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Abstract

Images tell powerful stories but cannot always be
trusted. Matching images back to trusted sources (attribu-
tion) enables users to make a more informed judgment of
the images they encounter online. We propose a robust im-
age hashing algorithm to perform such matching. Our hash
is sensitive to manipulation of subtle, salient visual details
that can substantially change the story told by an image.
Yet the hash is invariant to benign transformations (changes
in quality, codecs, sizes, shapes, etc.) experienced by im-
ages during online redistribution. Our key contribution is
OSCAR-Net1 (Object-centric Scene Graph Attention for Im-
age Attribution Network); a robust image hashing model in-
spired by recent successes of Transformers in the visual do-
main. OSCAR-Net constructs a scene graph representation
that attends to fine-grained changes of every object’s visual
appearance and their spatial relationships. The network is
trained via contrastive learning on a dataset of original and
manipulated images yielding a state of the art image hash
for content fingerprinting that scales to millions of images.

1. Introduction
Fake news and misinformation are centuries-old societal

problems, exacerbated today by the ease with which digi-
tal images are manipulated and shared. Matching (or ‘at-
tributing’) an image back to a trusted source, improves user
awareness of its origins (or ‘provenance’) and so enables
more informed trust decisions to be made [17, 45].

Emerging standards for image attribution embed prove-
nance information within metadata [45, 3]. Yet image meta-
data is commonly stripped by social platforms, and may be
replaced to misattribute an image [12]. One solution is to
visually match images to a trusted database via ‘fingerprint-
ing’; i.e. visual search or content-aware hashing.

This paper contributes a novel object-centric approach
for computing a robust hash from an image, to perform vi-
sual matching for image attribution. Images often undergo
‘benign transformations’ during online distribution, such as

*Equal contribution by co-authors
1Code, data and model available at https://exnx.github.io/oscar/

changes in format, resolution, size, padding, etc. that render
cryptographic hashes[16] unsuitable as fingerprints. Thus
image fingerprints must be made robust to these ‘benign’
transformations.

We propose a representation learning technique that en-
courages our hashes to exhibit both invariance to benign
transformations and sensitivity to tampering (‘manipula-
tion’) where image content is altered — sometimes quite
subtly — but sufficiently to change meaning. For example,
the editorial changes to introduce particular objects/motifs,
or alterations to salient visual details such as the face, could
substantially change the story told by an image (Fig. 1,2).
Our method generates substantially different hashes in such
cases to avoid corroborating a false story with the prove-
nance information of the original image. Existing percep-
tual hashes [60, 43, 59, 39, 34]) typically exhibit the oppo-
site desired characteristics (c.f. Sec. 4.5), that is, they are
often invariant to minor changes, and sensitive to benign
transformations (such as noise, or padding) during content
redistribution.

Our core technical contribution is to encode a scene
graph representation of the image via a hybrid network ar-
chitecture, combining a fully-connected Graph Neural Net-
work (GNN) and Transformer to create a robust binary hash
of the image. Our Object-centric Scene Graph Attention
for Image Attribution Network (OSCAR-Net) decomposes
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a scene into salient objects and aggregates their description
into a compact visual hash. This creates an object-centric
hash that exhibits improved sensitivity to minor manipula-
tion of salient objects, and improved robustness to benign
transformations. We leverage contrastive training coupled
with benign transformations using data augmentation and
manipulations using Adobe PhotoshopTM to learn represen-
tations that outperform existing perceptual hashing base-
lines. Both object appearance and relative object geometry
are learned via OSCAR-Net to yield an object-centric hash
with improved tamper-sensitivity and scalability. We com-
bine our learned OSCAR-Net representation with geomet-
ric verification to create a prototype image attribution tool
to assist users in determining the provenance of images en-
countered online. Such a tool has future potential for fight-
ing fake news by helping users gauge the trustworthiness of
content.

2. Related Work
Visual content authenticity methods can be catego-

rized into two camps. The first camp is within digital foren-
sics, and includes techniques such as the ‘blind’ localization
of image manipulation [56], detection of ‘deep fake’ (gen-
erative) content [14] based either upon its statistical proper-
ties [57] or its current limitations (e.g. absence of blinking
[36]), and anomaly detection [58]. The second camp uses
image attribution tools that trace provenance via embedded
metadata [45, 3], watermarking [20, 13, 44, 4], or hashing
[43, 31, 39, 8, 42, 61, 5]. Our work falls in the second camp
– a robust visual hash for image attribution.

Perceptual hashing has been studied extensively for
image similarity [55]. Classical approaches sample the
spectral domain (e.g. DCT [60, 43] or wavelet [26] co-
efficients), or color-texture features [33, 1]. Compact bi-
nary codes may be obtained via random projection [25]
or by learning data-dependent similarity-preserving binary
projections such as product quantization (PQ) [27, 29].
More recently, convolutional neural networks (CNNs) have
been explored for image similarity. Binary codes may also
be learned concurrently with feature learning through two
methods: continuous relaxation [63, 39, 35, 8] or direct op-
timization in discrete space [34, 37, 49, 62]. As we later
show, these methods are vulnerable to subtle tampering on
complex images thus not suitable for image attribution ap-
plications.

Scene graph representation is an active research area
common in scene understanding [54], image captioning
[18], retrieval [40] and synthesis [2]. Graph neural networks
(GNN) are either spectral, which distills information via
noise filtering in the graph Fourier domain [32, 10, 38], or
non-spectral which operates on the graph directly [18, 40, 2,
41]. Non-spectral GNNs can work on graphs with arbitrary
structure and various types of nodes and edges, thus can be
adapted to complex design elements such as self-attention
[53], autoencoder [40] and manifold learnings [41].

To the best of our knowledge, we are the first to leverage
scene graph hashing for image attribution. Our contribu-
tions are three-fold: (i) we setup new benchmarks for safe-

guarding visual content integrity via image attribution, (ii)
we propose a robust tamper-aware binary fingerprinting ap-
proach for images “in-the-wild” and (iii) we achieve state-
of-art performance compared with existing hash methods.

3. Robust Image Fingerprinting
Our goal is to learn a model for tamper-aware image

hashing that is invariant to benign image transformations,
but sensitive to tampering due to subtle yet salient manipu-
lation of content (sec. 3.1). Since content manipulation of-
ten occur at the object level, we explore an object-centric
approach that decomposes images into a graph structure
which explicitly models their objects and spatial relation-
ships (Fig. 1). Sec. 3.2 describes how we construct a scene
graph from an image, sec. 3.3 describes our scene graph
encoder network, sec. 3.4 details our online hashing and
losses, and sec. 3.5 outlines the training procedure.

3.1. Manipulation vs. Benign Transformation

We trained and evaluated on a dataset called ‘Pho-
toshopbattles’ collected from Reddit forum discussions
[23], which contain manipulated images using Adobe
PhotoshopTM. This dataset contains original images each
with several user-manipulated images that often change the
story told by the image. The manipulated images in-
clude object removal/insertion, face editing/swap, geometry
change among other type of manipulations. We also create
benign transformed images from each original, applying
a suite of primary and secondary transformations such as
compression, padding, noise, resampling and affine trans-
formation. More details of this dataset and transformations
are discussed in sec. 3.5 and 4.1.

3.2. Scene Graph Representation

We represent an image x by a fully-connected attributed
graph G = {N , E}, where N represents node features of
the objects in x, and E represents pairwise relationships be-
tween every object. We specifically used fully-connected
graphs to model any potential tampering between all ob-
jects. To build G, we first identify the objects in an image
using MaskRCNN instance segmention [21]. This results
in a set of object crops {ci|i = 1, 2, ..., N}, where N =
number of objects, its corresponding instance segmentation
masks {mi}, and bounding boxes {bi = [xi, yi, hi, wi]}
characterized by the box center (xi, yi) and height/width
(hi, wi). We also treat the background (image minus the
objects) as its own ‘object’. The output of the scene graph
representation is N object and N2 relation embeddings.

Node features. We integrate 3 visual cues to construct
the node features N . First, for each object, we extract vi-
sual features vi from the object crop ci. Specifically, we
use vi = fv(ci) ∈ R256, where fv is a trainable ResNet50
[22] with the softmax layer being replaced by a 256-D fully
connected layer (training details in sec. 3.5). Second, we
compute shape features si ∈ R7 from the object mask mi

via 7 affine-invariant Hu moments [24]. Third, we use ge-
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Figure 1. Object-centric Scene Graph Attention Network for Image Attribution (OSCAR-Net). In A, our object-centric hashing
method first decomposes an image into a fully connected scene graph of N detected objects using their appearance (ci), masks (mi) and
bounding box geometry (bi). The whole image, N object and N2 relation embeddings are fed into the 3-stream attention-based encoder,
comprised of a global CNN branch FG, an object encoder FO and a relation encoder FR to encode each stream to zg , zo, zr , respectively.
A single 64-D embedding z is created, and passed through a sign function to create a 64 bit image hash. In B, we indicate how tampered
objects and relations are explicitly captured in the scene graph and allow for fine-grained manipulations to produce substantially different
hash compared to the original hash.

ometry features gi ∈ R5 directly from bounding boxes bi:

gi =

[
xi
w
,
yi
h
,
wi
w
,
hi
h
,
Ai
A

]
, (1)

where h,w are the image height and width; and A =
hw,Ai = xiyi are the areas of the image and the bound-
ing box respectively.

We then aggregates vi, si, gi to create the node features:

ni = [Ev(vi), Es(si), Eg(gi)] (2)

N = {ni|i = 1, 2, ..., N} ∈ RN×DN , (3)

where Ev, Es, Eg are linear projections of the visual, shape
and geometry features; [, ] denotes a concatenation; DN is
the resulting feature dimension.

Edge features. We use pairwise geometry relations for
edge features in the pixel coordinate space. The geometric
connection between the ith and jth objects is defined as:

rij =

[
∆x√
Ai
,

∆y√
Ai
,

√
∆x2 + ∆y2√
w2 + h2

,
wj
wi
,
hj
hi
, θij , γij

]
,

(4)
where transition ∆x = xj − xi, ∆y = yj − yi, box an-
gle θij = arctan(∆y/∆x) and standard Intersection over
Union (IoU) γij =

mi∪mj

mi∩mj
. rij is then used to connect the

two objects features:

eij = [ni, Er(rij), nj ] (5)

E = {eij |i, j = 1, 2, ..., N} ∈ RN
2×DE , (6)

where Er is another linear layer and DE is the resulting
dimension of the edge features.

3.3. Scene Graph Encoder
Existing GNN approaches typically define the graph

structure based on relationships between objects, creating
salient but sparse adjacency matrices. These matrices are
acquired primarily either through manual annotations [10],
heuristic assumptions about visual similarity [38] or ge-
ometry [30, 18], which may not necessarily hold true for
“images in the wild” that have been manipulated. Instead,
we are interested in all relationships between objects, since
tampering can occur anywhere. Therefore, we encode graph
G via an attention mechanism that learns object and con-
nection importance between all objects in a fully-connected
manner.
The object encoder FO learns an embedding of all objects
using node features N as input. We use a Transformer en-
coder architecture [52], HO, to implicitly learn the impor-
tance of each object’s features in an order-invariant man-
ner (we removed the positional encoding so that N can be
treated as an unordered sequence). Here, HO has 6 layers
each having 8 attention heads. Since the Transformer en-
coder uses a constant latent vector size for all of its layers,
its output sequence has the same length and feature dimen-
sion as the input, HO(N ) ∈ RN×DN . To address this, we
add a self-attention module, PO, that acts as a node-wise
pooling layer, aggregating the output sequence into a single
embedding, following [50]:

w = σ(tanh(N ′KT )V ); PO(N ′) =
∑
i

wiN ′i , (7)

where N ′ is the Transformer output, the Key K ∈ RN×DN

and Value V ∈ RN behave the same way as the attention
mechanism in Transformer but now are learnable parame-
ters. Overall, the Transformer and self-attention layer form
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Figure 2. Examples of original (left) and manipulated (right, high-
lighted) images in PSBattles24K. From the top-down: change in
gaze, geometry and pose (see coloured box). More in Supp. Mat.

our object encoder and together output an object embedding
zo = FO(N ) = PO(HO(N )) ∈ RDN .
The relation encoder FR uses an identical architecture to
FO but instead uses edge features as input. FR outputs a
relation embedding zr = FR(E) = PE(HE(E)) ∈ RDE

where HE and PE are analogous to the object Transformer
HO and self-attention PO.
Object and global image level fusion is achieved by fus-
ing our ‘object-centric’ embeddings (zo, zr) with a visual
appearance feature derived from the entire image, zg =
FG(x). FG has the same CNN architecture as the object
feature extractor fv , but encodes the ‘global’ appearance
instead of object crops. We do not share the weights of FG
and fv during training.

Our final embedding is achieved by concatenating the
embeddings from the 3 above modules:

z = Ed ([zg, zo, zr]) ∈ RD, (8)

with Ed being a linear projection layer for a desired output
dimension D (D = 64 in our work). The late-fusion of
3 components - FG, FO and FR - allows our model to be
sensitive to object level as well as global manipulations.

The closest work to our design is GAT [53] which also
leverages attention mechanism for graph encoding. Our de-
sign differs in 3 key aspects: (i) our domain is images in-
stead of text; (ii) we address a retrieval problem, and re-
quire a compact embedding; and (iii) OSCAR-Net uniquely
uses 3 encoder streams to encode the global- and object-
level features. OSCAR-Net assumes all objects and rela-
tions have connections with each other; the weights of these
connections are learned by our Transformer.

3.4. Hashing and Losses
Hashing is essential for scalable visual search in an im-

age attribution system. We obtain our hash by discretizing
our continuous embedding space z with a sign(.) layer:

u = sign(z) ∈ {−1, 1}D, (9)

The quantization error is approximated via loss:

LB(z, u) = ||z − u||3 , (10)

where ||.|| denotes entrywise vector norm. Since eq. 9 has
an ambiguous gradient at zero, we bridge the gradient of u
to z during backprop, that is ∂L/∂z = ∂L/∂u, following
Discrete Proximal Linearized Minimization (DPLM) [48,
49] (for more detailed analysis of eq. 10 see Supp. Mat.)

To distinguish manipulation from other benign trans-
formations we propose a supervised version of NTXent-
Loss/SimCLR [9] as the content loss. Under this loss, which
we call SimCLR+, each image is pulled towards other be-
nign transformed variants of itself while separating from
manipulated variants and other images (different identity)
in the batch:

LC(ui) = − log

∑
i+ ς(ui, ui+)∑

i− ς(ui, ui−) +
∑
j|ψj 6=ψi

ς(ui, uj)

(11)

where ς(ui, uj) = ed(Eb(ui),Eb(uj))/τ ; Eb is a linear layer,
d(.) is cosine similarity, and τ is the temperature for con-
trastive loss. Eb serves two purposes: (i) mapping the bi-
nary code back to a continuous space before the loss com-
putation and (ii) providing an intermediate learning buffer
as recommended for SimCLR [9]. ψi denotes instance class
(identity) of image xi, and ui+ (resp. ui−) indicates hash
code of a benign transformation (resp. manipulated) image
derived from xi. Without ui− the loss degenerates to the
standard NTXentLoss and becomes self-supervised.

The total loss becomes L(.) = LC(.) +αLB(.) where α
is the binary loss weight (α = 10−2). During inference, u
is converted to {0, 1}D as u := (u+ 1)/2.

3.5. Training Procedure
We first train a single CNN model using SimCLR+ loss

(eq. 11), then use it to initialize the weights of both the
global CNN (FG) and object-level CNN (fv) modules. This
pretraining step helps to learn a robust encoder for visual ap-
pearance, and improves the overall performance (sec. 4.4).
In the main training phase, the whole network is trained
end-to-end. We train our models using PyTorch with the
ADAM optimizer and step decay learning rate initializing at
10−3 in pretraining and 10−4 in the subsequent phase. We
use an 8GB GTX2080 GPU with a batch size of 20 unique
images (prior to data augmentation), and ensure every orig-
inal image has at least one manipulated version in a batch.

Benign transformations. To ensure our model is invari-
ant to benign transformations, we apply a set of transforma-
tions on our training images for both the originals and ma-
nipulated variants. We define two categories of transforms:
primary and secondary. The primary transforms (including
random JPEG compression and resize) are always applied,
while 1-3 secondary transforms (horizontal flip, rotation,
sharpness, color enhancement, Gaussian noise, padding) are
randomly chosen and applied after the primary transforms.
This is to reflect that images are commonly compressed and
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Method Benchmark I Benchmark II
mAP mmAP FmAP FR1

OSCAR-Net 0.8898 0.7411 0.3782 0.3648
GNN 0.8807 0.7111 0.3643 0.3542
CNN 0.7980 0.6086 0.3516 0.3308
GreedyHash [49] 0.6635 0.3456 0.2367 0.2428
HashNet [8] 0.8093 0.4031 0.2047 0.2344
CSQ [59] 0.5785 0.2838 0.2404 0.2356
DFH [37] 0.3207 0.1595 0.2118 0.1842
DBDH [62] 0.6908 0.3339 0.2199 0.2268
DSDH [34] 0.6958 0.3280 0.2078 0.2186
ADSH [28] 0.3339 0.1887 0.1753 0.1289
DPSH [35] 0.8202 0.3917 0.1724 0.2082
DSH [39] 0.2416 0.1358 0.1556 0.1137
DHN [63] 0.1803 0.0898 0.1407 0.1108
wHash [6] 0.5338 0.2274 0.0922 0.1059
aHash [6] 0.5764 0.2668 0.0919 0.1077
pHash [6] 0.6008 0.3260 0.0787 0.0972
ISCC [43] 0.6003 0.3252 0.0787 0.0967
dHash [6] 0.6164 0.2890 0.0604 0.0703
cHash [6] 0.2509 0.1018 0.1896 0.1674

Table 1. Evaluation of proposed method OSCAR-Net versus base-
lines; all use 64 bit hash codes.

Method Bm.I mmAP Bm.II FR1

C
on

te
nt

lo
ss SimCLR+ 0.7411 0.3648

Triplet+ 0.7384 0.3627
SimCLR [9] 0.7013 0.3500
Triplet [46] 0.7190 0.3295
Pairwise Contrastive [19] 0.2199 0.1668

H
as

h
lo

ss

No hashing 0.8722 0.3984
sign() (proposed) 0.7411 0.3648
sign() + Bit Balance 0.7217 0.3582
tanh() + Bit Balance [62] 0.7076 0.3556
tanh() [8] 0.7096 0.3550
PQ [27] (offline) 0.6552 0.3572

Table 2. Evaluation of different content (top half) and hashing (bot-
tom half) losses. For content loss experiments, we fix the proposed
hash loss LB (eq. 9) and vary LC . Likewise, we fix the proposed
content loss LC (eq. 11) and vary LB in the hash loss experiments
(except for PQ being an offline hashing method).

resized when redistributed online. For details of the param-
eter ranges for these transformations, see the Supp. Mat.

4. Experiments and Discussion
We evaluate the performance of OSCAR-Net against 6

classical and 10 deep learning baselines for image hashing.

4.1. Datasets
PSBattles24K. We train and evaluate on a set of user-
generated manipulated images posted released as PSBattles
dataset [23]. The raw PSBattles dataset has 11K original
and 90K manipulated variants of those images. To increase
the challenge of this dataset, paired images were sorted by
ImageNet distance (ResNet50/ImageNet) between the orig-
inal and manipulated variant, and the lower quartile (most
subtle changes) was retained. After duplicate removal, 7K
originals and 24K manipulated variants remain (Fig. 2). The

dataset is split into distinct train and test sets, consisting
21K and 3K pairs of original-manipulated images respec-
tively. 5% of the training set is for validation. Further, we
create a test set of 150K images (50 random primary and
secondary transformations per original) to evaluate invari-
ance to benign transformations (c.f. sec. 3.5).
PSBattles360K-S We study the robustness of our models
toward individual augmentations using two additional test
sets of 10 randomized augmentations applied to each orig-
inal image within PSBattles24K. The first set contains im-
ages from 6 benign transformations seen during the train-
ing: compression, rotation, color enhancement, Gaussian
noise, padding and sharpness. The second set contain im-
ages made from 6 noise sources common in photography
and unseen during the training: shot noise, impulse noise,
speckle noise, Gaussian blur, de-focus blur and pixelate.
Each set has in total 180K (3K × 10 × 6) images. More
details of these transformations can be found in Supp. Mat.
Stock4.7M is a diverse, unannotated dataset of images used
to evaluate retrieval performance in the presence of large-
scale distractor images. The dataset comprises 4.76M im-
ages from Adobe Stock website 2 at VGA resolution. Com-
bined with PSBattles24K this enables us to scale evaluation
to a test dataset of ∼ 5M images.

4.2. Benchmarks and Evaluation Metrics
To evaluate model performance specifically under the

image attribution setting, we defined 2 benchmarks (both
are correlated, but differ in terms of the amount of benign
vs. manipulated images in the query and database sets).

Benchmark I is used to evaluate embedding separabil-
ity between manipulated and benign images. It considers a
query set of 3K original images and a search database com-
prised of (i) 3K manipulated images (ii) 150K benign trans-
formed variants of images from PSBattles24K (iii) 100K
distractor images from Stock4.7M. Given an original image
as the query, we wish to retrieve all benign augmentations
and reduce the ranking of any manipulated imagery in the
returned results. To this end, we propose a masked Mean
Average Precision (mmAP) metric for benchmark I. For a
single query q;

mmAPq =

∑
k rq(k)mq(k)Pq(k)∑

k rq(k)
, (12)

where Pq(k) is precision at k, rq(k) = 1 if the kth re-
trieval is relevant otherwise 0, mq(k) = 1 if the manip-
ulated image is ranked below k otherwise 0. mmAP thus
penalizes early ranking of manipulated images, by comput-
ing standard mAP up to but excluding the first manipulated
result. mmAP achieves an upper bound of 1 if all benign
images are returned on top of the rankings. In scalability
experiments where all Stock4.7M distractors are included
in the search database, computing full mmAP is not feasi-
ble. We therefore use mmAP@R instead; mmAPq is com-
puted on top R retrieval results only, where R is number of
images relevant to query q in the database.

2https://stock.adobe.com. Image list at https://exnx.github.io/oscar.
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Components/Exp. ID A B C D E F (CNN) G H (GNN) I J (full)
Fully connected graph X X X X X X X X
Transformer X X X X X X X X
self-attention X X X X X X X X
Visual appearance features vi X X X X X X X X X
Vis. appear. feat. w/ pretrain fv X X X X X X X X
Geometry feature gi X X X X X X X
Shape feature si X X X X X X
Edge feature eij X X X X X
Global CNN FG X X X X X
Benchmark I - mmAP 0.2715 0.6282 0.7028 0.7015 0.7148 0.6086 0.6597 0.7111 0.7322 0.7411
Benchmark II - FR1 0.1622 0.3221 0.3547 0.3594 0.3621 0.3308 0.3532 0.3542 0.3599 0.3648

Table 3. Ablation of the proposed (OSCAR-Net) method omitting various architectural stages (see subsec 4.4 for details on Exps. A-J).

Benchmark II is aligned closely with our image attribu-
tion use case, where the test dataset contains the original im-
ages (e.g. a database of images with associated provenance
information) plus Stock4.7M distractors, and the query set
comprises benign and manipulated variants of those orig-
inals. An ideal model would rank an original highly when
querying with a benign transformed version, and rank it low
for manipulated queries. Recall at top-1 R@1 is computed
for benign queries; and R@1 = 1 − R@1 for manipulated
queries. We propose FR1 score to measure the trade-off:

FR1 = R@1×R@1/(R@1 +R@1), (13)

We report FmAP in the same manner, computed over mAP.

4.3. Baseline Comparison
For comparison, we evaluated our OSCAR-Net against

the following baselines. We consider OSCAR-Net and
GNN as object-centric, and other baseline methods as
“global” i.e. encoding the whole image vs decomposing into
objects.

1. GNN: We replace the Transformer modules HO,R of
OSCAR-Net with MLP layers to learn graph embeddings
while keeping everything else the same. This degenerates to
a similar approach to the graph CNNs in [18, 40] although
we differ in data domain, losses, and training method.

2. CNN: In contrast with our object-centric approach,
this uses a single CNN (ResNet50) to encode the whole im-
age. The model is trained using the same losses and data
augmentations detailed in sec. 3.4-3.5.

3. Classical Methods: A set of 6 statistical methods
for perceptual hashing. Five methods (D-ifference Hash, P-
erception Hash, A-verage Hash, W-avelet Hash and C-olor
Hash) via public implementations in [6], also ISCC [43] an
ISO standard proposal similar to pHash. All methods pro-
duce 64-bit hash codes.

4. Deep Hashing Methods: A set of 10 deep supervised
hashing approaches: CSQ [59], DBDH [62], DFH [37],
HashNet [8], GreedyHash [49], ADSH [28], DPSH [35],
DSH [39], DSDH [34] and DHN [63]. We train these mod-
els using provided public code using uniform architecture
(ResNet50) and code length (64-bit).

Tab. 1 reports the performance of all methods on the PS-
Battles24K test set with 100K distractor images for bench-
mark I and II (sec. 4.2). Overall the classical methods are

at the bottom of the rankings, followed by the global deep
hashing methods. The object-centric methods OSCAR-
Net and GNN outperform the rest, especially at bench-
mark I mmAP scores (which takes manipulated images
into account as opposed to standard mAP). This indicates
the methods’ capability in discriminating manipulated con-
tent. The object-centric methods also outperform others on
benchmark II which requires the balance between benign-
transform robustness and manipulation sensitivity. Our pro-
posed OSCAR-Net outperforms all existing methods and
sets a new state-of-the-art in image hash for content finger-
printing.

4.4. Ablation Studies

Design Component Ablation. We study the contribu-
tion of each design component in OSCAR-Net in Tab. 3.
We begin with a minimal design where N contains only
the object features vi and OSCAR-Net has only 1 en-
coder stream FO (exp.A). We then add additional compo-
nents including the pretrained fv (exp.B), geometry fea-
tures gi (exp.C), shape feature si (exp.D), the second en-
coder stream FR with edge features eij (exp.E) to the full
model (exp.J). We also remove important components from
the full model or test alternative designs (exp.G-I). Pretrain-
ing the CNN module fv is essential as it helps double per-
formance (exp.B vs. A). The geometry features gi play
an important role (exp.C) while the shape si and edge eij
features steadily improve performance (exp.D-E). Integrat-
ing the global CNN branch FG to our object-centric net-
work also boosts performance especially on benchmark I
(exp.J), although the single CNN alone does not perform
well (exp.F). Exp.G and H show the complementary effects
of the transformer HO,R and self-attention PO,R (eq. 7)
modules in our network design. We implemented exp.G
by removing the self-attention layer and used the feature of
the first element in the output sequence as the embedding
(similar to [15]), resulting in a performance drop by 8.1%
and 1.2% on the two benchmarks. Exp.H is the GNN archi-
tecture described earlier in sec. 4.3, causing 3% and 1.1%
drop in performance respectively. Additionally, we experi-
mented with a non-fully connected graph in exp.I where two
objects are considered as connected only if their relative dis-
tance and intersection are within a given threshold, similar
to [30, 18]. Non-connected objects are masked out during
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Figure 3. Characterizing our proposed OSCAR-Net content hashing performance vs. baseline methods. (a-b): robustness of the image
hash to seen/unseen benign transformations; (c): performance of different hash code lengths for online (sign) and offline (PQ) hashing.

the attention computation inHO and their pairwise relations
are removed from the edge features E . Exp.I reports 0.9%
performance drop in benchmark I and 0.5% on benchmark
II. This demonstrates our OSCAR-Net capability in learn-
ing the connection weights within a fully connected graph.

Content Loss Ablation. Tab. 2 (top) shows how al-
ternative content loss functions affect performance on the
two benchmarks. Standard pairwise contrastive loss [19]
fails to discriminate subtle differences in manipulated im-
ages. Standard SimCLR [9] lags behind by 4% and 1.5%
on the two benchmarks but still outperforms standard triplet
loss [46] despite being a self-supervised method. We mod-
ified triplet loss by: (i) randomly sampling negative images
from other image instances instead of just manipulated im-
ages, (ii) randomly feeding the anchor branch with manipu-
lated images and the negative branch with originals, and (iii)
adding another L2 term to explicitly push the negatives from
the originals. This improved version, named Triplet+, has
the closest performance to SimCLR+ but requires a more
complex sampling strategy.

Hash Loss Ablation. Tab. 2 (bottom) reports on al-
ternative hash functions. We experimented with tanh()
as a continuous relaxation method [8]. We also imple-
mented the bit balancing strategy that regularize the num-
ber of 0 and 1 bits, as suggested by [62] to improve the
hash discrimination. Performance on the 256-D continuous
space i.e. no hash is reported as an upper-bound reference.
Additionally, we compare online hashing with an offline
method using Product Quantization (PQ) [27] via FAISS
[29]. Offline hash with PQ had the lowest performance
(8.6% and 0.8% behind our proposed method on the two
benchmarks). For online hashing, optimizing directly on the
discrete space (sign()) outperforms the relaxation method
(tanh()). Also, we find that bit balancing offers only mi-
nor improvement for the online approximation method and
hinders unnecessary constraints on the proposed direct op-
timization method. Overall the use of hashing for image
matching enables retrieval speeds of 380ms on average (an
indicative speed for 1M images on single-core, i7 CPU) for
a 64-bit hash, versus an average of 1.5s for the same us-
ing a 256-D real-valued embedding (128x larger footprint).
The corresponding difference in accuracy (for our proposed,
best case: discrete space optimization) is 13.1% on bench-

Method 1M 2M 3M 4M
OSCAR-Net 0.6680 0.6346 0.6112 0.5930
GNN 0.6295 0.5949 0.5711 0.5522
CNN 0.5226 0.4836 0.4619 0.4444
HashNet [8] 0.4064 0.3937 0.3854 0.3785
pHash [6] 0.3689 0.3689 0.3682 0.3673

Table 4. Scalability of best performers under Benchmark I:
mmAP@R with increasing distractors (Stock4.7M). OSCAR-Net
is our proposed method. GNN and CNN are ablations of it. Hash-
Net and pHash are the benchmark I highest performing deep and
classical baseline methods from Tab.1.

Method 1M 2M 3M 4M
OSCAR-Net 0.3247 0.3068 0.3003 0.2952
GNN 0.3118 0.2944 0.2822 0.2770
CNN 0.3003 0.2925 0.2880 0.2854
GreedyHash [49] 0.2284 0.2204 0.2153 0.2105
cHash [6] 0.1483 0.1464 0.1457 0.1447

Table 5. Scalability of best performers under Benchmark II: FR1

with increasing distractors (Stock4.7M). GreedyHash and cHash
are the benchmark II highest performing deep and classical base-
line methods from Tab.1.

mark I and 3.4% on benchmark II justifying the approach.

4.5. Scalability and Robustness
Scalability. Tab. 4-5 show the performance change when
up to Stock4.7M images are added to the search database
as distractors. We report mmAP@R for benchmark I and
FR1 for benchmark II, comparing OSCAR-Net, GNN and
CNN with the top classic and deep hash performers accord-
ing to Tab. 1. Benchmark I shows OSCAR-Net and GNN
(ablation) outperforming baselines by a large margin. For
Benchmark II, GNN underperforms CNN after 2M distrac-
tors, potentially due to lack of attention mechanism. This is
addressed by OSCAR-Net (via the Transformer module).
Transformation robustness. We study how the types of
benign transformations affect the model performance. We
set up an experiment in benchmark II style where the be-
nign query set is from PSBattles360K-S. Fig. 3 (a-b) shows
FR1 performance against seen and unseen transformations.
Scores for a subset of transformations used in PSBattles24K
are also reported as reference (labeled as “Mixed”). cHash
performs reasonably on blurring/sharpness transformations
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Figure 4. Representative examples (4 rows) of nearest neighbors in
the learned embedding. For this visualization we mix the original,
benign and manipulated images. Originals and benign variants of
these are co-proximate, whereas manipulated content (red boxes
highlight manipulations) is distant from the original.

but is vulnerable to additive noise or color enhancement.
The global deep learning methods GreedyHash [49] and
CNN perform better than cHash but consistently under-
perform the object-centric ones. OSCAR-Net beats other
methods at most transformation experiments and general-
izes well for unseen transformations.
Code length. Fig. 3(c) shows the performance of OSCAR-
Net on different code length settings and hashing meth-
ods. For offline hashing, we train a OSCAR-Net model
outputting 256-D continuous features using the content loss
LC only, then apply PQ [27] for a desirable code length.
For online hashing, we train separate models varying di-
mension of z and u in eq. 9. Fig. 3(c) confirms the benefits
of online hashing versus offline, since the hash code could
be optimized at the same time as its representation is being
learned. Also, the optimal code length is shown around 128-
bit; we use 64-bits in our experiments for fair comparison
with baselines.

4.6. Similarity Visualization
We visually explain the image regions that contribute to-

ward (dis-)similarity, by adapting GradCAM [47] to have
objective function:

L(x|x+, x−) = d(f(x), f(x+))− d(f(x), f(x−)), (14)

where d(.) is cosine similarity. Note that L(x|x+, x−) is
similar to a triplet function but with opposite effect. Fig. 1
visualizes a heatmap on several original-manipulated image
pairs. Regions of interest that contribute most to distance in
our embedding are highlighted, regardless of benign trans-
formations (which are learned to be ignored). Fig. 4 in-
cludes further retrieval examples. Manipulations are well
separated from originals, but benign images are nearby.

5. Image Attribution using OSCAR-Net
We incorporate OSCAR-Net into a prototype image at-

tribution system where image hashes are used to match im-
ages to a database in order to lookup provenance informa-
tion such as authorship, secure timestamp etc. [45]. Here,

Method FPR (%) ↓ FNR (%) ↓
0.1M 4M 0.1M 4M

OSCAR-Net 3.91 4.06 < 1 1.35
CNN 5.41 5.71 1.01 2.03
GreedyHash [49] 19.36 37.43 75.86 79.51
cHash [6] 52.54 53.43 81.24 87.59

Table 6. Image attribution: False positive/negative rate (FPR/FNR)
for proposed (OSCAR-Net) method and baselines (lower is bet-
ter). Match via L2 distance in search embedding filtered via geo-
metric verification on a shortlist of the top 10 results.

images should be matched irrespective of any benign trans-
formations applied to the image during online re-sharing.
However, images that have been manipulated should not be
matched to their originals in the database to avoid corrobo-
rating provenance to a false story. We conduct retrieval us-
ing 10% of the PSBattles24K query test to identify the top-
10 ranked results for a given query, followed by a geomet-
ric verification (GV) step. GV is a common second stage
visual search technique used to identify whether any of the
top ranked results are relevant or not, based on registration
of sparse feature points between the query and result. We
fit a fundamental matrix to homogeneous SIFT point coor-
dinates under MLESAC [51]. We use GV to avoid the need
to specify threshold on distance within the hash embedding;
instead relying on pass/fail of registration.

Tab. 6 reports the false positive rate (FPR) - the fraction
of manipulated queries returning originals as a hit; and the
false negative rate (FNR) - the fraction of benign queries
failing to return originals as a hit. Our OSCAR-Net model
exhibits lower FPR/FNR than all deep and classic baseline
methods from Tab. 1.

6. Conclusion
We presented OSCAR-Net, an object-centric image

hashing method that leverages a paired dataset of origi-
nal and manipulated images to learn a search embedding
for robust visual matching. Our hash is invariant to be-
nign transformations typically applied to images distributed
online, yet sensitive to fine-grained visual manipulations.
We proposed a hybrid architecture that combined a GNN
with Transformers and self-attention. We showed how our
object-centric method significantly improved image search
performance and scalability over global (full) image hash-
ing using millions of distractor images. Future work will in-
tegrate our learned embeddings within content provenance
systems [45, 3] to trace images circulating in the wild.
For example, combining our hashes with decentralized im-
mutable storage e.g. blockchain and IPFS, in the spirit of
recent explorations for digital preservation [11, 7] but ap-
plied to new verticals e.g. journalism to combat fake news.
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