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Abstract

Understanding videos to localize moments with natural
language often requires large expensive annotated video re-
gions paired with language queries. To eliminate the an-
notation costs, we make a first attempt to train a natu-
ral language video localization model in zero-shot man-
ner. Inspired by unsupervised image captioning setup, we
merely require random text corpora, unlabeled video collec-
tions, and an off-the-shelf object detector to train a model.
With the unpaired data, we propose to generate pseudo-
supervision of candidate temporal regions and correspond-
ing query sentences, and develop a simple NLVL model
to train with the pseudo-supervision. Our empirical vali-
dations show that the proposed pseudo-supervised method
outperforms several baseline approaches and a number of
methods using stronger supervision on Charades-STA and
ActivityNet-Captions.

1. Introduction

On increasing demands of understanding videos to
search with natural language queries, natural language
video localization (NLVL) has been actively investigated in
recent literature [19,35,39,43,44,57]. The task targets to lo-
calize a temporal moment in a video by a natural language
query. In recent years, significant performance improve-
ments on benchmark datasets has been made, facilitated by
the advances on deep learning methods [19, 39, 43, 45] and
massively annotated data [2, 19, 26, 37, 58].

As illustrated in Fig. 1-(a), the annotations consist of a
temporal region in a video (start time, end time) and a cor-
responding query sentence. However, obtaining such paired
annotation is laborious and expensive. To alleviate the an-
notation cost, a number of recent works addressed weakly-
supervised setup of NLVL [12, 21, 33] which aims to lo-
calize a moment without the temporal alignment of given
query sentence. Although it eliminates the annotation cost

∗: equal contribution. †: corresponding author. § now at U. of Minnesota,
Twin Cities. Code: https://github.com/gistvision/PSVL

(a) Fully-supervised NLVL (b) Weakly-supervised NLVL

(c) Unsupervised Image Captioning (d) Zero-shot NLVL

Text Corpora

Image collection Video collection

Query

Video + Temporal region {ts, te}
 

Video

Object detector Text Corpora Object detector

the person pours some water
into the glass

Query
the person pours some water
into the glass

Video

Figure 1: Tasks with different levels of supervision. (a) Super-
vised NLVL (queries and temporal regions on video) (b) Weakly-
Supervised NLVL [21,33] (query on videos) (c) Unsupervised Im-
age Captioning [15,29] (on images) (d) Proposed Zero-shot NLVL
(on videos).

of specifying start and end points of the query sentence in
video (illustrated in Fig. 1-(b)), the remaining cost of anno-
tating natural language query is still considerable [15].

To avoid the costly annotations, we propose zero-shot
NLVL (ZS-NLVL) task setup which aims to learn an NLVL
model without any paired annotation, the first in the litera-
ture to our best knowledge. Inspired by [15, 29] addressing
an image captioning task only with unpaired images, nat-
ural language corpora, and an object detector (Fig. 1-(c)),
we propose to train an NLVL model by leveraging easily
accessible unpaired data including videos, natural language
corpora, and an off-the-shelf object detector, with no knowl-
edge about video data to localize [3, 15]. We depict the
given data for the zero-shot NLVL setup in Fig. 1-(d).

To address this task, we approach to generate pseudo-
supervision of candidate temporal regions in video and cor-
responding sentences to train an NLVL model. The pseudo-
supervision approach has several benefits as follows. First,
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it provides interpretable resources (i.e., generated regions
and sentences) to train an NLVL model. Second, the
pseudo-supervision can serve as initial annotation sugges-
tions to human labelers to reduce the annotation cost or
to accelerate the annotation process. Finally, the pseudo-
supervision can be readily applicable to the existing ‘fully
supervised’ NLVL models (Sec. 4.1.3).

Generating the pseudo supervision for NLVL involves
two challenges: 1) finding meaningful temporal regions to
be possibly queried and 2) obtaining corresponding query
sentences for the temporal regions found. To find the possi-
ble temporal regions, we propose to cluster visual informa-
tion (Sec. 3.1). Once we have the candidate (predicted) tem-
poral regions, we obtain the corresponding (paired) query
sentences. For that, we propose to find nouns visible in the
frame by the off-the-shelf object detector and predict verbs
that are likely appearing together with the detected objects
by exploiting noun-verb statistical co-occurrence patterns
from the language corpora (Sec. 3.2). We call the set of
nouns and verbs as a pseudo query.

Since the pseudo query is structure-less unlike the nat-
ural language queries from the supervised data and not all
the proposed event regions might be meaningful, we fur-
ther propose a simple NLVL model which is better suited to
such pseudo-supervision. We call this framework of train-
ing an NLVL model with the temporal region proposals and
pseudo-query generation, as Pseudo-Supervised Video Lo-
calization or PSVL (Sec. 4.1).

Our empirical studies show that our PSVL exhibits
competitive accuracy, sometimes outperforming the models
with stronger supervision on widely used two benchmarks.

We summarize our contributions as follows:

• We propose the first zero-shot NLVL task.
• We propose an pseudo supervising framework (PSVL)

to predict temporal event regions and corresponding
query sentences from a video.

• We propose a simple NLVL model architecture.
• We establish baselines for the zero-shot NLVL task

and compare it with stronger supervision.

2. Related Work
Natural language video localization. Early NLVL works
studied relatively constrained environments, such as only
cooking events [41]. Recently, large scale, unconstrained
NLVL datasets such as Charades-STA [19], ActivityNet-
Captions [26] has been appeared. And facilitated by them,
there have been advances in deep learning techniques [6,19,
35, 45, 57], notably in attentive models [39, 43, 44].

However, as the annotations for NLVL are expen-
sive, some literature address weakly-supervised setup of
NLVL [12,21,33,38] (WS-NLVL) to alleviate the temporal
event annotation. There are various ways to tackle the prob-
lem, such as training WS-NLVL as a part of training video

captioning [12], building joint visual-semantic embedding
framework [38], or selecting among event region propos-
als [21, 33]. However, although they successfully reduced
the temporal annotation cost, the remaining cost of natural
language query is still considerable. In contrast, our zero-
shot NLVL eliminates both annotations.

Action recognition without annotation. There have
been several attempts to classify and localize temporal ac-
tions without annotations about actions. Zero-shot action
recognition works et al. [10, 11, 20, 25, 55] tackled recog-
nizing pre-defined action categories from a video without
action labels. Addressing the problem, a number of re-
cent works exploitted object-action co-occurrence patterns
from large corpora [10, 11, 25]. These works share simi-
larity with our pseudo-query generation as they utilize co-
occurrence patterns of objects and actions. However, our
pseudo-supervision generation is more challenging because
of the several assumptions they made; they assume the
ground truth object labels to be already annotated for the tar-
get dataset, action categories to be pre-defined, and videos
to be already trimmed according to the ground truth event
region [10, 11]. Another line of the works that recognize
(or localize) actions without annotated actions is mining ac-
tion annotations from web [8, 17, 18, 48, 50, 56]. They en-
able labor-free training of action recognition models [18],
but they have potential issues on privacy [14, 51], and often
assume weak-level annotations [48, 50] to be exist.

Meanwhile, Soomro et al. [47] proposed unsupervised
action discovery task to localize actions using only video
collections. Jain et al. [24] utilized abruptly changing 3D-
CNN features to find atomic actions which is combined to
compose complex actions. The task that both Soomro et
al. and Jain et al. addresses is similar with our temporal
event proposal for generating pseudo-supervisions, but they
assume the action classes to be pre-defined and they do not
consider relating the actions to language queries.

Grounded language generation. Generating natural lan-
guage sentences from unlabeled data (e.g. sentences with
other language, images) addresses similar tasks to our
pseudo-query generation. Unsupervised neural machine
translation [3,30,31] tackled training neural machine trans-
lation model without parallel corpora. They partially share
the same idea with our pseudo-labeling as they leverage un-
labeled sentences for each language to translate. Motivated
by the unsupervised neural machine translation (NMT),
[15, 29] proposed unsupervised image captioning. Our task
setup is partially inspired by this setup; they use an object
detector and the independent set of images and sentences
to train image captioning, and our zero-shot NLVL uses
an off-the-shelf object detector and the independent set of
videos and sentences. Compared to these tasks, our task is
more challenging since pseudo-supervision includes find-

1471



Video Temporal Event Proposal

Pseudo-query
Generation

Module

Text
Corpora

Temporal Event
Proposal
Module

N
LV

L 
M

od
el

Prediction

Text query
person start to
take some
medicine with
a spoon

(a
) T

ra
in

in
g

(b
) I

nf
er

en
ce

N
LV

L 
M

od
el

Start time (ts): 
End time (te): 

18.3s
25.0s

Simplified sentence

personstart
take

spoon
medicine

<verb>  <noun>

Video

personpour

water
glass

<verb>  <noun>
Simplified sentence

Event 
region1 3

2Object
Detector

Figure 2: Overview of PSVL framework for the zero-shot NLVL. The proposed framework consists of (1) ‘temporal event proposal’
(TEP), (2) pseudo-query generation (PQ) (3) a supervised NLVL model. (a) At training, pseudo-supervision composed of TEPs and
corresponding PQs as a simplified sentence (i.e., nouns and verbs) are generated to train the NLVL model. (b) At inference, a natural
sentence query is transformed to a simplified one, and temporal segment boundaries are predicted with the trained model.

ing temporal regions to be queried, in addition to just gen-
erating natural language generation. Additionally, we han-
dle videos and sentences, which is more complex than sen-
tences [3, 30, 31] and images [15, 29].

3. Approach
To learn to ground videos to language queries, unla-

beled datasets can be utilized in several ways including self-
supervised representation learning [49, 60] and generating
pseudo-supervisions [15, 32]. The self-supervised learning,
however, requires paired supervision of both modalities, but
our setup does not provide such paired annotations. Thus,
it is not readily applicable to our setup. Instead, we ap-
proach this problem by generating pseudo-supervision for
training a supervised model, by using text corpora, unla-
beled video collections and an off-the-shelf object detector.
We name this framework as Pseudo-Supervised Video Lo-
calization (PSVL) and illustrate it in Fig. 2.

The framework consists of 1) discovering temporal event
proposal, i.e., finding event boundaries (Sec. 3.1), 2) gen-
erating corresponding pseudo-query (Sec. 3.2), and 3) an
NLVL model (Sec. 3.3). One of the benefits of the frame-
work is that any supervised NLVL model such as [39] can
be used for this framework. Nevertheless, we further pro-
pose a simple NLVL model architecture that is more suit-
able to the generated pseudo-supervision.

3.1. Temporal Event Proposal

As the first stage of the framework, we discover the tem-
poral event regions of a video that are meaningful to be
queried. The key challenge here is how to define the notion
of meaningful temporal segments. We hypothesize that the
meaningful events can be selected from a pool of atomic
temporal regions that can be semantically segmented. In-
spired by [24] hypothesizing that frame-wise CNN feature
of a video changes abruptly at the event boundaries, we
want to discover the atomic events, i.e., temporal segments
containing a single event. However, the frame-wise features
used in [24] only capture the information within that frame
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Figure 3: Generating pseudo-supervision. (a) event proposal
module which uses a self-similarity matrix to cluster and propose
event regions. The more the yellow, the more similar to the corre-
sponding frames. (b) pseudo-query generation module.

but miss the contextual information of the video.
To incorporate global context in discovering events, we

propose to use a column vector of a similarity matrix of
frame-wise visual representation to encode the global infor-
mation, name as ‘contextualized feature’, similar to [13].
We illustrate the process in Fig. 3-(a). By clustering the
contextualized features with frame index using k-means, we
generate the atomic events (more details in the supplement).

Meanwhile, the query may require to localize multiple
atomic events, e.g., “the person sits then looks at the TV.”
To address it, we generate a set of composite events from
the discovered atomic events as the final ‘temporal event
proposals (TEP).’ To generate the composite events, we
populate all combinations of consecutive events, then sam-
ple a few, following a uniform distribution. This simple
approach surprisingly results in competitive NLVL accu-
racy, compared to some recent event proposal methods [24]
(Sec. 4.1.1 and more details in the supplement).
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Query Type R@0.3 R@0.5 R@0.7 mIoU

Original Sentence [39] 72.96 59.46 35.48 51.38
Original Sentence (Reprod.) 73.98 60.05 35.75 51.63

Simplified Sentence 73.20 60.22 34.30 50.99

Table 1: NLVL accuracy by different description formats on
Charades-STA using LGI model [39]. ‘Reprod.’ indicates our
reproduction of [39] by authors’ implementation1.

3.2. Pseudo-Query Generation

For each discovered temporal regions (TEP), we gener-
ate a corresponding natural language query. We observe that
the queries in most supervised datasets are descriptions of
events of the video segments, e.g., “the person holds dough-
nut then walks towards door.” Generating such descriptive
queries can be cast as video captioning [9,26,40,59], involv-
ing two challenges; 1) queries should be visually grounded
to the temporal region, and 2) queries should be semanti-
cally natural. Unfortunately, it requires a large supervised
data to train, which is not available in our setup.

Simplified sentence. Instead, we propose to generate sim-
plified sentence composed of grounded nouns and inferred
verbs, where the nouns are detected by an object detector
and the verbs are predicted from language corpora using
the grounded nouns. However, as the ‘simplified sentence’
have only nouns and verbs, is not natural.

In natural language processing (NLP) literature, frame
semantic theory [4,16] argues that an event can be expressed
as a set of linguistic units such as “frame elements” and
“lexical units”, and use them to convey representative se-
mantic meaning of the event. For example, “The person
stands up and eats pizza” can be described by “stand eat
pizza person.” Motivated by this, we relax the problem of
generating a natural sentence to generating a set of words,
which we call as a ‘simplified sentence.’

To empirically validate the effect of the sentence sim-
plification to the NLVL accuracy, we conduct an experi-
ment of converting original query sentences of the super-
vised NLVL dataset into a simplified one and train a state-
of-the-art NLVL model [39] on Charades-STA dataset.

We summarize the results in Table 1; ‘Original Sentence
(Reprod)’ and ‘Simplified Sentence’ are the performance of
the model trained with original (natural) query sentences in
the supervised data and corresponding simplified sentence,
respectively. We observe that the simplified sentence shows
compatible performance to the one with original sentence.
This empirically supports that the simplified sentence could
be an alternative for describing events for NLVL task.

We now describe how to obtain the grounded nouns and
inferred verbs for a video segment in details.

Nouns. Motivated by unsupervised image captioning [15,
29] generating nouns by detecting objects in an image,

person the wall hammer
person a wall hammer
personal wall hammer

person hit wall hammer
person repair wall hammer
person build wall hammer

VerbBERT RoBERTa

Input: person <mask> wall hammer

(ours)

Fi
ne

-tu
ne

Figure 4: Predicted verbs by RoBERTa (left) and VerbBERT
(right). From the contextual words, VerbBERT predicts verbs
while RoBERTa [34] predicts any words.

we use an off-the-shelf object detector to obtain nouns
grounded to the frames in the temporal region. Note that
the off-the-shelf object detector is not trained on the target
videos. Therefore, the object detector classes may not in-
clude the object of interest in the videos, and the detected
objects are often inaccurate; accurate localization but wrong
label, or false localization with a random label when the ob-
ject class is not present in the training dataset of the detector.
For reliable object discovery, we only use top-N frequently
detected object nouns with high confidence. We investigate
the quality of the generated nouns in the supplementary.

Verbs. For predicting verbs, we first consider using pre-
trained action recognition model, similar to the object de-
tector for nouns. However, the action labels in action recog-
nition models are much less complete to cover various ac-
tionable events in general videos.

As an alternative, motivated by the zero-shot action lo-
calization [25], we assume that actions in a temporal re-
gion would be constrained by the contextual objects. In
other words, since it is likely that both a video frame and
a language description would be commonsensical, linguis-
tic statistics would discover appropriate verbs with the sur-
rounding nouns. For instance, if there are some objects such
as ‘balls’, ‘baseball bats’ and ‘persons’, the possible verbs
would be narrowed down to ‘hitting’, ‘running’ and etc.

Based on this assumption, we propose to infer possi-
ble verbs from contextual objects by learning noun-verb
co-occurrence patterns in large text corpora. Although the
verbs may be deterministically inferred by the contextual
objects, the predicted verbs can make the model to attend
on the temporal information while objects can be attended
for frame-wise information. Note that the verb generation
of our task is more challenging than those of zero-shot ac-
tion recognition in two aspects; first, they assume a closed
set of actions to be recognized, but our problem is an open-
set problem. Second, the objects are often inaccurate in our
sentence, whereas nouns in the contextual objects of zero-
shot action recognition [25] are much less noisy.

To efficiently use the large text corpora in a probabilis-
tic model to infer the noun-verb patterns, we want to use a
language model (LM) trained on the provided text corpora.
But, for a word location, the generic language model pre-
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Figure 5: Overview of the proposed simple NLVL model. It
learned cross modal attentions on the simplified sentence and the
proposed temporal event regions to localize events.

dicts not only a verb but also other types of word that is
suitable in the context. But we only need a verb for the lo-
cation. To generate only the verbs, we propose to fine-tune
a language model (e.g., RoBERTa) to infer verbs only from
contextual object nouns, and call it as VerbBERT. We de-
scribe the details about data collection and fine-tuning pro-
cedure for the VerbBERT in the supplement for space sake.

Once VerbBERT is trained, we predict verbs with con-
textual nouns with a sentence template, following the idea
of slot-based captioning methods [28,36,49,54], which pro-
vides context words in a fixed template to predict a word at
a fixed position (also see supplement for details).

Fig. 4 illustrates a contrasting example of predicting
words by RoBERTa and our VerbBERT, showing the advan-
tages of VerbBERT. Given the contextual object nouns such
as ‘person’, ‘wall’, and ‘hammer,’ the VerbBERT predicts
plausible verbs like ‘hit’, ‘repair’, and ‘build.’

3.3. A simple NLVL Model

Although any fully supervised NLVL model can be used
for our framework, as the pseudo-supervision has less struc-
tured sentences, we further propose an NLVL model to be
better suited to the simplified sentence input. In particu-
lar, we propose a simple attentive cross-modal neural net-
work that learns the sentence structure less but focus more
on word-frame attentions as illustrated in Fig. 5. We empir-
ically show that the proposed model slightly outperforms
the state of the art NLVL model for fully supervised data,
especially in high recall regime (R@0.5 and R@0.7) with
less computational cost, in Sec. 4.1.3.

Specifically, the model consists of three parts; 1) con-
textualized feature encoding to globally encode embedding
features of video and simplified sentence input data, 2)
multi-modal cross attention network and 3) temporal atten-
tive regression to regress the temporal event region corre-
sponding to the input simplified sentence. For the multi-
modal cross attention network, we use query-guided atten-
tion dynamic filter [44,57] that fuses the multi-modal infor-

mation between video and language (Words-aware Video
Attention or WVA), and a video-guided attention filter
to learn the video-aware query embedding (Video-aware
Words Attention or VWA) followed by a multi-modal cross
attention mechanism to fuse all information (Multi-modal
Cross Attention or MCA). Then, we apply Non-Local block
(NL-Block) [52] to encode the global contextual informa-
tion obtained from the cross-attention module [39]. After
the global context features are encoded with each other, we
attend on the target temporal segments by temporal atten-
tion mechanism [39, 44]. Finally, we predict the temporal
boundary regions by a multi-layer perceptron.

Objective function. It consists of two terms; 1) temporal
boundary regression loss (Lreg) and 2) temporal attention
guided loss (Lguide) as:

Ltotal = Lreg + λLguide, (1)

where λ is a balancing parameter. Following [39], we use
the Huber loss function [23] between the predicted and
ground-truth timestamps for Lreg and use a temporal at-
tention guidance loss (Lguide) proposed in [39, 44]. More
details of the model and the objective are in the supplement.

Inference. As our model is trained with simplified sen-
tence, inference requires translating natural language query
into a simplified one. We use an off-the-shelf part-of-speech
tagger [22] to convert a sentence to the simplified one.

4. Experiments
Datasets and setups. Following [39, 43], we use
two datasets, Charades-STA [19] and ActivityNet-
Captions [26], for the NLVL task not using the annotation
for training but only for evaluations. We provide a
pre-trained Faster R-CNN [42] trained with 1,600 object
categories of Visual Genome dataset [27] that is used in [1]
as an object detector, and Flicker-description corpus [15]
as a language corpus. Further details are in the supplement.

Evaluation metrics. Following [19], we compare the re-
sults in two types of metrics: (1) Recall at various intersec-
tion over union thresholds (R@tIoU). It measures percent-
age of predictions that have larger IoU than the thresholds
(we use threshold values of {0.3, 0.5, 0.7}). (2) mean inter-
section over union (mIoU), which is an averaged temporal
IoU between the predicted and the ground-truth region.

Implementation details. Following [39, 43], we extract
visual features for each frame using the pre-trained I3D [5]
and C3D models [46], respectively. To make the video fea-
tures fixed-length, we uniformly sample 128 features from
a video. For the temporal event proposal, we use k = 5 for
k-means clustering algorithm for both datasets. We provide
a detailed analysis for different k in the supplement.
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For generating pseudo-queries, we samples top-5 objects
from the object detector and top-3 verbs from VerbBERT
to make a simplified pseudo-query. We investigate the ef-
fect of different number of nouns and verbs in the sup-
plementary material. To train the VerbBERT, we fine-tune
RoBERTa [34] with the Flicker-description corpus.

We match the size of pseudo-supervision data to that of
the original supervision, otherwise stated (Sec.4.2). The
same-sized supervision makes ours largely comparable to
the ones with stronger supervisions. We use λ = 1.0 as a
balancing parameter between losses in Eq.( 1).

Baselines. As this is the first work to address zero-shot
NLVL, we consider various baselines including 1) predict-
ing random region (Random), and ablated methods from
PSVL such as a model trained with 2) random query with
the proposed temporal event proposal (Rnd.Q+TEP), 3)
pseudo-query on random temporal regions (PQ+Rnd.T),
4) pseudo-query only with the ‘grounded nouns’ (ran-
dom verbs) on the TEP (PQ.N+TEP) and 5) pseudo-query
only with the ‘inferred verbs’ (random nouns) on the TEP
(PQ.V+TEP). We use the same NLVL model (Sec. 3.3).

As references, we further present performance of sev-
eral state-of-the-art weakly-supervised methods such as
TGA [38], WSLLN [21], and SCN [33], and fully-
supervised methods such as CTRL [19] and LGI [39].
Note that the weakly-supervised methods [21, 33, 38] are
trained with more expensive supervision (aligned pairs of
descriptions and temporal regions of a video), whereas ours
do not use such paired annotations.

4.1. Quantitative Analysis

We summarize the performance comparison to baselines
and methods with stronger supervision in Table 2. In both
datasets, clearly the baseline models are much better than
the Random method. When the event proposal module is
replaced with the temporal event proposal (TEP) and a ran-
dom query is given, NLVL task performance slightly in-
creases compared to the Random. This implies that without
good pseudo-queries, NLVL performance may suffer.

Meanwhile, the PQ+Rnd.T shows high performance
compared to the previous two baselines. This implies that
although the temporal regions are random, description by
PQ allows a model to learn some cross modal represen-
tation. When comparing PQ.N+TEP and PQ.V+TEP, we
observe that the verb plays a more important role than the
noun for the NLVL performance. We believe that this is be-
cause the verb contains relationship among contextual ob-
jects when describing a temporal region. Our full model
(PQ+TEP) outperforms all baselines by significant margins.

Interestingly, PSVL outperforms all weakly-supervised
(WS) methods by noticeable margins in Chrades-STA, es-
pecially in high recall regime (e.g., R@0.5 and R@0.7)

Method Sup. R@0.3 R@0.5 R@0.7 mIoU

Charades-STA

Random 26.79 10.82 2.96 17.71
Rnd.Q+TEP 27.39 12.17 1.04 20.12
PQ+Rnd.T 35.31 19.06 6.68 22.95
PQ.N+TEP 28.42 13.18 2.02 24.17
PQ.V+TEP 43.01 20.79 4.97 26.38
PSVL (PQ+TEP)

No

46.47 31.29 14.17 31.24

TGA [38]
Weak

29.68 17.04 6.93 -
WSTG [7] 39.8 27.3 12.9 27.3
SCN [33] 42.96 23.58 9.97 -

CTRL [19]
Full

- 21.42 7.15 -
LGI [39] 72.96 59.46 35.48 51.38

ANet-Captions

Random 23.70 11.41 3.93 16.63
Rnd.Q+TEP 25.98 12.07 4.18 24.12
PQ+Rnd.T 38.19 22.62 7.03 24.92
PQ.N+TEP 30.23 12.92 3.59 25.52
PQ.V+TEP 42.02 23.42 5.91 27.21
PSVL (PQ+TEP)

No

44.74 30.08 14.74 29.62

WS-DEC [12]

Weak

41.98 23.34 - 28.23
WSLLN [21] 42.80 22.70 - 32.20
WSTG [7] 44.30 23.60 - 32.20
SCN [33] 47.23 29.22 - -

CTRL [19]
Full

28.70 14.00 - 20.54
LGI [39] 58.52 41.51 23.07 41.13

Table 2: NLVL accuracy on Charades-STA (top) and
ActivityNet-Captions (ANet-Captions) (bottom) dataset with
various models and supervision level. ‘Sup’ refers to super-
vision level; No (zero-shot), Weak (weakly-supervised [21, 33]),
Full (fully supervised). All abbreviations follow the notation in the
‘Baseline’ paragraph. ‘PSVL’: our pseudo-supervised video local-
ization method. Among zero-shot methods (No), we highlight the
best values in bold and second best in underline.

while they outperform ours in mIoU and R@0.3. Simi-
lar trend is observed in the experiments on ActivityNet-
Captions; ours outperforms all WS methods in R@0.5
(there is no reported results in R@0.7). It implies that
our PSVL predicts temporal regions rather precisely while
slightly sacrificing overall accuracy (mIoU).

4.1.1 Temporal Event Proposal

Event proposal methods. We compare PSVL with four
baseline temporal event proposal methods in Table 3 (top).
ActionByte finds the event boundary utilizing the difference
in CNN features between each adjacent frames of video.
And, Frame feature uses a method that cluster the similar
CNN frame features to generate event proposals.

ActionByte, Frame feature, and our method (‘Contextu-
alized feature’ by similarity matrix of frame features) out-
perform random and sliding window by large margins. It
implies that both methods discover describable regions for
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Event Proposal R@0.3 R@0.5 R@0.7 mIoU

Random 35.31 19.06 6.68 22.95
Sliding window [33] 35.64 24.84 10.65 24.27

ActionByte [24] 46.55 29.61 12.16 30.06
Frame feature 48.20 28.98 11.58 30.76

Contextualized feature (Ours) 46.47 31.29 14.17 31.24

Scoring Function R@0.3 R@0.5 R@0.7 mIoU

Compactness 45.41 27.82 12.2 29.33
Diversity 49.41 22.9 8.71 29.54

Uniform sampling (Ours) 46.47 31.29 14.17 31.24

Table 3: Temporal event proposal methods. (top) comparison
to other event proposal methods and (bottom) comparison of var-
ious scoring functions to aggregate the atomic events to generate
candidate (composite) temporal events.

Verb Inference R@0.3 R@0.5 R@0.7 mIoU

Random verbs 28.42 13.18 2.02 24.17
w/ RoBERTa 34.22 15.49 5.88 25.74

w/ VerbBERT (Ours) 46.47 31.29 14.17 31.24

Table 4: Verb inference methods. ‘Random verbs’ are sampled
from the verb classes of the VerbBERT model. RoBERTa predicts
any words in the missing location, whereas VerbBERT only pre-
dicts the verbs by the fine-tuning.

the pseudo queries using visual semantics while others find
regions that are either semantically less meaningful or not
describable. In addition, we observe particularly large im-
provements at high threshold recall regime by our method
over the others. It implies that the our method finds ‘mean-
ingful’ events to supervise a model by the help of context.

Scoring functions for composite events. For the atomic
event composition (Sec. 3.1), we may use various scor-
ing functions; atomic event’s compactness, its diversity,
and uniform random sampling to choose top-k composite
events. We compare the performance of them in Table 3
(bottom) by various combining function (followed by the
PQ generation). Interestingly, the uniform random sam-
pling performs the best. We believe that it contains both
compact and diverse combinations of events thus lead to
better coverage of training distribution.

4.1.2 Pseudo Query
Effectiveness of VerbBERT. We empirically support the
effectiveness of the proposed verb predictor, VerbVERT, by
comparing it to RoBERTa [34] and random verbs in Table 4.

For the ‘Random verbs’ entry, verbs are selected ran-
domly from the set of verbs existing in the large text cor-
pora, and RoBERTa predicts words using the publicly avail-
able pre-trained model [53].

As shown in the table, VerbBERT clearly outperforms
them as others may generate words other than verbs. It im-
plies that the contextually grounded verbs play a significant
role in learning representation related to actions for NLVL.

VWA WVA MCA R@0.3 R@0.5 R@0.7 mIoU

✓ ✓ 38.7 21.81 8.24 25.16
✓ ✓ 42.24 27.91 13.6 28.29
✓ ✓ 43.15 25.8 12.07 28.67
✓ ✓ ✓ 46.47 31.29 14.17 31.24

LGI (Zero-shot) [39] 44.11 28.13 12.87 30.3

Table 5: Model ablations. We compare the full model to the ab-
lated ones (word-to-video attention: WVA, video-to-word atten-
tion: VWA, multimodal cross attention: MCA), and the current
state-of-the-art [39] model trained with the pseudo-supervision.

Number of nouns and verbs. If the number of words is
large, it is likely to contain correct signals (high recall), but
it may have too much noisy signals from incorrect words
(low precision) and vice versa. We empirically found that
five nouns and three verbs results in the best performance.
To investigate the trade-off between quantity and quality of
words in pseudo-query, we vary the number of objects and
verbs. The result is summarized in the supplement.

Quality of generated noun. As mentioned in Sec. 3.2,
the nouns from the off-the-shelf object detector is unreli-
able. To measure how much the noun quality makes the
task challenging, we compute average overlaps between the
detected objects (ηi) and the original nouns (ξi). The recall
is 36.54% ( 1k

∑k
i=1(ηi ∩ ξi)/ξi, k is the number of descrip-

tions, i is its index). More details are in the supplementary.
Furthermore, we measure the NLVL performance as a

function of the number of overlapping objects between de-
tected objects and original descriptions. Specifically, we
reduce the overlap ratio by removing the matched nouns
and measure the corresponding NLVL performance. As the
overlap decreases (36.54% → 27.48% → 17.97% → 9.64%
→ 1.15%), the NLVL ‘R@0.5’ performance also decreases
(31.88 → 31.09 → 28.25 → 25.94 → 23.82). This result
shows the importance of the overlapping between detected
nouns and original description’s nouns.

4.1.3 NLVL Model
Ablation on the model components. We investigate the
contribution of each component of the proposed simple
NLVL model (Sec. 3.3). Specifically, we compare three ab-
lated models by replacing the WVA, VWA, and MCA with
simple fully connected layers in Table 5.

Our model outperforms every baseline models by signif-
icant margins. Interestingly, the performance drops by ab-
lating the VWA is the largest. Considering the noise in the
pseudo queries, we believe that the VWA attention module
could suppress noise words in pseudo-queries by visually
attending through the VWA attention module. The results
of WVA imply that the attention module further filters the
noise from the pseudo-queries by attention on the words that
are actually meaningful for the given temporal region.
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Figure 6: NLVL performance on Charades-STA on various
pseudo-supervision size. The horizontal axis corresponds to the
relative size of pseudo-supervision compared to the original super-
vision (12,408 samples). Due to the quantity-quality trade-off, the
performance peaks at 13,648 samples (1.1x times of the original
size). Note that our PSVL even outperforms a recent weakly-
supervised model [7] with only 0.6× of the original supervision.

Comparison to the SOTA NLVL model in zero-shot
setup. We further compare our model and its abla-
tions with the current state-of-the-art supervised NLVL
model [39] with our pseudo-supervision, and call it as ‘LGI
(Zero-shot).’ As shown in the table, our model outper-
forms [39] in all metrics. We believe this is because [39]
is designed to exploit the phrase structure of a natural sen-
tence but the simplified sentence does not have such struc-
ture. Moreover, our model is computationally more efficient
than the model of [39] for its simplicity. A training iteration
of PSVL consumes 0.0664s for 100 samples, whereas the
LGI model consumes 0.2s for 100 samples.

4.2. Quantity vs. Quality Trade-off

Another benefit of our framework is the ability to gen-
erate as many pseudo-supervision data as possible. But the
quality of the generated supervision would not be as good
as the human supervision. We hypothesize that there ex-
ists a trade-off between pseudo-label quality and quantity,
similar to the precision-recall trade-off. To empirically ver-
ify the trade-off, we conduct an experiment of changing the
amount of generated data and compute mIoU on Charades-
STA dataset, and summarize the results in Fig. 6.

Until when we provide the data of size of 1.1× of the
size of the original supervision data, mIoU monotonically
increases, which implies that the quantity prevails quality.
Interestingly, with only 60% of the data, ours already out-
performs the model trained with weakly supervision. How-
ever, when the quantity further increases, the mIOU tends
to decreases with a few local increases, implying that the
noisy quality of pseudo-supervision prevails the quantity.

4.3. Qualitative Analysis

We present an example of training and inference in
Fig. 7. In training (a), PSVL discovers the temporal re-

Words
Attention

time

0

Temporal Event Proposal

{ 'man', 'table', 'shirt' }                    { 'wear', 'carry', 'sell' }
Nouns Verbs

Pseudo-query
1

man table shirt wear carry sell

Simplified sentence:  ['stand', 'eat', 'person', 'watch', 'tv']

Ground truth: 0 s ~ 15.10 s
Prediction: 1.10 s ~ 14.04 s

Query:  a person is standing eating something as they watch tv.

(a
) T

ra
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g

(b
) I

nf
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Figure 7: Qualitative analysis of the training and inference
(Charades-STA dataset). (a) with generated temporal event re-
gions and the visual concepts, the NLVL model is trained to attend
meaningful frames and words. We visualize attended weights on
words; relatively low in the words “sell” and “carry” as they are
not visually matched. (b) at inference, the NLVL model correctly
predicts the temporal boundary with the simplified sentence input.

gions including one with a man wearing a shirt, and pro-
duces various nouns and verbs for the region. Among them,
some words such as ‘man’, ‘shirt’, and ‘wear’ are highly
related to the event, but others are not. Our model success-
fully learns to attend on the words that are correlated to the
events, as shown in the words attention weights. At infer-
ence (b), the model is able to find a proper temporal region
even when a complex query is given. More qualitative re-
sults and analyses are available in the supplement.

5. Conclusion
We first propose a novel task of zero-shot natural lan-

guage video localization. The proposed task setup does not
require any paired annotation cost for NLVL task but only
requires easily available text corpora, off-the-shelf object
detector, and a collection of videos to localize. To address
the task, we propose a pseudo-supervised NLVL method,
called PSVL, that can generate pseudo-supervision for
training an NLVL model. Benchmarked on two widely used
NLVL datasets, the proposed PSVL exhibits competitive
performance and performs on par or outperforms the mod-
els trained with stronger supervision.
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