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Abstract

Non-local self-similarity in natural images has been ver-
ified to be an effective prior for image restoration. However,
most existing deep non-local methods assign a fixed number
of neighbors for each query item, neglecting the dynamics
of non-local correlations. Moreover, the non-local correla-
tions are usually based on pixels, prone to be biased due to
image degradation. To rectify these weaknesses, in this pa-
per, we propose a dynamic attentive graph learning model
(DAGL) to explore the dynamic non-local property on patch
level for image restoration. Specifically, we propose an im-
proved graph model to perform patch-wise graph convo-
lution with a dynamic and adaptive number of neighbors
for each node. In this way, image content can adaptively
balance over-smooth and over-sharp artifacts through the
number of its connected neighbors, and the patch-wise non-
local correlations can enhance the message passing pro-
cess. Experimental results on various image restoration
tasks: synthetic image denoising, real image denoising, im-
age demosaicing, and compression artifact reduction show
that our DAGL can produce state-of-the-art results with
superior accuracy and visual quality. The source code is
available at https://github.com/jianzhangcs/DAGL.

1. Introduction

Image restoration (IR) is typically an ill-posed inverse
problem aiming to restore a high-quality image (IHQ)
from its degraded measurement (ILQ) corrupted by vari-
ous degradation factors. The degradation process can be
defined as ILQ = HIHQ + n, where H is a linear degra-
dation matrix, and n represents additive noise [48, 55]. Ac-
cording to H, IR can be categorized into many subtasks,
e.g., denoising, compression artifact reduction, demosaic-
ing, super-resolution, compressive sensing [49, 53, 54, 46].

The rise of deep learning has greatly facilitated the de-
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velopment of image restoration. Many deep learning-based
methods [49, 50, 51, 33] have been proposed to solve this
ill-posed problem. Despite the remarkable success, most
methods focus on learning from a lot of external training
data without fully utilizing the internal prior in images.
By contrast, many classic model-based methods are imple-
mented based on various priors, e.g., total variation [26],
sparse representation [9, 10, 47], and self-similarity [4, 7].
The self-similarity assumes that similar content would re-
cur across the whole image, and the local content can be
recovered with the help of similar items from other places.
Inspired by [4], non-local neural networks [40] utilized self-
similarity via deep networks, which are subsequently in-
troduced to many image restoration tasks [20, 52]. How-
ever, these pixel-wise non-local methods are easily influ-
enced by noisy signals within corrupted images. [18, 19]
were proposed to establish long-range correlations on patch
level. Nevertheless, the patch matching step is isolated
from the training process. In N3Net [29], a differentiable
K-Nearest Neighbor (KNN) method was proposed. How-
ever, restricted by the high complexity of channel-wise fea-
ture fusion, N3Net can only perform the non-local opera-
tion within a small search region (10 × 10) and a small
number of matching patches. Some very recent meth-
ods [24, 23, 5] proposed more efficient patch-wise non-local
methods. But they followed the same paradigm as existing
non-local methods to construct fully connected correlations.

In general, the repeatability of different image content
is distinct, causing different requirements of non-local cor-
relations in restoring different image content. An early
work [56] has well studied this property, finding that smooth
image contents recur much more frequently than complex
image details, and they should be treated differently.

Graph convolutional network (GCN) is a special non-
local method designed to process the graph data by es-
tablishing long-range correlations in non-Euclidean space.
However, the large domain gap limits the application of this
flexible non-local method in computer vision community.
Recently, few works [36, 35, 21] proposed to apply GCN to
image restoration tasks. Specifically, [36] and [35] are built
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based on Edge-Conditioned Convolution (ECC) [32] for im-
age denoising. However, they constructed the long-range
correlations based on pixels and assigned a fixed number of
neighbors for each graph node. In [21], a patch-wise GCN
method is proposed for facial expression restoration. Nev-
ertheless, the adjacency matrix is predefined based on the
facial structure and isolated from the training process. In
addition to ECC, graph attention network (GAT) [38] is a
popular graph model combined with attention mechanism
to identify the importance of different neighboring nodes.

Inspired by GAT, in this paper, we propose a novel dy-
namic attentive graph learning model (DAGL) for image
restoration. In our proposed DAGL, the corrupted image
is recovered in an image-specific and adaptive graph con-
structed based on local feature patches.

2. Related Works
Our model is closely related to image restoration algo-

rithms, non-local attention methods, and graph convolu-
tional networks. Since in what follows, we give a brief re-
view of these aspects and some most relevant methods.

2.1. Image Restoration Architectures

Driven by the success of deep learning, almost all re-
cent top-performing image restoration methods are imple-
mented based on deep networks. Stacking convolutional
layers is the most well-known CNN-based strategy. Dong et
al. proposed ARCNN [8] for image restoration with several
stacked convolutional layers. Subsequently, [49, 51, 50] uti-
lized deeper convolutional architecture and residual learn-
ing to further enhance image restoration performance. Re-
cently, abundant novel models and function units were pro-
posed. MemNet [33] utilized the dense connection in con-
volutional layers for image denoising. To enlarge the re-
ceptive field, hourglass-shaped architecture [14, 43, 3, 44,
17, 30], dilated convolution [50, 39], and very deep residual
networks [53, 52] are often used. However, most methods
are plain networks and neglect to use non-local information.

2.2. Non-local Prior for Image Restoration

Non-local self-similarity is an effective prior that has
been widely used in image restoration tasks. Some clas-
sic methods [7, 4] utilized self-similarity for image denois-
ing and achieved attractive performance. Following the im-
portance of self-similarity, some recent approaches [52, 20]
utilized this prior based on non-local neural networks [40].
Moreover, some patch-wise non-local methods [18, 19, 29]
or transformer-based methods [5, 24] were proposed. These
methods performed matching and aggregation in a non-
local manner can be generally defined as:

x̂i =
1

zi

∑
j∈Q

ϕ(yi,yj)G(yj),∀i, (1)

where Q refers to the search region, and zi represents the
normalizing constant calculated by zi =

∑
j∈Q ϕ(yi,yj).

The function ϕ computes pair-wise affinity between query
item yi and key item yj . G is a feature transformation
function that generates a new representation of yj . While
the above operation aggregates adequate information for the
query item, the feature aggregation is restricted to be fully
connected, involving all features within the search region,
no matter how similar they are to the query item.

2.3. Graph Convolutional Networks (GCN)

By extending convolutional neural networks (CNN)
from grid data, such as images and videos, to graph-
structured data, GCN has been attracting growing atten-
tion from the computer vision community due to its ro-
bust capacity of non-local feature aggregation. Not that
without loss of generality, the commonly used non-local
neural networks [40] can be viewed as a fully connected
graph [12]. Recently, [21] utilized the predefined adjacency
matrix to perform graph convolution for facial expression
restoration. [36, 35] applied Edge-Conditioned Convolution
(ECC) [32], a well-known GCN method, to image denois-
ing task. [27] further extended ECC to 3D denoising tasks.
Let us consider a graph that contains N nodes: G = (V, E),
where V is the set of graph nodes, and E is the set of edges.
Let vi ∈ Rl1 denote a graph node and eij = (vi,vj) ∈ E
denote an edge pointing from vj to vi. In ECC, there ex-
ists a shared filter-generating network F : Rs 7→ Rl2×l1 .
Given an edge label eij ∈ Rs, it outputs an edge-specific
embedding matrix Θij ∈ Rl2×l1 . The aggregation process
of ECC is an averaging operation embedded by the edge-
specific embedding matrix, which can be formalized as:

v̂i =
1

|Ni|
∑
j∈Ni

F(eij)vj+b =
1

|Ni|
∑
j∈Ni

Θijvj+b, (2)

where Ni = {j|(vi,vj) ∈ E} is the set of indexes of neigh-
boring nodes of vi, and b ∈ Rl2 is a learnable bias. Apart
from ECC, graph attention network (GAT) [38] is also a
popular GCN method, and our proposed DAGL is inspired
by this method. Unlike ECC generating an embedding ma-
trix through the edge label to perform embedding and aver-
aging aggregation, GAT developed an attention weight for
each edge based on the self-attention mechanism [37]. In
this way, each node can aggregate the information selec-
tively from all its connected neighbors. The calculation of
the attention weight is defined as:

αij =
exp(LeakyReLU(aT [Wvi||Wvj ]))∑

k∈Ni
exp(LeakyReLU(aT [Wvi||Wvk]))

,

(3)
where W ∈ Rl2×l1 and a ∈ R2l2×1 refer to the learn-
able weight matrixes of shared linear transformations, and
|| represents the concatenating operation. In the process of
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Figure 1. Proposed dynamic attentive graph learning model (DAGL). The feature extraction module (FEM) employs residual blocks to ex-
tract deep features. The graph-based feature aggregation module (GFAM) constructs a graph with dynamic connections and performs patch-
wise graph convolution. GFAM with multiple-heads (M-GFAM) jointly aggregates information from different representation subspaces.

aggregation, the source node will be updated through the
sum of all its connected neighbors weighted by the learn-
able attention weights:

v̂i =
∑
j∈Ni

αij ·Wvj . (4)

Different from most GCN methods directly processing
graph data, the main challenge of applying GCN to the
image restoration community is how to construct a graph
and perform graph convolution on regular grid data effec-
tively. In this paper, we propose an improved graph atten-
tion model to perform patch-wise graph convolution with
dynamic graph connections for image restoration. The pro-
posed method achieves state-of-the-art performance on var-
ious image restoration tasks.

3. Proposed Method
3.1. Framework

An overview of our proposed model (DAGL) is shown
in Fig. 1, mainly composed of two components: feature
extraction module (FEM) and graph-based feature aggrega-
tion module (GFAM) with multiple heads (M-GFAM). Sim-
ilar to many image restoration networks, we add a global
pathway from the input to the final output, which encour-
ages the network to bypass low-frequency information. The
feature extraction module comprises several residual blocks
(RBs), and we follow the strategy in [52] to remove batch
normalization [16] layers from residual blocks. The graph-
based feature aggregation module is the core of our pro-
posed DAGL, which is implemented based on graph atten-
tion networks (GAT) [38]. More details about GFAM will
be given in the following subsection.

Our proposed model is optimized with the L2 loss func-
tion. Given a training set {IbHQ, I

b
LQ}Bb=1, which contains

B training pairs. The goal of the training can be defined as:

L(θ) = 1

B

B∑
b=1

∥∥IbHQ −H(IbLQ)
∥∥2
2
, (5)

where H refers to the function of our proposed DAGL, and
θ refers to the learnable parameters.

3.2. Graph-based Feature Aggregation Module

As mentioned previously, existing deep non-local meth-
ods and graph-based image restoration methods assigned a
fixed number of neighbors for each query/node. The main
difference is that deep non-local methods involve all items
in the search region to update one query item, and the graph-
based methods selectK nearest neighbors for each node. In
this subsection, we will present our proposed graph-based
feature aggregation module (GFAM), a dynamic solution to
break this set pattern. Our GFAM constructs the long-range
correlations based on 3D feature patches and assigns a dy-
namic number of neighbors for each query patch. The de-
tailed illustration of our proposed GFAM is shown in Fig. 2,
which is mainly composed of three phases: initialization,
dynamic graph construction, and feature aggregation.

Initialization. In our GFAM, we first need to initialize
some elements for constructing a graph G = (V, E) on reg-
ular grid data, where V is the set of nodes with |V| = N and
E ⊆ V×V is the set of edges. AssumingN overlapped fea-
ture patches {pi}Ni=1 with the patch size beingC×Wp×Hp

(C × 7× 7 by default), neatly arranged in the input feature
map Fin ∈ RC×W×H . We apply two 1 × 1 convolutional
layers (fedge and fnode) to transform Fin to two indepen-
dent representations and then utilize the unfold operation
to extract the transformed feature patches into two groups:
G′ = {p′

i}Ni=1 and G′′ = {p′′
i }Ni=1. The feature patches in

G′ and G′′ have the following feature representations:{
p′
i = fedge(pi)

p′′
i = fnode(pi).

(6)

G′ is used to build graph connections (E), and G′′ is as-
signed as the graph nodes.

Dynamic Graph Construction. The graph nodes in
our method are directly assigned by feature patches in G′′:
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Figure 2. Detailed illustration of the proposed graph-based feature aggregation module (GFAM). The subfigure (a) elaborates the unfold and
fold operations. The subfigure (b) presents the detailed architecture of the dynamic KNN module, which is used to generate a node-specific
threshold to filter out graph connections with low importance.

V = G′′. In establishing graph connections, we select a dy-
namic number of neighbors for each node based on the near-
est principle. For this purpose, we design a dynamic KNN
module to generate an adaptive threshold for each node to
select neighbors whose similarities are above the threshold.
Specifically, given the set of feature patchesG′, we first flat-
ten each feature patch into a feature vector. The pair-wise
similarities can be efficiently calculated by dot product, pro-
ducing a similarity matrix M ∈ RN×N . Let us consider
Mi,:, the i-th row of M, representing similarities between
the i-th node and the other nodes. The average of Mi,: is
the fairly average importance of different nodes to the i-th
node. Thus, it is an appropriate choice for the threshold,
represented as Ti. As illustrated in Fig. 2(b), to improve the
adaptability, we further apply a node-specific affine trans-
formation to compute Ti:

Ti =
ψ1(p

′
i)

N

N∑
k=1

Mi,k +ψ2(p
′
i) =

γ

N

N∑
k=1

Mi,k +β, (7)

where ψ1 and ψ2 are two independent convolutional lay-
ers with the kernel size being C × 1×Wp ×Hp to embed
each node to specific affine transformation parameters (β,
γ). To achieve a differentiable threshold truncation, we uti-
lize ReLU [25] function to truncate the negative part and
keep the positive part. This process is formalized as:

Ai,: = ReLU(Mi,: − Ti), (8)

where A ∈ RN×N is the adjacency matrix in which Aij is
assigned the similarity weight if p′

j connects to p′
i, other-

wise equal to zero. Next, following the definition in Eq. 3,

we normalize the similarity of all connected nodes (non-
zero values in Ai,:) by the softmax function to calculate the
attention weights:

αij =
exp(Aij)∑

k∈Ni
exp(Aik)

, j ∈ Ni. (9)

Feature aggregation. Guided by the adjacency matrix
A, the feature aggregation process is a weighted sum of all
connected neighbors, which is represented as:

p̂i =
∑
j∈Ni

αij · p′′
j =

∑
j∈Ni

αij · fnode(pj). (10)

Then we extract all feature patches from the graph and uti-
lize the fold operation to combine this array of updated lo-
cal patches into a feature map, which can be viewed as the
inverse of the unfold operation. Since there exist overlaps
between feature patches, we use the average operation to
deal with the overlapped areas. This strategy can also sup-
press the blocking effect in the final output. A global resid-
ual connection is employed in GFAM to further enhance the
output. Thus, the output of GFAM is expressed as:

Fout = Fin + Fold({p̂i}Ni=1). (11)

To stabilize the training process of graph convolution,
we extend our method to employ a multi-head graph to be
beneficial, represented as M-GFAM in Fig. 1. The multi-
heads design allows our method to jointly aggregate infor-
mation from different representation subspaces at different
positions. Specifically, K independent heads execute the
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Query patch in
high-quality label

Similarity matrix adjacency matrix Graph connection
samples

Query patch in
high-quality label

Similarity matrix adjacency matrix Graph connection
samples

Figure 3. Visualization of construction of graph connections. The regions of query patches are labeled with red boxes. The similarity
matrixes and adjacency matrixes are presented in the form of heat maps. The lighter color indicates higher similarity/importance. For
illustration purpose, we present some highly correlated neighbors (labeled with green boxes). One can see that our method can capture
satisfied long-range correlations in highly degraded images, and the adjacency matrix accurately filters out low-important correlations.

Figure 4. Visualization of the number of neighbors in different lo-
cations. The results are normalized and presented in the form of
heat maps. The lighter color indicates a larger number of neigh-
bors. One can see that the number of neighbors changes with the
frequency of image content, demonstrating that our dynamic graph
method can assign neighboring nodes according to demand.

graph-based feature aggregation. Their results are concate-
nated together and once again projected by a 1 × 1 convo-
lutional layer (fmerge). Let us denote Fk

out as the output of
the k-th head. The final output of M-GFAM can be calcu-

lated as FMH
out = fmerge(

K

||
k=1

Fk
out).

3.3. Analyze and Discussion

As mentioned previously, our improved graph model can
construct robust long-range correlations based on feature
patches, and the number of neighbors dynamically changes
with different nodes. In this subsection, we use the visual-
ization results in Fig. 3, 4 to demonstrate these merits.

Robust long-range correlations. In Fig. 3, we show the
construction of graph connections of some query patches.
The location of each query patch is labeled with a red box.
For illustration purpose, we only present a limited number
of neighbors (labeled with green boxes) with the highest at-
tention weights. One can see that even the images are highly

corrupted, our patch-wise graph method can still capture
satisfied long-range correlations, and the adjacency matrix
accurately filters out correlations with low importance.

Dynamic graph connections. Fig. 4 presents the nor-
malized number of neighbors of each query patch at differ-
ent locations. One can see that the number of neighbors
follows distinct distributions over the frequency of image
content, demonstrating that our dynamic graph method can
adaptively select informative regions to aggregate the most
useful information for each query patch.

4. Experiments
To demonstrate the superiority of our proposed model,

we apply our method to four typical image restoration tasks:
synthetic image denoising, real image denoising, image de-
mosaicing, and image compression artifacts reduction. For
synthetic image denoising, image demosaicing, and image
compression artifacts reduction tasks, we train our DAGL
on DIV2K [34] dataset, which contains 800 high-quality
images. For real image denoising, we apply the commonly
used SIDD [1] dataset as the training data, which contains
160 images corrupted by realistic noise and corresponding
high-quality labels. In each task, we utilize commonly used
test sets for evaluation and report PSNR and SSIM [41]
to evaluate the performance of each method. Our model
is trained on an Nvidia Tesla V100 GPU with the initial
learning rate lr = 1 × 10−4 and performs halving per 200
epochs. During training, we employ Adam optimizer, and
each mini-batch contains 32 images with the size of 64×64
randomly cropped from training data. The training process
can be completed within two days.

4.1. Synthetic Image Denoising

We compare our proposed model with some state-of-the-
art denoising methods, including some well-known denois-
ers, e.g., BM3D [7], DnCNN [49], and FFDNet [51], and
recent competitive non-local denoisers such as N3Net [29]
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Table 1. Quantitative results (PSNR and SSIM) of gray-scale image denoising. Best and second-best results are highlighted and underlined.
Dataset σ BM3D [7] DnCNN [49] FFDNet [51] N3Net [29] NLRN [20] GCDN [36] DAGL (Ours)

Set12

15 32.37/0.8952 32.86/0.9031 32.75/0.9027 33.03/0.9056 33.16/0.9070 33.14/0.9072 33.28/0.9100
25 29.96/0.8504 30.44/0.8622 30.43/0.8634 30.55/0.8648 30.80/0.8689 30.78/0.8687 30.93/0.8720
50 26.70/0.7676 27.19/0.7829 27.31/0.7903 27.43/0.7948 27.64/0.7980 27.60/0.7957 27.81/0.8042

BSD68

15 31.07/0.8717 31.73/0.8907 31.63/0.8902 31.78/0.8927 31.88/0.8932 31.83/0.8933 31.93/0.8953
25 28.57/0.8013 29.23/0.8278 29.19/0.8289 29.30/0.8321 29.41/0.8331 29.35/0.8332 29.46/0.8366
50 25.62/0.6864 26.23/0.7189 26.29/0.7345 26.39/0.7293 26.47/0.7298 26.38/0.7389 26.51/0.7334

Urban100

15 32.35/0.9220 32.68/0.9255 32.43/0.9273 33.08/0.9333 33.45/0.9354 33.47/0.9358 33.79/0.9393
25 29.71/0.8777 29.97/0.8797 29.92/0.8887 30.19/0.8925 30.94/0.9018 30.95/0.9020 31.39/0.9093
50 25.95/0.7791 26.28/0.7874 26.52/0.8057 26.82/0.8184 27.49/0.8279 27.41/0.8160 27.97/0.8423

Parameters↓ - 0.56M 0.49M 0.72M 0.35M 5.99M 5.62M

Urban100: img006

HQ (PSNR/SSIM)

N3Net (27.40/0.8457)

Noisy (20.60/0.5748)

NLRN (28.46/0.8688)

DnCNN (26.38/0.8052)

GCDN (28.70/0.8742)

FFDNet (27.05/0.8359)

DAGL (29.29/0.8960)
Figure 5. Visual comparison of gray-scale image denoising of various methods on one sample from Urban100 with noise level σ = 25.

and NLRN [20]. Furthermore, we also compare our method
with the graph-based denoiser: GCDN [36]. The standard
test sets: Urban100 [15], BSD68 [22], and Set12 are ap-
plied to evaluate each method. Additive white Gaussian
noise (AWGN) with different noise levels (15, 25, 50) are
added to the clean images. The quantitative results (PSNR
and SSIM) and the number of parameters of different meth-
ods are shown in Table 1. The visual comparison is shown
in Fig. 5. One can see that our method has the best perfor-
mance in all noise levels and produces higher visual quality
while maintaining a moderate number of parameters.

4.2. Real Image Denoising

To further demonstrate the merits of our proposed
method, we apply it to the more challenging task of real
image denoising. Unlike synthetic image denoising, in this
case, images are corrupted by realistic noise with unknown
distribution and noise levels. We compare our method with
some competitive denoisers [7, 49, 51, 42, 14] and some
very recent methods [2, 43, 45, 44, 17, 30]. The commonly
used DND [28] dataset is utilized for evaluation. Note that
the high-quality labels of DND are not available. We get
the evaluation results from the official website. The quanti-
tative results are shown in Table 2, and we further provide
a visual comparison of different methods in Fig. 6. In com-
parison, our algorithm recovers the actual texture and struc-
tures without compromising on the removal of noise, and
our method has good robustness to both high-intensity and
low-intensity noise. Even compared with top-performing
methods [45, 44, 17, 30], our proposed DAGL can achieve
better performance with attractive model parameters.

Table 2. The quantitative results of real image denoising on DND
dataset [28].

Algorithm Params↓ Mode
sRGB

PSNR↑ SSIM↑
BM3D [7] - Non-blind 34.51 0.851

CDnCNN [49] 0.67M Blind 32.43 0.790
CFFDNet [51] 0.85M Non-blind 37.61 0.914

TWSC [42] - Blind 37.94 0.940
CBDNet [14] 4.36M Blind 38.06 0.942
RIDNet [2] 1.50M Blind 39.23 0.952
VDNet [43] 7.82M Blind 39.38 0.952

CycleISP [45] 2.60M Blind 39.56 0.956
GDANet [44] 9.15M Blind 39.58 0.954
AINDNet [17] 13.76M Blind 39.37 0.951
DeamNet [30] 2.25M Blind 39.70 0.953
DAGL (Ours) 5.62M Blind 39.83 0.957

4.3. Image Compression Artifact Reduction

For this application, we compare our DAGL with
some classic methods (e.g., SA-DCT [11], ARCNN [8],
TNRD [6]) and recent competitive deep-learning methods
(e.g., DnCNN [49], RNAN [52], DUN [13]). To demon-
strate the superiority of our DAGL, we apply the same set-
ting as DnCNN and DUN, i.e., using a single model to
handle all degradation levels. The compressed images are
generated by Matlab standard JPEG encoder with quality
factors q ∈ {10, 20, 30, 40}. We evaluate the performance
of each method on the commonly used Classic5 [11] and
LIVE1 [31] test sets. The quantitative results are presented
in Table 3. One can see that under the evaluation of both
PSNR and SSIM, our proposed method achieves the best
performance on all test sets and quality factors with a single
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Noisy

Noisy

CBDNet [14]

CBDNet [14]

VDNet [43]

VDNet [43]

CycleISP [45]

CycleISP [45]

GDANet [44]

GDANet [44]

AINDNet [17]

AINDNet [17]

DeamNet [30]

DeamNet [30]

DAGL (Ours)

DAGL (Ours)
Figure 6. Visual comparison of real image denoising application of various methods. These noisy images come from DND [28] dataset.

Table 3. Quantitative results of image compression artifact reduction. Best and second-best results are highlighted and underlined.

Dataset q JPEG SA-DCT [11] ARCNN [8] TNRD [6] DnCNN [49] RNAN [52] DUN [13] DAGL (ours)

LIVE1

10 27.77/0.7905 28.86/0.8093 28.98/0.8076 29.15/0.8111 29.19 /0.8123 29.63/0.8239 29.61/0.8232 29.70/0.8245
20 30.07/0.8683 30.81/0.8781 31.29/0.8733 31.46/0.8769 31.59/0.8802 32.03/0.8877 31.98/0.8869 32.12/0.8887
30 31.41/0.9000 32.08/0.9078 32.69/0.9043 32.84/0.9059 32.98/0.9090 33.45/0.9149 33.38/0.9142 33.54/0.9156
40 32.35/0.9173 32.99/0.9240 33.63/0.9198 -/- 33.96/0.9247 34.47/0.9299 34.32/0.9289 34.53/0.9305

Classic5

10 27.82/0.7800 28.88/0.8071 29.04/0.7929 29.28/0.7992 29.40/0.8026 29.96/0.8178 29.95/0.8171 30.08/0.8196
20 30.12/0.8541 30.92/0.8663 31.16/0.8517 31.47/0.8576 31.63/0.8610 32.11/0.8693 32.11/0.8689 32.35/0.8719
30 31.48/0.8844 32.14/0.8914 32.52/0.8806 32.74/0.8837 32.91/0.8861 33.38/0.8924 33.33/0.8916 33.59/0.8942
40 32.43/0.9011 33.00/0.9055 33.34/0.8953 -/- 33.77/0.9003 34.27/0.9061 34.10/0.9045 34.41/0.9069

Parameters - - 0.12M - 0.56M 8.96M 10.5M 5.62M

Table 4. Quantitative comparison of image demosaicing.

Method Params PSNR/SSIM
McMaster18 Kodak24 Urban100

Mosaic - 9.17/0.1674 8.56/0.0682 7.48/0.1195
IRCNN 0.19M 37.47/0.9615 40.41/0.9807 36.64/0.9743
RNAN 8.96M 39.71/0.9725 43.09/0.9902 39.75/0.9848
DAGL 5.62M 39.84/0.9735 43.21/0.9910 40.20/0.9854

model. In addition, the number of parameters of our DAGL
is much fewer than the top-performing methods [52, 13].
The visual comparison is shown in Fig. 7, presenting the
better restoration quality of our proposed DAGL.

4.4. Image Demosaicing

In this task, we compare our method with RNAN [52]
and IRCNN [50] on McMaster18 [50], Kodak24, and Ur-
ban100 test sets. The quantitative result is shown in Table 4,
and the visual comparison is shown in Fig. 8. One can see
that the degraded images have very low quality on both sub-
jective and objective evaluations. IRCNN and RNAN can
restore the low-quality images with a good result, but our
method can still make an improvement.

4.5. Ablation Study

In this subsection, we show the ablation study in Table 5
and Table 6 to investigate the effect of different components
in our proposed DAGL. The experiment of ablation study
is conducted on denoising task and evaluated on Urban100

test set. The noise level is set as 25. In Table 5, we com-
pare the performance of the variants of our proposed DAGL.
In Table 6, we explore the gains brought by the number
of graph-based feature aggregation modules (GFAMs) in
depth (number of stages) and width (number of heads).

Patch-wise non-local correlation. The non-local cor-
relations in our DAGL are constructed based on feature
patches instead of pixels. To study the effectiveness of
this design, we compare our method with the commonly
used non-local neural networks [40]. Correctly, we replace
the graph modules in our DAGL with non-local neural net-
works with one head (NL) and multiple heads (MHNL).
The results are presented in Table 5. One can see that
our patch-wise non-local method obviously outperforms the
commonly used pixel-wise non-local method [40].

Graph attention mechanism. In this paper, we extend
the graph attention mechanism to image restoration tasks.
To demonstrate the effectiveness of this strategy, we replace
the attention-weighted aggregation process with directly av-
eraging, denoted as (w/o GAT) in Table 5. The performance
reduction demonstrates the positive effect of the graph at-
tention mechanism used in our DAGL.

Dynamic graph connections. Different from existing
non-local image restoration methods, in our DAGL, the
number of neighbors of each query patch is dynamic and
adaptive. To demonstrate the effectiveness of this design,
we remove the dynamic KNN module from our GFAM,
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HQ
PSNR/SSIM

HQ
PSNR/SSIM

JPEG (q=10)
25.07/0.7632

JPEG (q=10)
27.59/0.7747

TNRD [6]
26.64/0.8055

TNRD [6]
28.94/0.8111

DnCNN [49]
26.75/0.8066

DnCNN [49]
28.96/0.8122

RNAN [52]
27.58/0.8314

RNAN [52]
29.49/0.8305

DUN [13]
27.67/0.8320

DUN [13]
29.50/0.8301

DAGL (Ours)
27.82/0.8379

DAGL (Ours)
29.53/0.8316

Figure 7. Visual comparison of image compression artifact reduction application of various methods with JPEG quality q = 10.

Original image
Urban100: img026

HQ
PSNR/SSIM

Mosaiced
5.98/0.0395

IRCNN [50]
33.53/0.9235

RNAN [52]
35.79/0.9519

DAGL
36.35/0.9536

Figure 8. Visual comparison of image demosaicing. Following [50], the corrupted images are generated via Matlab with Bayer mosaic.

leading to a fully connected non-local attention operation
with a fixed number of neighbors for each query patch.
This variant is denoted as (w/o THD) in Table 5. There are
0.11dB gains by using the dynamic KNN module, demon-
strating the necessity of the dynamics in our graph model.

Table 5. Evaluation results about variants of DAGL on Urban100
test set (σ = 25). NL and MHNL represent replacing our M-
GFAM with non-local neural networks and multi-heads non-local
neural networks, respectively. (w/o THD) and (w/o GAT) refer
to removing dynamic KNN module and removing graph attention
mechanism, respectively.

Mode NL MHNL w/o THD w/o GAT DAGL

PSNR 30.73 30.92 31.28 30.77 31.39

Block number. In this part, we explore the gains brought
by the number of graph-based feature aggregation modules
(GFAM) in depth (number of stages) and width (number of
heads). The results are shown in Table 6. Note that case 1
is constructed by removing all GFAM from our DAGL, re-
sulting in a simple ResNet. From the results, we can find
that our proposed GFAM can significantly boost the im-
age restoration performance, and the performance increases
with the number of heads and stages. By making a trade-
off between performance and computational complexity, we
employ four heads and three stages in our proposed DAGL.

Table 6. Evaluation results on Urban100 (σ = 25) test set of our
proposed model with different numbers of graph-based feature ag-
gregation modules (GFAMs).

Case Index Number of heads-stages Params PSNR

1 0-0 1.23M 30.43
2 1-3 2.79M 31.21
3 2-3 3.77M 31.29
4 3-3 4.74M 31.33

5 (DAGL) 4-3 5.62M 31.39
6 5-3 6.71M 31.41
7 4-4 7.22M 31.42
8 4-2 4.12M 31.28
9 4-1 2.51M 31.05

5. Conclusion

In this paper, we propose an improved graph attention
model for image restoration. Unlike previous non-local im-
age restoration methods, our model can assign an adap-
tive number of neighbors for each query item and construct
long-range correlations based on feature patches. Further-
more, our proposed dynamic attentive graph learning can be
easily extended to other computer vision tasks. Extensive
experiments demonstrate that our proposed model achieves
state-of-the-art performance on wide image restoration
tasks: synthetic image denoising, real image denoising, im-
age demosaicing, and compression artifact reduction.
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[29] Tobias Plötz and Stefan Roth. Neural nearest neighbors net-
works. In Proceedings of the Advances in Neural Informa-
tion Processing Systems, 2018. 1, 2, 5, 6

[30] Chao Ren, Xiaohai He, Chuncheng Wang, and Zhibo Zhao.
Adaptive consistency prior based deep network for image de-
noising. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2021. 2, 6, 7

[31] HR Sheikh. Live image quality assessment database release
2. http://live. ece. utexas. edu/research/quality, 2005. 6

[32] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 2

[33] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-
Net: A persistent memory network for image restoration. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 2017. 1, 2

[34] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-
Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single
image super-resolution: Methods and results. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2017. 5

[35] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Im-
age denoising with graph-convolutional neural networks. In
Proceedings of the IEEE International Conference on Image
Processing, 2019. 1, 2

[36] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Deep
graph-convolutional image denoising. IEEE Transactions on
Image Processing, 29:8226–8237, 2020. 1, 2, 6

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proceedings of the
Advances in Neural Information Processing Systems, 2017.
2
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