
Self-Supervised Object Detection via Generative Image Synthesis
Siva Karthik Mustikovela1,3* Shalini De Mello1 Aayush Prakash1

Umar Iqbal1 Sifei Liu1 Thu Nguyen-Phuoc2 Carsten Rother3 Jan Kautz1

1NVIDIA 2University of Bath 3Heidelberg University
{siva.mustikovela, carsten.rother}@iwr.uni-heidelberg.de; aayush382.iitkgp@gmail.com;

T.Nguyen.Phuoc@bath.ac.uk; {shalinig, sifeil, uiqbal, jkautz}@nvidia.com

Abstract
We present SSOD – the first end-to-end analysis-by-

synthesis framework with controllable GANs for the task of
self-supervised object detection. We use collections of real-
world images without bounding box annotations to learn
to synthesize and detect objects. We leverage controllable
GANs to synthesize images with pre-defined object prop-
erties and use them to train object detectors. We propose
a tight end-to-end coupling of the synthesis and detection
networks to optimally train our system. Finally, we also
propose a method to optimally adapt SSOD to an intended
target data without requiring labels for it. For the task
of car detection, on the challenging KITTI and Cityscapes
datasets, we show that SSOD outperforms the prior state-
of-the-art purely image-based self-supervised object detec-
tion method Wetectron. Even without requiring any 3D
CAD assets, it also surpasses the state-of-the-art rendering-
based method Meta-Sim2. Our work advances the field of
self-supervised object detection by introducing a success-
ful new paradigm of using controllable GAN-based image
synthesis for it and by significantly improving the base-
line accuracy of the task. We open-source our code at
https://github.com/NVlabs/SSOD.

1. Introduction
Object detection plays a crucial role in various au-

tonomous vision pipelines, e.g., in robotics and self-
driving. Convolutional neural networks-based detection
methods, such as [40, 32], have achieved impressive per-
formance. However, they are fully-supervised and require
large amounts of human annotated data, which is time-
consuming to acquire for all object types and operating en-
vironments. They also do not scale well when target do-
mains change, e.g., from one city to another in self-driving.

To reduce annotations, some existing works train detec-
tors without requiring bounding box annotations and follow
two paradigms. The first is of self/weakly supervised ob-
ject detection methods [41, 42, 53], which either use image-
level object presence labels (a.k.a. self-supervision) or
point/scribble annotations (a.k.a weak-supervision). They
also rely on high-quality object proposals detected by

*Siva Karthik Mustikovela was an intern at NVIDIA during the project.

Controllable
Generative
Synthesis

Input 
Parameters

Unlabeled Source Data

Unlabeled Target Data

Learn Image Synthesis

Learn Target Distribution

Annotation

Synthesized 
Image

Detection 
Network

Inference

Training

Target Test Image

Detections

Figure 1. Self-Supervised Object Detection. We learn object de-
tection purely using natural image collections without bounding
box labels. We leverage controllable GANs to synthesize images
and to detect objects together in a tightly coupled framework. We
learn image synthesis from unlabeled singe-object source images
(e.g., Compcars [52]) and optimally adapt our framework to any
multi-object unlabeled target dataset (e.g., KITTI [15]).

methods requiring human annotations [57]. The second
paradigm is of rendering-based methods, including Meta-
Sim [26] and Meta-Sim2 [10], which learn object detec-
tion from synthetically rendered images. Creating them,
however, requires large collections of high-quality 3D CAD
models for all the objects in the scene, manual scene setups
and expensive rendering engines. Such images also tends to
have a large domain gap from real-world ones.

Recently, there has been much progress in making Gen-
erative Adversarial Networks (GANs) [16] controllable us-
ing input parameters like shape, viewpoint, position and
keypoints [36, 37, 38, 45], opening up the possibility of
synthesizing images with desired attributes. Controllable
GANs have also been used successfully to learn other vi-
sion tasks, e.g., viewpoint [34] and keypoints [50, 56, 22]
estimation in a self-supervised manner, but have not been
explored previously for self-supervised object detection.

Inspired by these, we propose the first end-to-end
analysis-by-synthesis framework for self-supervised object
detection using controllable GANs, called SSOD (Fig. 1).
We learn to both synthesize images and detect objects
purely using unlabeled image collections, i.e., without re-
quiring bounding box-labels and without using 3D CAD

8609



assets – a multi-faceted challenge not addressed previ-
ously. We learn a generator for object image synthesis using
real-world single-object image collections without bound-
ing box labels. By leveraging controllable GANs, which
provide control over the 3D location and orientation of an
object, we also obtain its corresponding bounding box an-
notation. To optimally train SSOD, we tightly couple the
synthesis and detection networks in an end-to-end fashion
and train them jointly. Finally, we learn to optimally adapt
SSOD to a multi-object target dataset, also without requir-
ing labels for it and improve accuracy further.

We validate SSOD on the challenging KITTI [15] and
Cityscapes [8] datasets for car object detection. SSOD out-
performs the best prior image-based self-supervised object
detection method Wetectron [42] with significantly better
detection accuracy. Furthermore, even without using any
3D CAD assets or scene layout priors it also surpasses the
best rendering-based method Meta-Sim2 [10]. To the best
of our knowledge, SSOD is the first work to explore using
controllable GANs for fully self-supervised object detec-
tion. Hence, it opens up a new paradigm for advancing fur-
ther research in this area. SSOD significantly outperforms
all competing image-based methods and serves as a strong
baseline for future work.

To summarize, our main contributions are:
• We propose a novel self-supervised object detec-

tion framework via controllable generative synthesis,
which uses only image collections without any kind of
bounding box annotations.

• We propose an end-to-end analysis-by-synthesis
framework, which can optimally adapt the synthesizer
to both the downstream task of object detection and to
a target dataset in a purely self-supervised manner.

• Our experiments on two real-world datasets show∼2x
performance improvement over SOTA image-based
self-supervised object detection methods. Also, with-
out using 3D CAD assets, SSOD outperforms on aver-
age, the rendering-based baseline of Meta-Sim2 [10].

2. Related Work
Self-supervised task learning. Several recent works at-
tempt to learn a variety of 2D and 3D computer vision tasks
in a self-supervised manner. In 2D computer vision, sev-
eral works tackle the problem of object keypoint estima-
tion [50, 56, 22] and part segmentation [20, 7]. [3] obtains
an object mask along with the generated image. However,
there is no control over the pose and style of the generated
object. Alongside, in 3D computer vision, there are sev-
eral attempts to learn object reconstruction [24, 29, 31, 30],
viewpoint estimation [34] and point cloud estimation [35].
These works present interesting approaches to address their
respective problems for single object images, but do not ad-
dress multi-object analysis.

Concurrently, there has also been tremendous progress in
high-quality controllable generative synthesis using learned
3D object representations [37, 36, 38, 45, 11] or implicit
representations [33, 54, 44]. Some of these works have been
used in analysis-by-synthesis frameworks to solve computer
vision tasks, including 3D reconstruction [31, 30, 18, 17],
viewpoint estimation [34] and keypoint estimation [22].
However, no prior work explores self-supervised object de-
tection via controllable GANs and we are the first work to
do so.

Weakly supervised object detection. Recent works also
address the problem of self-supervised object detection us-
ing only a collection of images and image-level tags of ob-
ject presence. Such methods pose the problem either in a
multiple instance [4, 49, 53, 41, 14], discriminative [47],
curriculum [55, 25, 42] or self-taught [23] learning frame-
work. However, such methods rely heavily on object pro-
posals generated by methods like [57, 1, 51], which, them-
selves, need low-level edge-based annotations from hu-
mans. Additionally, they also cannot modify or control in-
put images according to the requirements of the detector or
a target dataset. In contrast we learn a controllable synthesis
module, to synthesize images that maximize the detector’s
performance on a target dataset.

Learning object detection from synthetic data. Works
like [43, 6, 13, 26, 10, 39] learn object detection through
synthetic data from graphics renderers. [43] obtains syn-
thetic images and annotations from a game engine. In [6,
13], the authors exactly mimic real world dataset (e.g.,
KITTI [15]) in a synthetic simulator. In [39], the authors
synthesize scenes by randomizing location, orientations and
textures of objects of interest in a scene. In Meta-Sim [26]
and Meta-Sim2 [10], the authors propose a strategy to learn
optimal scene parameters to generate images similar to a
target dataset. While methods like [6, 13] use annotations
from real world datasets to mimic the datasets in synthetic
worlds, other methods like [43, 10, 39] generate synthetic
data without using any real world annotations. While these
approaches learn only from rendered data, they require 3D
CAD models of objects and scenes along with rendering se-
tups, both of which are expensive to acquire. Moreover,
graphics renderers are often not differentiable making it
difficult to learn and propagate gradients through them for
learning a downstream task. Also, synthetic data introduces
a domain gap with respect to real target data both in terms
of appearance and layout of scenes that affects detection ac-
curacy. In contrast, our goal is to learn both data generation
and object detection from real-world images without bound-
ing box annotations and without requiring 3D CAD models
or rendering setups. Our GAN-based framework allows us
to adapt to the distribution of the target data and synthesize
data that is optimal for the downstream task.

8610



Synthesis 
Network (𝑆)

MLP

Background Synthesized 
Image

Object Detection Adaptation

Detection 
Net (𝐹)

Pose

𝑧𝑏

(𝑣𝑏,𝑙𝑏)

Style

Foreground

Target Data Adaptation
MLP

Pose

𝑧𝑓

(𝑣𝑓 ,𝑙𝑓)

Style

𝐷𝑚𝑠𝑜

Annotation

𝐿𝑚𝑠𝑜

𝐿𝑑𝑒𝑡

*
𝐷𝑓𝑔

𝐷𝑏𝑔 𝐿𝑏𝑔

𝐿𝑓𝑔
𝐻

Sinkhorn
Distance

Pose-Aware Synthesis

High-confidence Detections from {It}

(a) (b)

(c)𝐷𝑠𝑐𝑛 𝐿𝑠𝑐𝑛

Cropped synth.
object

Real Image

Cropped synth. objects

Synth Obj.

Synth
Background

Real
Background

𝐼𝑔

𝐴𝑔

𝐼𝑐

Crop

𝐼𝑔

𝐼𝑐
Real Obj.

Appearance Adaptation Object Scale Adaptation

Figure 2. Overview of Self-Supervised Object Detection. SSOD contains three modules: (a) a pose-aware synthesis module that generates
images with objects in pre-defined poses using a controllable GAN for training object detectors; (b) an object detection adaptation module
that guides the synthesis process to be optimal for the downstream task of object detection and the (c) a target data adaption module that
helps SSOD to adapt optimally to a target data distribution. We train all modules in a tightly-coupled end-to-end manner.

3. Self-Supervised Object Detection
3.1. Problem Setup

Our goal is to learn a detection network F , which best
detects objects (e.g., cars) in a target domain (e.g., out-
door driving scenes from a city). We further assume that
we have available to us an unlabeled image collection {It}
from the target domain each containing an unknown num-
ber of objects per image (see examples in Fig. 1). To
train F , we leverage object images and their bounding box
annotations synthesized by a controllable generative net-
work S, which, in turn, is also learnt using unlabeled ob-
ject collections. Specifically, to learn S, we use an addi-
tional sufficiently large unlabeled (bounding box annota-
tion free) single-object source collection {Is}, containing
images with only one object per image, but not necessarily
from the target domain where the detector must operate (see
examples in Fig. 1). We discuss more about the need for this
assumption in Sec 3.3. We train our system with both {It}
and {Is}, and evaluate it on a held-out labeled validation
set from the target domain, which is disjoint from {It} and
is never used for training.

3.2. Overview of SSOD
We present an overview of SSOD in Fig. 2. It contains

three modules: (a) a pose-aware synthesis; (b) an object
detection adaptation and (c) a target data adaption module.

The pose-aware synthesis module (Fig. 2(a)) contains a
controllable synthesis network S. We model S by a pose-
aware generator, which synthesizes images {Ig} of objects
conditioned on the pose parameters (viewpoint (v) and lo-
cation (l)) and obtain 2D bounding box annotations {Ag}
for them. Using the synthesized image-annotation pairs

〈Ig,Ag〉, along with images from {It}, we train the ob-
ject detector F . The object detection adaptation module
(Fig. 2(b)) is designed to provide feedback to the synthesis
network S to optimally adapt it to the downstream task of
object detection. It tightly couples the object detectorF and
synthesizer S for joint end-to-end training and also intro-
duces specific losses to guide the synthesis process towards
better object detection learning.

Lastly, the target data adaptation module (Fig. 2(c)) helps
reduce the domain gap between the images synthesized by
S and those in the target domain {It}. It does so by intro-
ducing a set of spatially localized discriminative networks,
which adapt the synthesis network S towards generating im-
ages closer to the target data distribution in terms of overall
image appearance and scale of objects.
We train SSOD in two stages – uncoupled and coupled.
During uncoupled training, we pre-train the synthesis net-
work S on {Is} without feedback from other modules.
Next, we synthesize image-annotation pairs with S and use
them along with {It} to pre-train F . During the next cou-
pled training phase, we jointly fine-tune SSOD’s modules
with both the source {Is} and target {It} images, and the
data synthesized by S. We alternatively train S in one itera-
tion and all other networks in the next one. We describe all
the modules of SSOD in detail in the following sections.

3.3. Pose-Aware Synthesis
Our pose-aware synthesis network S is inspired by the

recent BlockGAN [37], which has several desirable proper-
ties for object detection. It allows control over style, pose
and number of objects in the scene by disentangling the
background and foreground objects. Its architecture is il-
lustrated in Fig. 3. To make BlockGAN [37] amenable

8611



to target data adaptation, we augment it with MLP blocks
which learn to modify style vectors for both the foreground
and background before they are input to the generator, such
that the synthesized images are closer to the target dataset
(Fig. 3).

The synthesis network S generates a scene Ig contain-
ing the foreground object in the specified location and ori-
entation. The network contains category specific learnable
canonical 3D codes for foreground and background objects,
which are randomly initialized and updated during training.
The 3D latent code of each object is passed through a cor-
responding set of 3D convolutions where the style of the
object is controlled by input 1D style code vectors (from
a uniform distribution) zf for the foreground and zb for
the background through AdaIN (Fig. 3). These 3D features
are further transformed using their input poses (vf , lf ) for
one or more foreground objects. The value of vf represents
azimuth of the object and lf represents its horizontal and
depth translation. Each object is processed separately in
its own 3D convolution branch. The resulting 3D features
of all objects are collated using an element-wise maximum
operation and then projected onto 2D using a perspective
camera transformation followed by a set of 2D convolutions
to yield Ig . The original BlockGAN [37] generates images
at a resolution of 64 × 64. For our S, we modify it and
adopt the strategy of progressive growing of GANs [28, 27]
to increase its synthesis resolution to 256× 256.

We train S in a GAN setup with an adversarial loss [2]
Lscn computed using a scene discriminator Dscn as:

Lscn = −EIg∼psynth
[Dscn(Ig)], (1)

where Dscn(Ig) is the class membership score predicted by
the scene discriminator Dscn for a synthesized image. This
is one among several losses that we use to train S. The real
images input to Dscn are sampled from {Is}.

To train S, we use a large set of real images with
fixed and known (n) number of objects in each real image
{Is} without any requirement of bounding box annotations.
Since we know n (in our case one object per image), while
training S we can synthesize images with the same number
of objects to pass to the discriminator, making it easier to
train the generator. Having a single object image collection
is not a requirement to train S and it has been shown in [37]
that it can be trained successfully with 2 or more objects
per image. However, having a large image collection {Is}
with known number of objects is crucial for training S. Our
attempts to train it with a target image collection {It} of
city driving scenes, e.g. KITTI, with unknown number of
objects per image were unsuccessful (details in supplemen-
tary material Sec. 4).

2
D

 C
o

n
v

2D
Project

Scene
Compose

3D 
Transform

3D 
Code

Foreground 1

Style1 Pose1

3
D

 C
o

n
v

(𝑣𝑏 , 𝑙𝑏)

3
D

 C
o

n
v

3D 
Code

Background

Style Pose

3D Box
Projection

Compute
2D Box

Synthesized Image

3D 
Transform

𝑧𝑏

𝑧𝑓 (𝑣𝑓, 𝑙𝑓)MLP

MLP

3D 
Transform

3D 
Code 3

D
 C

o
n

v

MLPStyle2 𝑧𝑓

Foreground 2

(𝑣𝑓, 𝑙𝑓)Pose2

3D Box
Projection

Compute
2D Box

𝐼𝑔

𝐴𝑔Annotation

𝐴𝑔Annotation

Figure 3. Pose-Aware Synthesis Network (S) Overview. S takes
as input separate style codes (z) and poses (v, l) for the back-
ground and one/more foreground objects; transforms their respec-
tive learned 3D codes with the provided poses; and synthesizes
images after passing them through several 3D convolutional, 2D
projection and 2D convolutional layers. We use the provided poses
to compute 2D bounding box labels for the synthesized objects.

3.3.1 Obtaining Bounding Box Annotations
The synthesis network S can generate a foreground object
using a pose (vf , lf ). This key property allows us to local-
ize the object in the synthesized image and to create a 2D
bounding box (BBox) annotation for it. We use the mean
3D bounding box (in real-world dimensions) of the object
class and project it forward onto the 2D image plane using
S’s known camera matrix and the object’s pre-defined pose
(vf , lf ) via perspective projection. The camera matrix is
fixed for all synthesized images. We obtain the 2D bound-
ing box Ag for the synthesized image Ig by computing the
maximum and minimum coordinates of the projected 3D
bounding box in the image plane. This procedure is illus-
trated in Fig. 3. The paired data 〈Ig, Ag〉 can then be used
to train the object detection network F .

3.4. Object Detection Adaptation
We introduce a set of objectives, which supervise S to

synthesize images that are optimal for learning object de-
tectors. These include an (a) object detection loss and (b) a
multi-scale object synthesis loss, which we describe next.

3.4.1 Object Detection Loss
In our setup, we tightly couple the object detection network
F to S such that it provides feedback to S (Fig. 2(b)). The
object detection network F is a standard Feature Pyramid
Network [32], which takes 2D images as input and pre-
dicts bounding boxes for the object. It is trained using the
standard object detection losses (Ldet ) [32]. While training
SSOD, we compute the object detection loss Ldet for the
image-annotation pairs 〈Ig,Ag〉 synthesized by S and use it
as an additional loss term for updating the weights of S.

3.4.2 Multi-scale Object Synthesis Loss
It is important for S to be able to synthesize high qual-
ity images at varied object depths/scales, such that F can
be optimally trained with diverse data. Hence, to extend

8612



the range of depths for which S generates high-quality ob-
jects, we introduce a multi-scale object synthesis loss, Lmso

(Fig. 2(b)). To compute it, we use a synthesized image Ig’s
bounding box Ag and crop (in a differentiable manner) an
image Ic using a dilated version of Ag with a unit aspect
ratio such that the context around the object is considered.
Further, we resize Ic to 256 × 256. We then pass Ic to a
multi-scale object discriminatorDmso. This makes the gen-
erated images match the appearance of the real images, with
less surrounding background and simultaneously improves
image quality. The real images input to Dmso are images
from the source collection {Is}, also of size 256×256. The
multi-scale object synthesis loss, Lmso is then given by:

Lmso = −EIc∼psynth
[Dmso(Ic)], (2)

where Dmso(Ic) is the realism score predicted by Dmso for
the image crop Ic.

3.5. Target Data Adaptation
We train S with single-object images {Is} acquired from

a collection, which do not necessarily come from the final
target domain. Hence, there may be a domain gap between
the images synthesized by S and those from the target do-
main (see examples in Fig. 1 and Fig. 4). This makes F ,
trained on images synthesized by S, perform sub-optimally
on the target domain. To address this, we introduce a target
data adaptation module (Fig. 2(c)), whose focus is to adapt
S such that it can synthesize images closer to the target data
distribution. It uses foreground and background appearance
losses to supervise training of S, which make the synthe-
sized images match the target domain. Additionally, it con-
tains an object scale adaption block to match the scale of
synthesised objects to the ones in the target domain. We
align the synthesized data to the distribution of the target
dataset without using any bounding box annotations. We
describe these various components in detail.
3.5.1 Foreground Appearance Loss
We compute the foreground appearance loss Lfg via a
patch-based [21] discriminator Dfg (Fig. 2(c)). It takes
the synthesized image-annotation pair 〈Ig, Ag〉 as input and
predicts a 2D class probability map, ĉfg = Dfg(Ig), where
ĉfg is the patch-wise realism score for the synthesized im-
age Ig . The foreground appearance loss (Lfg ) for the syn-
thesis network S is given by:

Lfg = −EIg∼psynth
[ĉfg] ∗Mg, (3)

where ∗ indicates element-wise multiplication. Mg masks
the loss to be computed only for the foreground region of
the synthesized image. The real images used to train this
discriminator come from the target collection {It}. We ac-
quire them by using the pre-trained object detection net-
work F created during the first phase of uncoupled train-
ing (described in Sec. 3.2). Specifically, we infer bound-
ing boxes for the images in the target dataset {It} using the

pre-trained F and select a subset of images {Pt} with de-
tection confidence >0.9. This forms an image-annotation
pair 〈Pt,Mt〉, where Mt is the corresponding binary mask
for the detected foreground objects in image Pt. The loss
for training the discriminator Dfg is computed as:

Ldfg
= −EIt∼preal

[ct] ∗Mt + EIg∼psynth
[ĉfg] ∗Mg, (4)

where ct is the patch-wise classification score predicted by
Dfg for a real image.

3.5.2 Background Appearance Loss
The background discriminator Dbg is also a patch-based
discriminator (Fig. 2(c)), which predicts the realism of the
background region in Ig with respect to the target data {It}.
We compute the background mask by inverting the binary
foreground mask Mg . The background appearance loss for
the synthesis network, S is given by

Lbg = −EIg∼psynth
[ĉbg] ∗ (1−Mg), (5)

where ĉbg = Dbg(Ig) predicts the patch-wise realism score
for the background region of the generated image.

The real images used to train Dbg are obtained by identi-
fying patches in the target collection {It} where no fore-
ground objects are present. To this end, we leverage
pre-trained image classification networks and class-specific
gradient-based localization maps using Grad-CAM [46].
Through this, we identify patches {Ibt} in the target collec-
tion {It} that do not contain the object of interest. They
serve as real samples of background images used to train
Dbg . The loss for training Dbg is computed as:

Ldbg
= −EIb

t∼preal
[cbt ] + EIg∼psynth

[ĉbg] ∗ (1−Mg), (6)

where cbt is the patch-wise classification score predicted by
Dbg for a real image.

With Lfg and Lbg we only update the components of S
that affect its style and appearance. These include (a) the
parameters of the MLP blocks (Fig. 3), which modify the
foreground and background style codes and (b) the weights
of 2D convolution layers. The foreground and background
patches are obtained from the synthesized images using the
annotations computed by our method (Sec. 3.3.1). Empir-
ically, we observe this is effective enough in learning the
foreground and background distributions of the target do-
main.

3.5.3 Object Scale Adaptation
We also find the optimal set of the object depth parameters
that should be input into S to achieve the best performance
on the target domain via this module. To this end, we use
S to synthesize image-annotation pairs 〈Idr

g , Adr
g 〉 for mul-

tiple different object depth ranges Θ={dr} and also obtain
{αdr}, which is the collection of cropped synthesized ob-
jects. Depth d is one of the components of the location pa-
rameter l used to specify the synthesized object’s pose. We

8613



sample depth values uniformly within each depth range dr.
For each depth range dr, we train a detector Fdr with its
corresponding synthetic data 〈Idr

g , Adr
g 〉. We use Fdr to de-

tect all object bounding boxes {βdr} in the target collection
{It}, which have confidence >0.85. Finally we compute
the optimal input depth interval for synthesis as:

do = argmin
di

H(Φ(αdi),Φ(βdi)), (7)

where Φ computes the conv5 features of a pre-trained im-
age classification VGG [48]) network andH is the Sinkhorn
distance [9] between the two feature distributions. We use
a single corresponding detector trained with the optimum
depth range do for the final evaluation on the target test data.

3.6. Training Procedure
We adopt a stage-wise training strategy to learn SSOD.

Uncoupled Training. We first pre-train S andF separately.
We train the generator S, supervised by the discriminators
Dscn and Dmso, using the source collection {Is} only. We
then synthesize images with S containing 1 or 2 objects and
compute their labels. We use them, along with real back-
ground regions extracted from the target data {Ibt} using
Grad-CAM [46] (described in Sec. 3.5.2) to pre-train F .
Coupled Training. During this stage we couple all the net-
works together in an end-to-end manner and fine-tune them
together with source {Is} and target {It} collections, and
the data synthesized by S. We also adapt SSOD to the tar-
get data in this stage. We use a GAN-like training strategy
and alternatively train S in one iteration and all other net-
works Dscn, F , Dmso, Dfg and Dbg in the next one. Here
S is supervised by all other modules and the total loss for
training it is:

Lsyn =λscn Lscn + λmso Lmso + λdet Ldet

+ λfg Lfg + λbg Lbg ,
(8)

where {λi} are the relative weights of the various losses.
Lastly, as discussed in Sec. 3.5.3 we find the optimal set of
input object depth parameters for S that align synthesized
data further to the target distribution.

4. Experiments
We validate SSOD for detecting “car” objects in outdoor

driving scenes. We assess quantitative performance using
the standard mean Average Precision (mAP) metric at an
Intersection-Over-Union (IOU) of 0.5. We provide network
architecture and training details in the supplementary.

4.1. Datasets and Evaluation
We use three datasets containing images of car objects

to train and evaluate SSOD: (a) the Compcars dataset [52]
as the single-car source dataset and (b) two multi-car
KITTI [15] and Cityscapes [8] target datasets containing
outdoor driving scenes. During training, we do not use
bounding box annotations for any of these datasets.

Compcars. The Compcars dataset [52] is an in-the-wild
collection of 137,000 images with one car per image. It
provides good diversity in car appearances, orientations and
moderate diversity in scales (see examples Fig. 1). We use it
as the source image collection {Is} to train our controllable
viewpoint-aware synthesis network S .
KITTI. The challenging KITTI [15] dataset contains 375×
1242 sized outdoor driving scenes with zero or multiple
cars per image with heavy occlusions, reflections and ex-
treme lighting (see examples in Fig. 1). We use it as one
of our target datasets {It}. We split it into disjoint training
(6000 unlabeled images) and validation (1000 labeled im-
ages) sets. We report the mAP for Easy, Medium and Hard
and all cases [15] of the its validation set.
Cityscapes. Similarly to KITTI, we also evaluate SSOD
on the challenging Cityscapes [8] outdoor driving target
dataset with images of size 512× 1024. We use the version
provided by [12] containing bounding box annotations. We
split it into disjoint training (3000 unlabeled images) and
validation (1000 labeled images) sets as provided in [12].

4.2. Ablation Study
We conduct ablation studies on the KITTI dataset to

evaluate the contribution of each individual component of
SSOD (Table 1). We evaluate object detection perfor-
mance using mAP, and compute SinkHorn [9], KID [5] and
FID [19] scores to compare the appearance of the synthe-
sized foreground objects to objects in KITTI.
Quality of annotations Firstly, we estimate the accuracy
of annotations obtained from our pipeline. For 260 im-
ages synthesized by the generator, we manually annotate
the bounding boxes and measure the mAP between them
and the annotations by our pipeline. It is 0.95 at an IoU of
0.5, which is reasonable for learning object detectors.

Uncoupled Training. We evaluate the efficacy of simply
training the object detector F with images synthesized by
S, when each of these networks is trained separately with-
out coupling. We compare the original BlockGAN [37]
with an image resolution of 64 × 64 to two of its variants
with image resolutions 128 × 128 and 256 × 256 that we
train as described in Sec. 3.3. The results are shown in
the top three rows of Table 1. They indicate that synthe-
sized foreground objects at higher resolutions improve the
Sinkhorn, KID and FID metrics, which, in turn, translate
to corresponding gains in the object detector’s performance
as well. The improvements in visual quality achieved by
higher resolution synthesis are also evident in the first two
columns of Fig. 4. We further observed that training the de-
tector without background target images found with Grad-
CAM results in false positive detections and reduces mAP
from 56.5 to 51.6.

Coupled Training. Next, we evaluate the performance
of variants of SSOD trained with coupled synthesis (S)

8614



Method Coupled Easy ↑ Medium ↑ Hard ↑ All ↑ Sinkhorn [9] ↓ KID [5] ↓ FID [19] ↓

BlockGAN [37] 64 7 65.1 48.3 40.5 51.3 0.486 0.048 8.3
BlockGAN [37] 128 7 69.4 49.9 44.2 54.5 0.483 0.046 7.8
BlockGAN [37] 256 7 72.7 52.1 44.8 56.5 0.481 0.045 7.61

SSOD w/o Lfg + Lbg X 74.7 59.3 52.7 62.2 0.475 0.042 7.22
SSOD w/o Lmso X 78.3 65.6 53.5 65.8 0.471 0.040 6.86
SSOD w/o OSA X 76.1 61.3 50.9 62.7 0.475 0.042 7.23

SSOD-Full X 80.8 68.1 56.6 68.4 0.465 0.037 6.37
Table 1. Ablation study on KITTI. Rows 1-3: BlockGAN in S trained without coupling to the detector at different image resolutions;
rows 4-6: different ablated versions of SSOD each with one component removed; and row 7: full SSOD model. Columns 1-3: mAP value
at IOU 0.5 for KITTI’s Easy, Medium, Hard and All cases; and columns 4-6: Sinkhorn, KID, and FID scores to compare object regions in
synthesized and real-world KITTI images.

and object detection (F) networks. We evaluate four vari-
ants of SSOD: (a) without the target data appearance adap-
tion losses described in Sec. 3.5 (SSOD w/o Lfg + Lbg );
(b) without the multi-scale object synthesis loss Lmso de-
scribed in Sec. 3.4 (SSOD w/o Lmso); (c) without adap-
tation to the target dataset’s object scales as described in
Sec. 3.5 (SSOD w/o OSA); and (d) the full SSOD model
(SSOD-full). We observe that, across the board, all variants
of SSOD trained with a coupled detector (bottom four rows
of Table 1) perform significantly better than those without
(top three rows of Table 1). This result verifies the useful-
ness of our proposed end-to-end framework, which adapts
the synthesis network S to both the downstream task of ob-
ject detection as well as to the target dataset’s distribution.
The best performance, overall, is achieved by our full SSOD
model with the highest mAP score of 68.4. Removing each
of our individual proposed modules for target data appear-
ance adaptation (SSOD w/o Lfg + Lbg ), target object scale
adaptation (SSOD w/oOSA) and multi-object scale synthe-
sis (SSOD w/o Lmso) from SSOD-Full result in a reduction
in its performance, with the target data appearance adaption
model affecting SSOD’s detection accuracy the most.
Qualitative Analysis. We qualitatively evaluate the effect
of our proposed losses on the images synthesized by S. In
each row of Fig. 4 we show images synthesized with the
same foreground and background style codes, but with vari-
ants of the network S trained with a different set of losses in
each column. Columns 2-4 are at a resolution of 256×256.
We vary the foreground and background style codes across
the rows. All objects are synthesized at a large depth from
the camera. Fig. 4(a) shows the images synthesized by the
original BlockGAN [37] at a resolution of 64 × 64 suffers
from poor quality. Fig. 4(b) shows the synthesized images
by our method when trained with the coupled object detec-
tor at higher resolution, leads to better visibility. By adding
target data appearance adaptation losses (Lfg + Lbg ), im-
ages (Fig. 4(c)) match the appearance of target distribution.
Finally, adding the multi-scale object synthesis loss Lmso

leads to the best result (high visual quality and appear-

SSOD-Full
𝐿𝑚𝑠𝑜𝐿𝑓𝑔

SSOD w/o
𝐿𝑏𝑔+

BlockGAN SSOD w/o
𝐿𝑚𝑠𝑜+

(a) (b) (c) (d)

Figure 4. Qualitative analysis of image synthesis. The columns
show images generated by (a) BlockGAN [37] at 64× 64; and by
S for (b) SSOD trained without Lfg , Lbg , and Lmso ; (c) SSOD
trained without Lmso ; and (d) the full SSOD model. Each row has
images generated with the same pose, and foreground and back-
ground style codes. Rows (b)-(d) show 256× 256 sized images.

ance alignment to the target distribution). These qualita-
tive results corroborate with their quantitative counterparts:
Sinkhorn, KID and FID metrics in Table 2.
4.3. Comparisons to State-of-the-Art

On the KITTI dataset, we compare SSOD to existing
methods, Wetectron [42] and PCL [49], capable of train-
ing object detectors without requiring bounding box anno-
tations. These methods similar to SSOD, train object de-
tectors solely with unlabeled image collections. They also
do not use 3D CAD models and hence are the most directly
comparable methods to SSOD. Wetectron [42] is the best-

8615



Method 3D Assets Easy↑ Medium↑ Hard↑ All↑
PCL [49] 7 47.3 32.9 19.4 33.2
Wetectron [42] 7 51.3 37.9 25.1 38.1
SSOD-Full (ours) 7 80.8 68.1 56.6 68.4

Meta-Sim* [26] X 65.9 66.3 66.0 66.0
Meta-Sim2 [10] X 67.0 67.0 66.2 66.7

Table 2. Comparisons to SOTA. Object detection performance
(mAP at IOU 0.5) on KITTI of SSOD and various SOTA methods.

performing prior method. We train Wetectron and PCL with
a combination of Compcars [52] and KITTI’s [15] training
set; use image-level labels for the presence/absence of the
object; get object proposals from Edgeboxes [57]; and eval-
uate it on KITTI’s validation set. The results are in Table 2.
Compared to Wetectron (mAP of 38.1 for All) and PCL
(mAP of 33.2 for All), SSOD (mAP of 68.4 for All) has
∼2X better detection accuracy. We believe that SSOD’s su-
perior performance results from its use of a pose-aware syn-
thesizer to generate data for training object detectors. The
GAN improves the training data’s diversity and also opti-
mally adapts to the task of object detection on target data.

We also compare SSOD to SOTA rendering-based meth-
ods Meta-Sim [26] and Meta-Sim2 [10]. They train object
detectors purely using synthetically rendered data and eval-
uate on unlabeled real-world datasets. They require large
libraries of 3D CAD models and hence use strong geomet-
ric priors. In contrast, SSOD does not use any 3D CAD
assets. In fact, its synthesis network can be viewed as a
controllable renderer learned only from object image col-
lections without geometric priors. Interestingly, even with-
out using any strong geometric priors, SSOD surpasses both
Meta-Sim and Meta-Sim2 for Easy, Medium and All cases
in KITTI (Table 2). For Hard cases, SSOD performs lower
than Meta-Sim and Meta-Sim2, mostly due its low image
quality for occluded objects and its lower 2D bounding box
label precision (see Sec. 4.5). Nevertheless, it is exciting
that even without using 3D assets and by merely learning
from image collections, SSOD can compete with rendering-
based methods, which require significant supervision.

4.4. Additional Dataset
An advantage of SSOD is that it can adapt to different

target datasets. To validate this, we additionally evaluate
it’s performance on Cityscapes [8]. We evaluate the full
SSOD model trained on Compcars and Cityscapes; its ab-
lated versions with specific individual components removed
(as described in Sec. 4.2 – Coupled Training); BlockGAN
in S not coupled with the detector and trained with Comp-
cars only; and the competing Wetectron method trained on
Compcars and Cityscapes (Table 3). Similar to KITTI, for
Cityscapes too, SSOD-Full achieves the best performance

*We report detection accuracy values for the version of Meta-Sim that
does not use labeled validation images from the KITTI [15] dataset.

Method mAP↑ Sinkhorn↓
Wetectron [42] 18.2 0.549
BlockGAN [37] 256 22.7 0.531
SSOD w/o Lfg + Lbg 27.2 0.520
SSOD w/o Lmso 28.5 0.515
SSOD w/o OSA 29.1 0.514

SSOD-Full 31.3 0.506
Table 3. Performance on Cityscapes. Object detection perfor-
mance (mAP at IOU 0.5) and synthetic data quality analysis
(Sinkorn) on Cityscapes.

Figure 5. Precision-recall curves on KITTI. Curves for SSOD
with IOU thresholds of 0.5 (bold lines) and 0.45 (dashed lines).

(mAP of 31.3). Removing Lfg + Lbg , which help adapt
SSOD to Cityscapes, affects its performance the most. All
variants of SSOD jointly trained with the detector perform
better than the uncoupled BlockGAN in S. SSOD-Full also
performs significantly better than Wetectron (mAP of 18.2).

4.5. Discussion on Results
SSOD suffers from low recall for the Hard cases in

KITTI as it fails to detect heavily occluded cars (exam-
ples in supplementary material). Fig. 5 shows SSOD’s
precision-recall curves on KITTI for IOU thresholds: 0.5
(solid) and 0.45 (dashed). Also, with a lower IOU threshold
of 0.45 its mAP improves: 80.8 to 83.5 (Easy), 68.1 to 73.2
(Medium) and 56.6 and 63.6 (Hard). This indicates that im-
proving the precision of the synthesized objects’ bounding
boxes labels can lead to improvements in SSOD’s perfor-
mance.

5. Conclusion
SSOD is the first work to leverage controllable GANs

to learn object detectors in a self-supervised manner with
unlabelled image collections. It not only opens up an ex-
citing new research paradigm in the area, but also shows
that significant detection accuracy can be achieved by using
controllable image synthesis. Controllable GANs are able
to synthesize data with diversity and realism to train ob-
ject detectors. They also allow the flexibility to adapt them
optimally via end-to-end training to the downstream detec-
tion task and target domains. With the rapid progression
of controllable GANs, we envision that the gains acquired
there would lead to further improvements on GAN-based
self-supervised object detection.

8616



References
[1] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In CVPR, 2014. 2
[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In ICML, 2017.
4

[3] Adam Bielski and Paolo Favaro. Emergence of object seg-
mentation in perturbed generative models. In NeurIPS, 2019.
2

[4] H. Bilen and A. Vedaldi. Weakly supervised deep detection
networks. In CVPR, 2016. 2

[5] Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel,
and Arthur Gretton. Demystifying MMD GANs. In ICLR,
2018. 6, 7

[6] Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-
tual KITTI 2. arXiv.org, 2020. 2

[7] Edo Collins, Radhakrishna Achanta, and Sabine Susstrunk.
Deep feature factorization for concept discovery. In ECCV,
2018. 2

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 2, 6, 8

[9] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS, 2013. 6, 7

[10] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-
sim2: Learning to generate synthetic datasets. In ECCV,
2020. 1, 2, 8

[11] Sébastien Ehrhardt, Oliver Groth, Aron Monszpart, Mar-
tin Engelcke, Ingmar Posner, Niloy J. Mitra, and Andrea
Vedaldi. RELATE: Physically plausible multi-object scene
synthesis using structured latent spaces. NeurIPS, 2020. 2

[12] Nils Gählert, Nicolas Jourdan, Marius Cordts, Uwe Franke,
and Joachim Denzler. Cityscapes 3d: Dataset and benchmark
for 9 dof vehicle detection. In CVPR Workshops, 2020. 6

[13] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. In CVPR, 2016. 2

[14] Yan Gao, Boxiao Liu, Nan Guo, Xiaochun Ye, Fang Wan,
Haihang You, and Dongrui Fan. C-midn: Coupled multiple
instance detection network with segmentation guidance for
weakly supervised object detection. In ICCV, 2019. 2

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the KITTI vision benchmark
suite. In CVPR, 2012. 1, 2, 6, 8

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 1

[17] Paul Henderson and Vittorio Ferrari. Learning single-image
3D reconstruction by generative modelling of shape, pose
and shading. IJCV, 2019. 2

[18] Paul Henderson, Vagia Tsiminaki, and Christoph Lampert.
Leveraging 2D data to learn textured 3D mesh generation.
In CVPR, 2020. 2

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local nash equi-
librium. In NeurIPS, 2017. 6, 7

[20] Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo
Molchanov, Ming-Hsuan Yang, and Jan Kautz. Scops:
Self-supervised co-part segmentation. In CVPR, 2019. 2

[21] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. CVPR, 2017. 5

[22] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea
Vedaldi. Unsupervised learning of object landmarks through
conditional image generation. In NeurIPS, 2018. 1, 2

[23] Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, and Wei
Liu. Deep self-taught learning for weakly supervised object
localization. In CVPR, 2017. 2

[24] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In ECCV, 2018. 2

[25] Vadim Kantorov, Maxime Oquab, Minsu Cho, and Ivan
Laptev. Contextlocnet: Context-aware deep network mod-
els for weakly supervised localization. In ECCV, 2016. 2

[26] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,
and Sanja Fidler. Meta-sim: Learning to generate synthetic
datasets. In ICCV, 2019. 1, 2, 8

[27] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. In ICLR, 2018. 4

[28] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 4

[29] Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani.
Canonical surface mapping via geometric cycle consistency.
In ICCV, 2019. 2

[30] Xueting Li, Sifei Liu, Shalini De Mello, Kihwan Kim, Xi-
aolong Wang, Ming-Hsuan Yang, and Jan Kautz. Online
adaptation for consistent mesh reconstruction in the wild. In
NeurIPS, 2020. 2

[31] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Varun
Jampani, Ming-Hsuan Yang, and Jan Kautz. Self-supervised
single-view 3d reconstruction via semantic consistency. In
ECCV, 2020. 2

[32] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 1, 4

[33] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[34] Siva Karthik Mustikovela, Varun Jampani, Shalini De Mello,
Sifei Liu, Umar Iqbal, Carsten Rother, and Jan Kautz. Self-
supervised viewpoint learning from image collections. In
CVPR, 2020. 1, 2

[35] K L Navaneet, Ansu Mathew, Shashank Kashyap, Wei-Chih
Hung, Varun Jampani, and R Venkatesh Babu. From image
collections to point clouds with self-supervised shape and
pose networks. In CVPR, 2020. 2

8617



[36] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. Hologan: Unsupervised
learning of 3d representations from natural images. In ICCV,
2019. 1, 2

[37] Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-
Liang Yang, and Niloy Mitra. Blockgan: Learning 3d object-
aware scene representations from unlabelled images. In
NeurIPS, 2020. 1, 2, 3, 4, 6, 7, 8

[38] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In CVPR, 2021. 1, 2

[39] Aayush Prakash, Shaad Boochoon, M. Brophy, David
Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and
Stan Birchfield. Structured domain randomization: Bridging
the reality gap by context-aware synthetic data. ICRA, 2019.
2

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In NeurIPS, 2015. 1

[41] Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-
Yu Liu, Yong Jae Lee, Alexander G. Schwing, and Jan
Kautz. Instance-aware, context-focused, and memory-
efficient weakly supervised object detection. In CVPR, 2020.
1, 2

[42] Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-Yu
Liu, Alexander G. Schwing, and Jan Kautz. Ufo2: A uni-
fied framework towards omni-supervised object detection. In
ECCV, 2020. 1, 2, 7, 8

[43] Stephan R. Richter, Zeeshan Hayder, and Vladlen Koltun.
Playing for benchmarks. In ICCV, 2017. 2

[44] Gernot Riegler and Vladlen Koltun. Stable view synthesis.
In ECCV, 2021. 2

[45] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In NeurIPS, 2020. 1, 2

[46] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, 2017. 5, 6

[47] Yunhan Shen, Rongrong Ji, Shengchuan Zhang, Wangmeng
Zuo, and Yan Wang. Generative adversarial learning towards
fast weakly supervised detection. In CVPR, 2018. 2

[48] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 6

[49] Peng Tang, Xinggang Wang, Song Bai, Wei Shen, Xiang Bai,
Wenyu Liu, and Alan Yuille. PCL: Proposal cluster learning
for weakly supervised object detection. TPAMI, 2018. 2, 7,
8

[50] J. Thewlis, H. Bilen, and A. Vedaldi. Unsupervised learning
of object landmarks by factorized spatial embeddings. In
ICCV, 2017. 1, 2

[51] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M.
Smeulders. Selective search for object recognition. IJCV,
2013. 2

[52] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang.
A large-scale car dataset for fine-grained categorization and
verification. In CVPR, 2015. 1, 6, 8

[53] Zhaoyang Zeng, Bei Liu, Jianlong Fu, Hongyang Chao, and
Lei Zhang. Wsod2: Learning bottom-up and top-down ob-
jectness distillation for weakly-supervised object detection.
In ICCV, 2019. 1, 2

[54] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv.org, 2020. 2

[55] Xiaopeng Zhang, Jiashi Feng, Hongkai Xiong, and Qi Tian.
Zigzag learning for weakly supervised object detection. In
CVPR, 2018. 2

[56] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He,
and Honglak Lee. Unsupervised discovery of object land-
marks as structural representations. In CVPR, 2018. 1, 2

[57] Larry Zitnick and Piotr Dollar. Edge boxes: Locating object
proposals from edges. In ECCV, 2014. 1, 2, 8

8618


