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Figure 1: We represent articulated objects with separate codes for encoding shape and articulation. During inference, given an unseen
instance, our model first infers the shape and articulation codes via back-propagation. With the inferred shape code, we can generate shapes
at unseen angles by only changing the articulation code.

Abstract
Recent work has made significant progress on using im-

plicit functions, as a continuous representation for 3D rigid
object shape reconstruction. However, much less effort has
been devoted to modeling general articulated objects. Com-
pared to rigid objects, articulated objects have higher de-
grees of freedom, which makes it hard to generalize to un-
seen shapes. To deal with the large shape variance, we
introduce Articulated Signed Distance Functions (A-SDF)
to represent articulated shapes with a disentangled latent
space, where we have separate codes for encoding shape
and articulation. With this disentangled continuous rep-
resentation, we demonstrate that we can control the ar-
ticulation input and animate unseen instances with unseen
joint angles. Furthermore, we propose a Test-Time Adap-
tation inference algorithm to adjust our model during in-
ference. We demonstrate our model generalize well to out-
of-distribution and unseen data, e.g., partial point clouds
and real-world depth images. Project page with code:
https://jitengmu.github.io/A-SDF/.

1. Introduction
Modeling articulated objects has wide applications in

multiple fields including virtual and augmented reality, ob-
ject functional understanding, and robotic manipulation. To

understand articulated objects, recent works propose to train
deep networks for estimating per-part poses and the joint
angle parameters of an object instance in a known cate-
gory [40, 82]. However, if we want to interact with the
articulated object (e.g., open a laptop), estimating its static
state is not sufficient. For example, an autonomous agent
needs to predict what the articulated object shape will be
like after interactions for planning its action.

In this paper, we introduce Articulated Signed Distance
Functions (A-SDF), a differentiable category-level articu-
lated object representation, which can reconstruct and pre-
dict the object 3D shape under different articulations. A dif-
ferentiable model is useful in applications requiring back-
propagation through the model to adjust inputs, such as ren-
dering in graphics and model-based control in robotics.

We build our articulated object model based on the deep
implicit Signed Distance Functions [58]. While implicit
functions have recently been widely applied in modeling
static object shape with fine details [64, 65, 72], much less
effort has been devoted to modeling general articulated ob-
jects. We observe that models with a single shape code in-
put, such as DeepSDF [58], cannot encode the articulation
variation reliably. It is even harder for the models to gener-
alize to unseen instances with unseen joint angles.

To improve the generalization ability, we propose to
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model the joint angles explicitly for articulated objects. In-
stead of using a single code to encode all the variance, we
propose to use one shape code to model the shape of object
parts and a separate articulation code for the joint angles. To
achieve this, we design two separate networks in our model:
(i) a shape embedding network to produce a shape embed-
ding given a shape code input; (ii) an articulation network
which takes input both the shape embedding and an artic-
ulation code to deform the object shape. During training,
we use the ground-truth joint angles as inputs and learn the
shape code jointly with both model parameters. To encour-
age the disentanglement, we enforce the same instance with
different joint angles to share the same shape code.

During inference, given an unseen instance with un-
known articulation, we first infer the shape code and articu-
lation code via back-propagation. Given the inferred shape
code, we can simply adjust the articulation code to gener-
ate the instance at different articulations. We visualize the
generation process and results for a few objects in Figure 1.
Note the part geometry remains the same as we fix the in-
ferred shape code during generation.

To generalize our model to out-of-distribution and un-
seen data, e.g., partial point clouds and real-world depth
images, we further propose a Test-Time Adaptation (TTA)
approach to adjust our model during inference. Note that
our unique model architecture with separate shape embed-
ding and articulation network provides the opportunity to do
so: the separation of shape embedding and articulation net-
work ensures the disentanglement is maintained when the
shape embedding network is adapted. We adapt the shape
embedding network to the current test instance by updating
its parameters, while fixing the parameters of the articula-
tion network. This procedure allows A-SDF to reconstruct
and generate better shapes aligning with the inputs.

To our knowledge, our work is the first paper tackling
the problem of generic articulated object synthesis in the
implicit representation context. We summarize the contri-
butions of our paper as follows. First, we propose Articu-
lated Signed Distance Functions (A-SDF) and a Test-Time
Adaptation inference algorithm to model daily articulated
objects. Second, the disentangled continuous representa-
tion allows us to control the articulation code and generate
corresponding shapes as output on unseen instances with
unseen joint angles. Third, the proposed representation
shows significant improvement on interpolation, extrapola-
tion, and shape synthesis. More interestingly, our model
can generalize to real-world depth images from the RBO
dataset [45] and we quantitatively demonstrate superior per-
formance over the baselines.

2. Related Work
Neural Shape Representation. A large body of

work [80, 19, 9, 11, 41, 63, 17, 78, 77, 89, 13, 1, 15] has

focused on investigating efficient and accurate 3D object
representations. Recent advances suggest that representing
3D objects as continuous and differentiable implicit func-
tions [18, 58, 46, 10, 35, 26, 84, 72, 54, 64, 48, 71, 76] can
model various topologies in a memory-efficient way. The
basic idea is to exploit neural networks to parameterize a
shape as a decision boundary in 3D. Most of these work is
limited to modeling static objects and scenes [18, 26, 84,
72, 54, 64, 48, 71, 76]. Different from previous works, our
method models articulated objects in a category-level by
learning a disentangled implicit representation and we test
our model on real depth images. Comparisons to implicit
neural networks on deformable shapes will be discussed in
depth in the following.

Articulated Humans. One line of work leverages para-
metric mesh models [43, 38, 92, 5] to estimate shape and
articulation for faces [74, 62, 66], hands[16], humans bod-
ies [60, 4, 86, 34, 28, 56, 85, 79], and animals [91, 29, 36,
90] by directly inferring shape and articulation parameters.
However, such parametric models require substantial efforts
from experts to construct and is hard to generalize to large-
scale object categories. To address the challenges, another
line of work [57, 53, 75, 12, 8, 55] employs neural networks
to learn shapes from data. For example, Niemeyer et al. [53]
learned an implicit vector field and deformed shapes in a
spatial-temporal space. However, the design does not al-
low for controlling each part separately. Recently, Hoang
et al. [75] defined shapes using patches and shapes can be
deformed by manipulating the extrinsic parameters of each
patch. Nevertheless, the learned patches do not correspond
to parts and the method fails at large deformation. Deng et
al. [12] modeled each human body part by a separate im-
plicit function. However, the method is limited to instance-
level and requires skinning weights for the learning process.
In comparison, our method is category-level on general ar-
ticulated objects and we assume no part label. Therefore,
these previous approaches are not directly comparable to
ours. Besides, we model articulated object poses with joint
angles, which allows us to articulate each joint separately.

Articulated General Objects. Though reconstructing
articulated humans has attracted lots of attention in the com-
munity, modeling 3D shapes of daily articulated objects
is an under-explored field in terms of both data and ap-
proaches. Unlike modeling humans where lots of human
priors are injected, modeling articulated daily objects poses
additional challenges by assuming no prior part geometry
and labels, articulation status, joint type, joint axis and joint
location about the category. One recent popular paradigm
of research [20, 31, 44, 14, 47, 82] focuses on estimating
6D poses of articulated objects. For example, Desingh et
al. [14] proposed a instance-level factored approach to esti-
mate the poses of articulated objects with articulation con-
straints. However, 6D pose information may not be suffi-
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cient for tasks that require detailed shape information, such
as robotic manipulation [32, 83, 50, 49]. In this work, we
show that implicit functions are suitable for the daily ar-
ticulated objects modeling. We demonstrate that once an
implicit function is learned, shapes at unseen articulations
can be generated by manipulating the articulation code.

Disentangled Representation. Disentangled represen-
tations focus on modeling complex variations in a low di-
mensional space, where individual factors control different
types of variation. Previous work [37, 22, 7, 24, 33, 30,
23, 52, 67, 6, 88, 87, 68, 61, 42, 2, 59] has shown that dis-
entangled representations are essential to learn meaningful
latent space for 2D image synthesis. For example, Zhou et
al. [87] proposed an auto-encoder architecture to disentan-
gle human pose and shape. Different from previous work,
we focus on modeling general articulated objects in 3D with
interpretable pose codes.

Adaptation on Test Instance. Learning on test in-
stance has been recently applied for adapting a trained
model to out-of-distribution in multiple applications, in-
cluding image recognition [25, 51, 73], super-resolution and
synthesis [70, 69, 3], and mesh reconstruction and genera-
tion [39, 27]. For example, Li et al. [39] exploits training in
test-time with self-supervision for consistent mesh recon-
struction in a single video. Inspired by previous works, we
develop a Test-Time Adaptation inference algorithm in im-
plicit functions for better shape reconstruction and genera-
tion, where our disentanglement-based model architecture
is the key to allow for Test-Time Adaptation.

3. Method
We propose Articulated Signed Distance Functions (A-

SDF), a differentiable category-level articulated object rep-
resentation to reconstruct and predict the object 3D shape
under different articulations. Our model takes sampled 3D
point locations, shape codes, and articulation codes as in-
puts, and outputs SDF values (signed distance) that measure
the distance of a point to the closest surface point. The key
insight is that all shape codes of the same instance should
be identical, independent of its articulation. We argue that,
even though the shapes look quite different for different
articulations of the same instance, a good representation
should capture this variability in a low dimensional space,
since the part geometry remains unchanged. An overview
of our method is presented in Figure 2. As different cate-
gories vary a lot in terms of articulation, we train separate
networks for each category.

Our model is based on DeepSDF [58]. DeepSDF is an
effective and widely acknowledged baseline and its simple
network design allows us to focus on the effectiveness of
our key idea rather than designing complex architectures.
Note that our approach is generic and it can be applied to
other advanced architectures as well. For a fair comparison,

our model is designed with similar model size as DeepSDF.
Furthermore, compared to feed forward designs [46, 64],
the optimization-based shape modeling is naturally com-
patible with Test-Time Adaptation to address the out-of-
distribution data as described in Section 3.3.

In the following, we describe how to learn a model en-
couraging the disentanglement of shape and articulation.
We also introduce a Test-Time Adaptation inference tech-
nique allowing for generating unseen shapes at unseen ar-
ticulations with high quality.

3.1. Formulation
Consider a training set of N instance models for one ob-

ject category. Each instance is articulated into M poses,
leading to a training set of N ⇥ M shapes of the category.
Let Xn,m denote the shape articulated from instance n with
articulation m, where n 2 {1, . . . , N},m 2 {1, . . . ,M}.

Each shape Xn,m is assigned with a shape code �n 2
RC , where C denotes the latent dimension, and an articula-
tion code  m 2 RD with D denoting the number of DoFs.
The shape code�n is shared across the same object instance
n across different articulations. During training, we main-
tain and update one shape code for each instance. We use
joint angles to represent the articulation code. For example,
the articulation code of a 2-DoF object (e.g., eyeglasses)
with both joints articulated to 45� is  m = (45�, 45�). The
joint angle is defined as a relative angle to the canonical
pose of the object.

Let x 2 R3 be a sampled point from a shape. For nota-
tional simplicity, we omit the subscripts and denote � and
 as the corresponding shape and articulation code of the
shape. As shown in Figure 2, an Articulated Signed Dis-
tance Function f✓ is finally defined with the auto-decoder
architecture, which is composed of a shape embedding net-
work fs and an articulation network fa,

f✓(x,�, ) = fa[fs(x,�),x, ] = s, (1)

where s 2 R is a scalar SDF value (the signed distance
to the 3D surface). The sign of the SDF value indicates
whether the point is inside (negative) or outside (positive)
the watertight surface. The 3D shape is implicitly repre-
sented by the zero level-set f✓(·) = 0.

3.2. Training
During training, given the ground-truth articulation code

 , sampled points and their corresponding SDF values, the
model is trained to optimize the shape code� and the model
parameters ✓.

The training process is illustrated in Figure 2. The shape
code is first concatenated with a sampled point x to form
vector of dimension C+3 and input to the shape embedding
network. Similarly, the articulation code  (joint angles) is
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Figure 2: Overview of the proposed method. At training time, the articulation code and randomly sampled shape codes are first concate-
nated with a sampled point separately. The produced embeddings are then input to an articulated signed distance function f✓ to regress
SDF values (signed distance) and predict part labels (optional). Note that the same instance is associated with one shape code regardless
of its articulation state, as illustrated with brown staplers. During inference, back-propagation is used to jointly infer the shape code and
articulation code for an unseen instance. With the inferred shape code, the model can faithfully generate new shape at unseen articulations.

first concatenated with a sampled point x to form a D + 3
dimensional vector.

Then the articulation network takes the concatenated
shape embedding and articulation code to predict the SDF
value for the input 3D point. It’s worth noting that, at the be-
ginning of the articulation network, a fully connected layer
is employed to embed the articulation code into a space of
dimension C + 3. Besides the SDF value, part supervision
is optionally provided for training, using different labels to
index different object parts. The number of object parts is
fixed per category. When part supervision is available, a
linear classifier is added to the last hidden layer of the artic-
ulation network to simultaneously output the part label.

The training loss functions are defined as following. Let
K be the number of sampled points per shape. The function
f✓ is trained with the per-point L1 loss function to regress
SDF values,

Ls(X ,�, ) =
1

K

KX

k=1

���
���f✓(xk,�, )� sk

���
���
1
, (2)

where xk 2 X is a point of instance X , sk the correspond-
ing ground-truth SDF value, and k 2 {1, . . . ,K}.

When the object part labels are available, we include a

complementary auxiliary part classification loss as,

Lp(X ,�, ) =
1

K

KX

k=1

h
CE

⇣
f✓(xk,�, ), pk

⌘i
, (3)

where CE denotes the cross-entropy loss and pk is the
ground-truth label for the part containing xk. Intuitively,
the part classification task helps the network disambiguate
the object parts.

The full loss L(x,�, ) is defined as,

L(X ,�, ) = Ls(X ,�, )

+ �pLp(X ,�, ) + ��||�||22.
(4)

Following [58], we include a zero-mean multivariate-
Gaussian prior per shape latent code � to facilitate learn-
ing a continuous shape manifold. Part coefficient �p and
shape code coefficient �� are introduced to balance differ-
ent losses. We optionally set �p = 0 when the part labels
are not available.

At training time, the shape codes are randomly initial-
ized with a Gaussian distribution at the very beginning of
training. Each shape code is then optimized through the
training steps and it is shared across all the shapes artic-
ulated from the same instance. The articulation codes are
constants given from the ground-truths. The objective is to
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optimize the loss function over all N ⇥M training shapes,
defined as follows,

argmin
✓,�n

NX

n=1

MX

m=1

L(Xn,m,�n, m), (5)

where ✓ is the network parameters.

3.3. Inference
Basic Inference. In the inference stage, illustrated in the

Inference Section of Figure 2, an instance X is given and the
goal is to recover the corresponding shape code � and the
articulation code  . This can be done by back-propagation.
The two codes are initialized randomly, the articulation net-
work parameters are fixed, and the codes are inferred jointly
by solving the optimization with the following objective,

�̂,  ̂ = argmin
�, 

L(X ,�, ). (6)

However, directly applying Equation 6 is hard, since both
the shape and articulation spaces are non-convex. Gradient
based optimization can converge to local minima, produc-
ing an inaccurate estimation.

To overcome the challenge, we first use Equation 6 to
optimize both shape and articulation codes as our initial es-
timation. In practice, we observe that the articulation code
usually converges to a good estimate but the inferred shape
codes tends to lead to noisy outputs. So the estimated artic-
ulation code  ̂ is then kept and the shape code is discarded.
In the second step, the shape code is re-initialized, the ar-
ticulation code is fixed to  ̂, and the optimization is only
solved for the shape code �̂.

Test-Time Adaptation Inference. Though fixing the
parameters of decoder f✓ makes sense if the test distribu-
tion aligns well with the training distribution, it can be prob-
lematic given out-of-distribution observations. To general-
ize better to out-of-distribution data, the Test-Time Adapta-
tion (TTA) for shape embedding network fs is further in-
troduced. It is built on the basic inference procedure with
the estimated shape code �̂ and articulation code  ̂. We
fix both estimated codes and finetune the shape embedding
network fs using the following objective,

f̂s = argmin
fs

L(X , �̂,  ̂), (7)

where �̂ and  ̂ are obtained as described in the basic infer-
ence. Note that our proposed model architecture is the key
for TTA. The separation of shape embedding network and
articulation network ensures the disentanglement is main-
tained when the shape embedding network is finetuned. Af-
ter adaptation, the generation ability (Secion 3.4) is still
well preserved. Moreover, in practice, one can easily re-
vert to the non-updated model before adapting to individual
instance.

To this end, the proposed full Test-Time Adaptation In-
ference Algorithm is summarized in Algorithm 1. Since
back-propagation is very efficient, the iterative optimization
only introduces negligible additional computation.

Algorithm 1 Test-Time Adaptation Inference Algorithm
Input: Target shape X .
Output: shape code �̂; articulation code  ̂, updated shape
embedding network f̂s.

1: Init � ⇠ N (0,�), 
2: �̂,  ̂ = argmin�, L(X ,�, )
3: . Articulation Estimation
4: Re-init �̂ ⇠ N (0,�)
5: �̂ = argmin� L(X ,�,  ̂) . Shape Code Estimation
6: f̂s = argminfs L(X , �̂,  ̂) . Test-time Adaptation

3.4. Articulated Shape Synthesis

A main advantage of the proposed disentangled contin-
uous representation is that, once a shape code is inferred,
it can be applied to synthesize shapes of unseen instances
with unseen joint angles, by simply varying the articulation
code. This is shown in Figure 2, Generation section. In
this stage, the shape code and finetuned shape embedding
network fs obtained in the inference stage is fixed and new
shapes are generated by simply inputting new joint angles to
the network. If trained with part labels, the model can also
output part labels for unseen shapes, as shown in Figure 6.

4. Experiment

We experiment with 3D reconstruction and demonstrate
that the proposed method can successfully interpolate, ex-
trapolate the articulation space, and synthesize new shapes.
We also quantitatively show the proposed method general-
ize well to partial point clouds obtained from both synthetic
and real depth images.

4.1. Experiment Setup

For all experiments, the mesh models used are from the
Shape2Motion dataset [81]. More details about the net-
work design and training are discussed in the supplemen-
tary materials. To evaluate the quality of generated shapes,
Chamfer-L1 distance is used as the main evaluation metric,
which is defined as the mean of an accuracy and a com-
pleteness metric. Following DeepSDF [58], 30,000 points
are sampled for each shape for evaluation and Chamfer-L1
distances shown in the paper are multiplied by 1,000. For
joint angle estimation, we follow [40] to evaluate the aver-
age joint angle error in degrees for each joint.
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Figure 3: Reconstruction of test instances. The proposed method
encodes better details whereas DeepSDF produces over-smoothed
surfaces. Note that we model fridges with two different kinds of
door types using a single network.

Laptop Stapler Wash Door Oven Eyeglasses Fridge
DeepSDF [58] 0.35 3.73 4.29 0.61 5.33 1.63 0.80
Ours (w/o TTA) 0.15 3.39 2.60 0.21 3.72 1.25 0.90
Ours 0.13 2.55 2.13 0.17 1.83 1.16 0.69

Table 1: Chamfer-L1 distance comparison for reconstruction. The
proposed method yields smaller Chamfer-L1 distance.

Laptop Stapler Wash Door Oven Eyeglasses Fridge
DeepSDF [58] 2.77 8.69 8.04 7.79 11.13 3.33 1.74
Ours (w/o TTA) 0.26 3.75 5.72 0.51 4.10 2.63 0.99

Table 2: Chamfer-L1 distance comparison for interpolation.

4.2. Reconstruction

We task our model with 3D reconstruction on the held-
out data. For all methods, latent codes are first inferred us-
ing back-propagation given the observed shape, and then
SDF values of sampled points are predicted by a forward
pass. Quantitative evaluation shows the proposed method
yields better results compared to DeepSDF for all classes,
as shown in Table 1.

Even though the proposed shape representation is more
compact and represented with less parameters, quantitative
results suggest that it achieves better performance. As visu-
alized in Figure 3, our results show rich details compared to
the over-smoothed results produced DeepSDF. We conjec-
ture that, by introducing the articulation code and the shape
code sharing, the proposed model can take advantage of
multiple shapes articulated from the same instance to learn
better shape priors. In addition, applying Test-Time Adap-
tion helps the model fit the observation better. In Figure 3,
we show that one single network is capable of learning pri-
ors for fridges with different in-class articulation patterns
(door types).

4.3. Interpolation and Extrapolation

The ability to interpolate and extrapolate between shapes
is important for a good 3D articulated object representation.

c) Ours (w/o TTA)b) DeepSDFa) Inputs

(39°)(51°)(39°)(51°)(0°)(90°)

(-33°)(-21°)(-33°)(-21°)(-72°)(18°)

Figure 4: Comparison for interpolation. Each row shows a differ-
ent object. Inputs, DeepSDF , and Ours (w/o TTA) results are shown
from left to right respectively.

b) Ours (w/o TTA)

Extrapolation rightwardExtrapolation leftward

a) DeepSDF

(-84°)(-81°)(-78°)(-75°)(30°) (21°)

Figure 5: Comparison for extrapolation. Each row is correspond-
ing to the same instance extrapolated in two directions. The pro-
posed method successfully generates shapes with joint angles be-
yond the range seen during training.

In this section, given two articulated shapes of the same in-
stance, we ask the models to output shapes with articula-
tions in between or beyond.

As shown in Table 2, we quantitatively demonstrate that
the proposed model can reliably interpolate shapes. In both
cases, the proposed method outperforms DeepSDF by a
large margin. As visualized in Figure 4, the baseline gen-
erates unrealistic deformed shapes whereas the proposed
method produces accurate shape estimations.

In the extrapolation setting on laptops, the proposed
method also significantly outperforms DeepSDF. We com-
pute the Chamfer-L1 distance for both methods. The pro-
posed method achieves 0.280 whereas DeepSDF only gets
3.396. As illustrated in Figure 5, the proposed method is ca-
pable of extrapolating beyond the angle range seen during
training while DeepSDF fails to produce valid shapes.

The insight is that, even in cases where the two given
shapes (the same instance) are with large articulation dif-
ference, the inferred shape codes of the proposed method
are still close in the high dimensional space. The difference
between these shapes is mainly captured by the articulation
codes. Therefore, the linear interpolation in the articulation
space still produces valid shapes. However, the baseline
method learns a non-structured shape space and the interpo-
lation result could be a random point in a high dimensional
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Laptop Stapler Washing Door Oven Eyeglasses Fridge
DeepSDF [58] (Interpolation) 2.77 8.69 8.04 7.79 11.13 3.33 1.74
Ours (w/o TTA) 0.39 (1.39) 3.77 (3.30) 2.86 (7.10) 0.73 (1.09) 3.77 (7.08) 2.48 (2.58) 0.97 (3.47)
Ours 0.32 (1.59) 3.25 (3.53) 3.01 (8.44) 0.53 (0.95) 2.58 (6.79) 2.42 (2.84) 0.86 (4.19)
Ours (w/o TTA) + part label 0.32 (1.45) 3.08 (3.66) 2.16 (2.66) 0.38 (1.04) 5.19 (3.20) 2.03 (2.12) 0.85 (3.69)
Ours + part label 0.29 (1.48) 2.48 (3.34) 1.96 (2.03) 0.33 (1.67) 3.10 (2.98) 2.16 (2.18) 0.64 (2.98)

Table 3: Chamfer-L1 distance comparison for shape synthesis. Joint angle estimation errors of the proposed method in brackets (·).

a) Ground-truth b) DeepSDF c) Ours d) Ours + part labels

Figure 6: Shape synthesis and part prediction. From left to right:
the ground-truth, DeepSDF interpolation, Ours generation, and
the Ours + part labels part prediction results.

space without corresponding to any meaningful shape.
For the proposed method, given two shapes, two set of

codes are first inferred using the procedure shown in Sec-
tion 3.3 but only articulation codes are interpolated to gen-
erate the new shape. For the baseline, the target shape code
is simply computed as a linear combination of the two ob-
tained codes.

4.4. Shape Synthesis and Part Prediction
One main advantage of our learned disentangled repre-

sentation is its generation ability as described in Section 3.4.
One can easily control the articulation input to generate
shapes of unseen instances with unseen joint angles.

To provide comparisons, we employ the DeepSDF Inter-
polation results described in Section 4.3 as baseline. Note
that this is not a fair comparison as our method requires only
one shape instead of two as for the baseline. Though relying
on less information, the proposed method still yields much
better results as shown in Table 3. We demonstrate that ap-
plying Test-Time Adaption reduces the error further, indi-
cating that Test-Time Adaption helps with inferring better
shape while maintaining a disentangled representation. As
visualized in Figure 6, note that one single network is capa-
ble of synthesize fridges with different articulation patterns.

One additional advantage of the proposed method is that
joint angles can be estimated simultaneously. We quanti-

Laptop Door Washing
Recon Gen Recon Gen Recon Gen

2-view
DeepSDF [58] 2.40 4.00 3.34 16.63 14.14 11.38
Ours (w/o TTA) 0.75 1.16 0.62 0.83 7.63 10.03
Ours 0.61 1.07 0.61 0.78 5.31 9.39

1-view
DeepSDF [58] 3.31 6.75 5.76 20.24 14.08 13.05
Ours (w/o TTA) 2.19 1.25 0.80 0.89 9.58 11.31
Ours 2.25 1.55 0.86 1.38 6.29 9.52

Table 4: Chamfer-L1 distance comparison on partial point clouds.
1/2-view distinguishes the setting whether the partial point clouds
are generated from one or two depth images.

tatively evaluate joint angle prediction errors in degrees, as
shown in brackets in Table 3. Results suggest that the pro-
posed model can predicts joint angles accurately during the
inference stage.

We also demonstrate that, if provided, part labels can fur-
ther boost the performance. Models trained with part labels
are denoted as Ours + part labels. Part label prediction re-
sults are visualized in Figure 6.

4.5. Test on Partial Point Clouds
We task the models with shape completion and gener-

ation on the partial point clouds from depth observations,
which aims to inferring the shape code that best matches the
partial point clouds and then generating to unseen articula-
tions. We quantitatively demonstrate the proposed method
outperforms the baseline significantly in Table 4. Note that
models are not trained on partial point clouds.

As 3D meshes are not provided in this scenario, we
sample two points for each depth observation following
DeepSDF [58]. We approximate the SDF values to be ⌘
and �⌘ by perturbing each of them ⌘ distance away from
the observed depth point along the computed surface nor-
mal direction. ⌘ is set to be 0.025 in our experiments.

As discussed in Section 4.4, we employ the interpola-
tion results of DeepSDF as a baseline for shape generation.
We test the model on the point clouds generated from sin-
gle and multi-view depth images. As the number of views
increases, we observe that applying Test-Time Adaption
yields larger performance gain. As visualized in Fig 7, the
proposed method encodes stronger shape prior and recovers
shapes reliably given the partial point clouds input.

4.6. Test on Real-world Depth Images
We quantitatively show the proposed method generalizes

better on real-world depth images, as shown in Table 5. The
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Input Partial 
Point Cloud

Ours DeepSDF Ground-truth Input Partial 
Point Cloud

Ours DeepSDF Ground-truth

Figure 7: Partial point clouds completion one-view setting. For a given depth image visualized as point clouds, we show a comparison of
shape completion from our method against DeepSDF and Ground-truth.

DeepSDFInput Depth
Generation at unseen articulation Reconstruction

-31° -45° 5°-31°

-1° -1° -41° -12° -12°-41°

5°-45°

-1°-1°

-31° -31°

Reconstruction
Ours

Corresponding images (not input)

Figure 8: Test on real-world depth images. From left to right: Input depth, DeepSDF reconstruction, Ours reconstruction and generation.
Note that the Ours generation are generated by only changing the articulation code. The shape code is inferred from the input depth of a
laptop at a different articulation. RGB images and joint angles shown are only for visualization purposes and are not input to the model.

Reconstruction Generation
DeepSDF [58] 4.65 -
Ours (w/o TTA) 2.53 5.09
Ours 0.76 3.22

Table 5: Chamfer-L1 distance comparison on real-world depth im-
ages. The Chamfer-L1 distance here is from ground-truth depth to
reconstructed shape. DeepSDF is not able to generate new shapes.

RBO dataset [45] is a collection of 358 RGB-D video se-
quences of humans manipulating articulated objects, with
the ground-truth poses of the rigid parts annotated by a mo-
tion capture system. We take laptop depth images from dif-
ferent sequences in the dataset and crop laptops from depth
images by applying Mask R-CNN [21] on the correspond-
ing rgb images. We generate corresponding point clouds
from real depth images following Section 4.5, and then ex-
ploit the ground-truth pose to align the point clouds to the
canonical space defined by Shape2motion dataset [81].

In Table 5, we show both reconstruction and generation
results. Note both models are not trained on real-world
depth images. Given a real-world depth image, we obtain
its corresponding point clouds, input it to the model trained
on synthetic data to reconstruct its 3D shape, and evaluate
the reconstruction performance as the one-way Chamfer-L1
distance from ground-truth depth to reconstructed shape.
Next, we take the shape code from the previous recon-
structed shape and change the articulation code to output
shapes at multiple unseen articulation. We take the real
depth images at these new articulation and use the gener-

ated corresponding point clouds as the ground-truth to eval-
uate the generation performance. As visualized in Fig 8, the
proposed model reliably synthesize shapes at unseen articu-
lation whereas DeepSDF does not have the ability to gener-
ate shapes. Table 5 results suggest that applying Test-Time
Adaption reduces the error further on both reconstruction
and generation.

5. Conclusions
We propose Articulated Signed Distance Functions (A-

SDF) to model articulated objects with a structured la-
tent space. A Test-Time Adaptation inference algorithm is
introduced to infer shape and articulation simultaneously.
We experiment on seven articulated object categories from
the shape2motion dataset [81], and demonstrated improved
shape reconstruction, interpolation, and extrapolation per-
formance. Moreover, the method allows for controlling the
articulation code to generate shapes for unseen instances
with unseen joint angles. We also go beyond synthetic
data and demonstrate the proposed method can reliably gen-
erate 3D shapes from real-world depth images in the rbo
dataset [45].
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