L1 loss also known as the
EPE [10], i.e., the mean disparity error in pixels between
the ground-truth (GT) disparity dv and estimated disparity
of our model d̂v for pixel v among the V valid pixels of the
depth. The L1 loss is more robust at disparity discontinu-
ities and is less sensitive to outliers, in comparison to L2.

LEPE(dv, d̂v) =
1

V

V∑
v=0

|dv − d̂v| (1)

Image reconstruction loss. For intermediate image re-
construction (first few starting epochs), we utilize both the
L1 loss and the learned perceptual similarity loss (LPIPS)
[45]. It has been shown thoroughly that the combination of
these two loss functions can create artifact-free reconstruc-
tions with sharp structural details [27, 26]. For LPIPS, we
use the AlexNet variant [23] following [27, 36, 17].

Our final loss (L) is created by combining all the losses.
Where E is the epoch number in which we stop using the
image reconstruction loss and only continue training with
the EPE, and λ1 and λ2 are the weighting factors.

L=

{
LEPE + λ1LLPIPS + λ2LL1 , epoch < E

LEPE , epoch ≥ E
(2)

5. Experiments and Analysis
5.1. Datasets

We use two main datasets divided based on their ori-
gin of being from real-world cameras or simulated cameras.
Our source to real-world events are the multi-vehicle stereo
event camera dataset or MVSEC [49] and the stereo event
camera dataset for driving scenarios (DSEC) [12]. For sim-
ulated data we generated a new dataset named ECAR.

MVSEC has two DAVIS [2] cameras that are placed in
a stereo setting which provide the image frames and event
streams. The sensing devices are mounted on multiple vehi-
cles in various daytime and night lighting scenes and covers
both car movements and stopping scenarios. The GT depth
information in this dataset similar to many other Lidar data,
does not always align with the image or event readings as it
does not cover depth higher or lower than a specific eleva-
tion. Moreover some depth values of previous moving cars
sometimes remains in the current GT frame.

DSEC, a recent large-scale outdoor stereo event cam-
era dataset, changes the assumption of accurate pixel corre-
spondence and presents a new combination that events and
images are from two different camera pairs with different
resolutions and baselines (distance between the two cam-
eras). The event camera itself also has a baseline with the
intensity camera, but all cameras are on the same height.
DSEC covers a larger variety of illumination conditions, its
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(a) Rainy country (b) Sunny city (c) Dark tunnel (d) Night city

Figure 6. ECAR dataset. Intensity and events generated under var-
ious daytime, weather, city structures, and added noise conditions.

training splits are clear and the GT evaluation depth is with-
held at their submission website that reports the evaluations.
As the calibration parameters and rectified images are pro-
vided, we warp the images to the event locations.

ECAR is generated utilizing two open-source simulators,
the CARLA simulator [8] in which we simulate many dif-
ferent driving scenarios and generate stereo intensity and
depth pairs as videos, and the event camera simulator or
ESIM [30] in which by giving a sequence of highly corre-
lated videos event sequences are generated. This way we
can generate stereo events and images together with the
GT depth. The naming is the combination of ESIM and
CARLA as ECAR. We used multiple lighting, weather, traf-
fic, road and town settings in CARLA combined with differ-
ent camera threshold settings in ESIM, as presented in Fig.
6. We cover most of the variations available in real-world
cameras at simulation, to minimize the differences to real-
world scenes as suggested in multiple places [31, 27, 36].

The ECAR dataset covers five large-size CARLA towns
with almost 7, 000 pairs of APS images per town. We grad-
ually changed the weather and daylight, so that each town
includes all of the randomly chosen changes. The simu-
lated car in ECAR, stopped when approaching other cars,
pedestrians and stop lights, that prevented continuous event
generation. Thus, we programmed the traffic lights to be
green once the car holding the cameras reached a junction,
and removed all other cars and pedestrians from the simu-
lation. Although we utilized ESIM and CARLA separately,
a recent plugin [18] includes event simulation in CARLA.

5.2. Experimental Setup

We initialize our network with random values, and train
from scratch end-to-end. We set λ1, λ2 in Eq. 2 all to 1,
and train our network for 64 epochs using 8 batches, in
which the image reconstruction loss is used for the first 20
epochs for simulated data. The event-only stereo method
(ES) and intensity-only stereo method (IS) share the same
design with event-intensity stereo method (EIS) explained
in Sec. 4. However, ES receives an extra event stack in-
stead of the image frame of EIS, and IS receives extra inten-
sity frames from a sequence of images instead of the event
stacks in EIS. The extra event stack or intensity image is

Table 1. Performance evaluation using dense ground truth on the
MVSEC [49] and ECAR dataset. Our event-intensity stereo (EIS)
method estimates dense depth with higher quality in comparison
to event-only stereo (ES), and intensity-only stereo (IS) depth es-
timation methods using the data split and protocols in [38].

Mean depth error [cm] One pixel error [%]

Split ES IS EIS ES IS EIS

MVSEC Split 1 13.27 14.12 13.74 80.6 71.7 89.0
MVSEC Split 2 25.18 23.24 18.43 73.0 67.3 85.2
MVSEC Split 3 25.72 23.78 22.36 68.3 53.8 88.1

ECAR 22.3 18.7 11.8 67.7 79.5 81.7

Table 2. Comparing our EIS and ES methods to the events-
only state-of-the-art dense depth estimation method [38] using the
DSEC [12] dataset. Both of our methods outperform the base-
line, while EIS improved the baseline considerably and ranked first
among all submissions of the competition hosted by the CVPR
2021 workshop on event-based vision [9] as described in Sec. 5.3.

MAE 1PE 2PE RMSE

Events-only Baseline [38] 0.576 10.915 2.905 1.386
Event Stereo ES 0.529 9.958 2.645 1.222

Event-Intensity Stereo EIS 0.396 5.814 1.055 0.905

from the beginning of the sequence of stacks or images, thus
all methods use past and present data i.e. they are causal.

5.3. Quantitative and Qualitative Analysis

We utilize the real-world and simulated datasets in
Sec. 5.1 (MVSEC, DSEC and ECAR), for the qualitative
and quantitative analysis. On the MVSEC dataset, we adopt
the same training and validation protocols including the
maximum disparity and data splits (MVSEC split 1-3) fol-
lowing the state-of-the-art dense stereo event depth estima-
tion [38] to perform a comparison between the different
combinations. We qualitatively compare the results using
the mean depth error and one pixel error (1PE), the percent-
age of ground truth pixels with disparity error less than one
pixel, both computed on the full dense GT disparity values.

We report the results that obtain the lowest end-point-
error from the validation set in Table 1. Note that in this
setting, our method reaches near 10 FPS inference time us-
ing an NVIDIA RTX 2080 Ti GPU, which can be faster
with the trade-off of slightly reducing the performance by
variants. Our EIS method, outperforms ES and IS on both
mean depth error and 1PE on most of the data splits.

The ECAR dataset covers a variety of lighting condi-
tions, however, split 1-3 [38] of the MVSEC dataset only
covers the indoor flying scenes with acceptable scene il-
lumination. As these sequences are captured without di-
verse dynamic range effects, IS usually has less error in
comparison to ES. However in MVSEC split 1, ES showed
lower MDE than EIS. We visually investigated that unlike
its test set, the training sequences in split 1 have a lower
flying height, and the flying movements in it are uniform
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(a) Intensity Image (APS) (b) Event stack (c) GT depth (d) Event-Intensity Stereo (EIS) (e) Intensity-only Stereo (IS) (f) Event-only Stereo (ES)

Figure 7. Quantitative comparison among different stereo methods based on their input sources. Our Event-Intensity Stereo (EIS) method
(d), utilizes the Intensity (a) and event stacks (b) to estimate more accurate detailed depth in comparison to Intensity-only Stereo (IS) (e),
or Event-only Stereo (ES) (f), methods. Data are from the real-world MVSEC [49] and simulated ECAR dataset (last row only).

(a) Intensity Image (b) Event Stack (c) Events-only [38] (d) EIS (ours)

Figure 8. Qualitative comparison with the events-only baseline
[38] from the DSEC [12] dataset. Although the GT is not pub-
licly available, by referring to the intensity image and events, we
can observe that our EI-Stereo creates more detailed depth values.

without sudden changes. Our network can’t generalize well
without exploring such samples at training. Furthermore, as
split 1 is smaller, errors cannot be normalized over the split.
Such disagreements don’t exist when using large-scale and
diverse datasets such as DSEC, thus comparisons to state-
of-the-arts are generally fairer and more reliable on DSEC.

On the DSEC dataset presented in Table 2, we further
report the two pixel error, Root mean square error (RMSE)
and mean absolute error (MAE) of the disparity. Our EIS

estimates stereo depth with much less errors on all met-
rics in comparison to the state-of-the-art events-only dense
stereo depth estimation method [38], presented as the base-
line of the DSEC challenge [12]. As the dataset is large-
scale and evaluations are automatically generated without
presenting the GT to the public, the comparisons on DSEC
website are fair and reliable.

Our EIS method outperformed the baseline with a large
gap, and also ranked first among all submissions, on all se-
quence, and in average, over all the metrics of the DSEC
challenge at CVPR 2021 workshop on event-based vi-
sion [9]. As presented in Table 2, our events-only method
ES also outperforms the baseline. Please refer to the DSEC
challenge website [9] for more comparisons and detailed
evaluations on individual sequences.

We qualitatively present our results and their input APS
frames and event stacks for reference. For MVSEC and
ECAR datasets we further show the GT depth for refer-
ence. In Fig. 7, Quantitatively, our EIS method shows fur-
ther details in comparison to IS and ES which follows the
results reported in Table 1. In Fig. 8, EIS shows reconstruc-
tions on parts that the baseline [38] misses when consid-
ering the events and APS to infer the GT as it is not pub-
licly available. Note that the MVSEC results in Fig. 7 may
look slightly smoothed. This gap performance comes form
the limited allocated data in the MVSEC dataset splits, that
prevents our network from generalizing. However, such gap
does not exist in the DSEC results in Fig. 8. For the MVSEC
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Table 3. Stereo depth with missing data. By training our method
with missing modalities we can estimate depth even when the in-
put event stack or intensity image is missing from a stereo pair.

Train Test MDE 1PE

Normal Full modality 10.6 85.5
Normal No left event stack 87.5 8.1
Normal No left APS frame 91.7 11.3
Missing Full modality 16.8 84.9
Missing No left event stack 17.9 82.2
Missing No left APS frame 20.3 76.5

(a) Event stack (b) Intensity image (APS) (c) GT depth

(f) Missing Events (e) Missing intensity frame (d) Missing none

Figure 9. Stereo depth with missing data following Table 3.

night sequences and ECAR data, we follow the MVSEC fly-
ing data split trend of [38] and create our data split.

5.4. Ablation study

We ablate the different network components by remov-
ing each block from the full network (FN) design and evlu-
ate it using a subset of ECAR. In Table 4, each sub-network
effectively improves the performance meaningfully.

Table 4. Ablating the effect network components on the depth.
Network MDE 1PE

Full network (FN) 8.3 78.6
FN - {Feature pyramid net.} 37.8 64.1

FN - {Deformable aggregation net.} 23.4 70.3
FN - {Multi-scale refinement} 13.8 67.2

5.5. Extensions

Stereo Depth with Missing Data. Although we utilize
four complementary event and intensity resources, in real-
world applications, technical sensor fault or malfunctioning
can prevent a source from reporting outputs and reduces the
system reliability. As an example, in the outdoor day se-
quence of MVSEC, one camera pair suddenly stops report-
ing the intensity frame, making intensity-only stereo impos-
sible. As an extension we utilize the combination of an
event-intensity cameras with a missing resource (a single
event or intensity pair) and show how EIS recovers depth
under a variety of faulty settings in Fig. 9 and Table 3.

Stereo Depth with Inconsistent Left-Right pairs. Color
consistency is the basic assumption in stereo matching.
However, there is no guarantee that the stereo pairs share the

Table 5. Stereo depth estimation under inconsistent light settings.
Event-intensity (EIS) depth estimation has less error under incon-
sistent light settings in comparison to intensity-only stereo (IS).

Train and Test MDE 1PE Train and Test MDE 1PE

Consistent IS 17.3 79.5 Consistent EIS 10.6 85.5
Inconsistent IS 69.0 57.2 Inconsistent EIS 32.0 65.7

(a) Right intensity frame (APS) (b) Left intensity frame (APS) (c) GT depth

(d) Event stereo (e) Intensity stereo (f) Event-Intensity stereo

Figure 10. Inconsistent left-right stereo pairs following Table 5.

same event threshold (events), or the exact same dynamic
range (intensity). We extend our method to the extreme case
of inconsistent left and right intensity pairs with different
dynamic ranges or different event thresholds, and show that
our method can estimate acceptably accurate depth values
in Fig. 10 and Table 5.

6. Conclusion

We present an end-to-end network capable of predicting
dense depth from a stereo tuple of event and intensity cam-
eras within a single framework. We unify events and images
for stereo matching and perform deformable aggregations to
exploit the benefits of our event-intensity stereo framework,
and benchmark it to event-only and image-only solutions.
We evaluate on real-world and simulated data and show the
superiority of event-intensity stereo depth estimation. We
further extend the reliability and robustness of our method
to stereo depth estimation with missing data, and stereo
depth estimation with inconsistent left-right pairs. Reaching
a faster and fully asynchronous design using spiking neural
networks [13], remains as our future direction.
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