
Point-set Distances for Learning Representations of 3D Point Clouds

Trung Nguyen1 Quang-Hieu Pham3 Tam Le4 Tung Pham1 Nhat Ho5 Binh-Son Hua1,2
1VinAI Research, Vietnam 2VinUniversity, Vietnam

3Woven Planet North America, Level 5 4RIKEN AIP, Japan 5University of Texas, Austin

Abstract

Learning an effective representation of 3D point clouds
requires a good metric to measure the discrepancy between
two 3D point sets, which is non-trivial due to their irregular-
ity. Most of the previous works resort to using the Chamfer
discrepancy or Earth Mover’s distance, but those metrics
are either ineffective in measuring the differences between
point clouds or computationally expensive. In this paper, we
conduct a systematic study with extensive experiments on
distance metrics for 3D point clouds. From this study, we
propose to use sliced Wasserstein distance and its variants
for learning representations of 3D point clouds. In addition,
we introduce a new algorithm to estimate sliced Wasserstein
distance that guarantees that the estimated value is close
enough to the true one. Experiments show that the sliced
Wasserstein distance and its variants allow the neural net-
work to learn a more efficient representation compared to
the Chamfer discrepancy. We demonstrate the efficiency of
the sliced Wasserstein metric and its variants on several
tasks in 3D computer vision including training a point cloud
autoencoder, generative modeling, transfer learning, and
point cloud registration.

1. Introduction
Since the spark of the modern artificial intelligence,

3D deep learning on point clouds has become a power-
ful technique for solving recognition problems such as ob-
ject classification [44, 21], object detection [43], and se-
mantic segmentation [41]. Generative modeling with 3D
point clouds has also been studied with some promising re-
sults [51, 46, 32, 22, 47, 33]. Another 3D computer vision
problem that has seen the rise of deep learning approaches is
point cloud matching [8, 11, 10, 17]. All of these problems
share a common task — that is to learn a robust representa-
tion of 3D point clouds.

One of the most important steps in learning represen-
tations of 3D point clouds is to choose a metric to mea-
sure the discrepancy between two point sets. There are two
popular choices for such metric: the Chamfer divergence

and the Earth Mover’s distance (EMD) [16]. While earlier
works [16, 1] has shown that EMD performs better than
Chamfer in terms of learning representations, Chamfer is
more favored [10, 52, 18, 15, 12, 19] due to its significantly
lower computational cost.

In this article, we revisit the similarity metric problem in
3D point cloud deep learning. We propose to use the sliced
Wasserstein distance (SWD) [5], which is based on project-
ing the points in point clouds into a line, and its variants as
effective metrics to supervise 3D point cloud autoencoders.
Compared to Chamfer divergence, SWD is more suitable for
point cloud reconstruction, while remaining computationally
efficient (cf. Figure 1). We show that Chamfer divergence
is weaker than the EMD and sliced Wasserstein distance (cf.
Lemma 1) while the EMD and sliced Wasserstein distance
are equivalent. It suggests that even when two point clouds
are close in Chamfer divergence, they may not be close in
either the EMD or sliced Wasserstein distance. Furthermore,
the sliced Wasserstein distance has a computational complex-
ity in the order of N logN [5], which is comparable to that
of the Chamfer divergence, while EMD has a complexity
in the order of N3 [39] where N is the number of points in
3D point clouds. Finally, under the standard point clouds
settings, since the dimension of points is usually three, the
projection step in sliced Wasserstein distance will only lead
to small loss of information of the original point clouds. As a
consequence, the sliced Wasserstein distance possesses both
the computational and statistical advantages for point cloud
learning over Chamfer divergence and EMD. To improve
the quality of slices from SWD, we also discuss variants of
sliced Wasserstein distance, including max-sliced Wasser-
stein distance [13] and the proposed adaptive sliced Wasser-
stein algorithm.By conducting a case study on learning a
3D point cloud auto-encoder, we provide a comprehensive
benchmark on the performance of different metrics. These
results align with our theoretical development. In summary,
our main findings are:

• A first theoretical study about the relation between
Chamfer divergence, EMD, and sliced Wasserstein dis-
tance for point cloud learning (Section 4).
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Figure 1: We advocate the use of sliced Wasserstein distance for training 3D point cloud autoencoders. In this example,
we try to morph a sphere into a chair by optimizing two different loss functions: Chamfer discrepancy (top, red) and sliced
Wasserstein distance (bottom, blue). The proposed sliced Wasserstein distance only takes 1000 iterations to converge, while it
takes 50000 iterations for Chamfer discrepancy.

• A new algorithm named Adaptive-sliced Wasserstein
to evaluate sliced Wasserstein distance that guarantees
that the evaluated value is close enough to the true one
(Section 4).

• An extensive evaluation of point cloud learning tasks
including point cloud reconstruction, transfer learning,
point cloud registration and generation based on Cham-
fer discrepancy, EMD, sliced Wasserstein distance and
its variants (Section 5).

2. Related Work
Set similarity. 3D point clouds autoencoders are useful
in a wide range of applications, such as denoising [19], 3D
matching [55, 10, 12, 31], and generative models [16, 1].
Many autoencoder architectures have been proposed in re-
cent few years [1, 52, 10]. To train these autoencoders, there
are two popular choices of losses: the Chamfer discrep-
ancy (CD) and Earth Mover’s distance (EMD). The Chamfer
discrepancy has been widely used in point cloud deep learn-
ing [16, 1, 52].

It is known that Chamfer discrepancy (CD) is not a dis-
tance that means there are two different point clouds with its
CD almost equals zero. While earlier works [16, 1] showed
that EMD is better than Chamfer in 3D point clouds recon-
struction task, recent works [42] still favor Chamfer discrep-
ancy due to its fast computation.

Wasserstein distance. In 2D computer vision, the family of
Wasserstein distances and their sliced-based versions have
been considered in the previous works [2, 20, 48, 14, 13, 49,
29, 23]. In particular, Arjovsky et al. [2] proposed using
Wasserstein as the loss function in generative adversarial
networks (GANs) while Tolstikhin et al. [48] proposed using
that distance for the autoencoder framework. Nevertheless,
Wasserstein distances, including the EMD, have expensive

computational cost and can suffer from the curse of dimen-
sionality, namely, the number of data required to train the
model will grow exponentially with the dimension. To deal
with these issues of Wasserstein distances, a line of works
has utilized the slicing approach to reduce the dimension
of the target probability measures. The notable slicing dis-
tance is sliced Wasserstein distance [5]. Later, the idea of
sliced Wasserstein distance had been adapted to the autoen-
coder setting [25] and domain adaptation [30]. Deshpande
et al. [14] proposed to use the max-sliced Wasserstein dis-
tance, a version of sliced Wasserstein distance when we only
choose the best direction to project the probability measures,
to formulate the training loss for a generative adversarial
network. The follow-up work [13, 49] has an improved
projection complexity compared to the sliced Wasserstein
distance. In the recent work, Nguyen et al. [37, 38] proposed
a probabilistic approach to chooses a number of important
directions via finding an optimal measure over the projec-
tions. Another direction with sliced-based distances is by
replacing the linear projections with non-linear projections
to capture more complex geometric structures of the proba-
bility measures [24]. However, to the best of our knowledge,
none of such works have considered the problem of learning
with 3D point clouds yet.
Notation. Let Sn−1 be the unit sphere in the n-dimensional
space. For a metric space (Ω, d) and two probability mea-
sures µ and ν on Ω, let Π(µ, ν) be the set of all joint distri-
butions γ such that its marginal distributions are µ and ν,
respectively. For any θ ∈ Sn−1 and any measure µ, πθ♯µ
denotes the pushforward measure of µ through the mapping
Rθ where Rθ(x) = θ⊤x for all x.

3. Background
To study the performance of different metrics for point

cloud learning, we briefly review the mathematical founda-
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tion of the Chamfer discrepancy and the Wasserstein dis-
tance, which serve as the key building blocks in this paper.
Note that in computer vision, Chamfer is often abused to be
a distance. Strictly speaking, Chamfer is a pseudo-distance,
not a distance [16]. Therefore, in this paper, we use the terms
Chamfer discrepancy or Chamfer divergence instead.

3.1. Chamfer discrepancy

In point cloud deep learning, Chamfer discrepancy has
been adopted for many tasks. There are some variants of
Chamfer discrepancy, which we provide here for complete-
ness. For any two point clouds P,Q, a common formulation
of the Chamfer discrepancy between P and Q is given by:

dCD(P,Q) =
1

|P |
∑
x∈P

min
y∈Q

||x−y||22+
1

|Q|
∑
y∈Q

min
x∈P

||x−y||22.

(1)
A slightly modified version of Chamfer divergence is also
used by previous works [52, 10, 12, 3] that replaces the sum
by a max function:

dMCD(P,Q) = max
{ 1

|P |
∑
x∈P

min
y∈Q

||x− y||22,

1

|Q|
∑
y∈Q

min
x∈P

||x− y||22
}
. (2)

In both definitions, the min function means that Chamfer
discrepancy only cares about the nearest neighbour of a
point rather than the distribution of those nearest points.
Hence, as long as the supports of x and y are close then
the corresponding Chamfer discrepancy between them is
small, meanwhile their corresponding distributions could be
different. A similar phenomenon, named Chamfer blindness,
was shown in [1], pointing out that Chamfer discrepancy
fails to distinguish bad sample from the true one, since it is
less discriminative.

3.2. Wasserstein distance

Let (Ω, d) be a metric space, µ, ν are probability mea-
sures on Ω. For p ≥ 1, the p-Wasserstein distance (WD) is
given by

Wp(µ, ν) = inf
γ∈Π(µ,ν)

{
E(X,Y )∼γ

[
dp(X,Y )

]} 1
p

.

For p = 1, the Wasserstein distance becomes the Earth
Mover’s Distance (EMD), where the optimal joint distribu-
tion γ induces a map T : µ → ν, which preserves the mea-
sure on any measurable set B ⊂ Ω. In the one-dimensional
case Ω = R and d(x, y) := |x− y|, the WD has the follow-
ing closed-form formula:

Wp(µ, ν) =
(∫ 1

0

∣∣F−1
X (t)− F−1

Y (t)
∣∣p, dt) 1

p

, (3)

where FX and FY are respectively the cumulative distri-
bution functions of random variables X and Y . When the
dimension is greater than one, there is no closed-form for
the WD, that makes calculating the WD more difficult.

EMD in 3D point-cloud applications. For the specific set-
tings of 3D point clouds, the EMD had also been employed
to define a metric between two point clouds [16, 1, 53]. With
an abuse of notation, for any two given point clouds P and
Q, throughout this paper, we denote its measure representa-
tion as follows: P = 1

|P |
∑

x∈P δx and Q = 1
|Q|

∑
y∈Q δy

where δx denotes the Dirac delta distribution at point x in
the point cloud P . When |P | = |Q|, the Earth Mover’s
distance [16, 1, 53] between P and Q is defined as

dEMD(P,Q) = min
T :P→Q

∑
x∈P

||x− T (x)||2. (4)

While earlier works [16, 1] showed that EMD is better than
Chamfer in 3D point clouds reconstruction task, the com-
putation of EMD can be very expensive compared to the
Chamfer divergence. In particular, it had been shown that
the practical computational efficiency of EMD is at the order
of max{|P |, |Q|}3 [39], which can be expensive. There is a
recent line of work using entropic version of EMD or in gen-
eral Wasserstein distances [9] to speed up the computation
of EMD. However, the best known practical complexity of
using the entropic approach for approximating the EMD is at
the order max{|P |, |Q|}2 [34, 35], which is still expensive
and slower than that of Chamfer divergence. Therefore, it ne-
cessitates to develop a metric between 3D point clouds such
that it not only has equivalent statistical properties as those
of EMD but also has favorable computational complexity
similar to that of the Chamfer divergence.

4. Sliced Wasserstein Distance and its variants
In this section, we first show that Chamfer divergence

is a weaker divergence than Earth Mover’s distance in Sec-
tion 4.1. Since Earth Mover’s distance can be expensive
to compute, we propose using sliced Wasserstein distance,
which is equivalent to Wasserstein distance and has effi-
cient computation, as an alternative to EMD in Section 4.2.1.
Finally, we propose a new algorithm to compute sliced-
Wasserstein that can guarantee the estimated value is close
enough to the true one in Section 4.2.2.

4.1. Relation between Chamfer divergence and
Earth Mover’s distance

In this section, we study the relation between Chamfer
and EMD when |P | = |Q|. In particular, the following
inequality shows that the Chamfer divergence is weaker than
the Wasserstein distance.

Lemma 1. Assume |P | = |Q| and the support of P and Q
is bounded in a convex hull of diameter K, then we find that
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dCD(P,Q) ≤ 2KdEMD(P,Q). (5)

Proof. Assume that T is the optimal plan from P to Q. Then,
we find that

min
y∈Q

∥x− y∥2 ≤ ∥x− T (x)∥2

⇒ min
y∈Q

∥x− y∥22 ≤ K∥x− T (x)∥2,

since ∥x− T (x)∥2 ≤ K. Taking the sum over x, we obtain

∑
x∈P

min
y∈Q

∥x− y∥22 ≤ K
∑
x∈P

∥x− T (x)∥2.

Similarly we have
∑

y∈Q minx∈P ∥x − y∥22 ≤
K

∑
y∈Q ∥y − T̄ (y)∥2 where T̄ is the optimal plan

from Q to P . Then we obtain the desired inequality.

The inequality in Lemma 1 implies that minimizing the
Wasserstein distance leads to a smaller Chamfer discrepancy,
and the reverse inequality is not true. Therefore, EMD and
Chamfer divergence are not equivalent, which can be unde-
sirable. Note that the inequality could not be improved to
a better order of K. For example, lets consider two point-
clouds that have small variance ϵ2, meanwhile the distance
between two point-cloud centers equals K −O(ϵ). Then the
CD is of order K2, the EMD is of order K.

Lemma 1 shows that Chamfer divergence is weaker than
the EMD, which is in turn weaker than other divergences
such as, KL, chi-squared, etc. [40, pp.117]. However, Cham-
fer discrepancy has weakness as we explained before, and
other divergences are not as effective as EMD, since they
are very loose even when two distributions are close to each
other [2]. Hence, the Wasserstein/EMD is a preferable metric
for learning the discrepancy between two distributions.

Despite that fact, computing EMD can be quite expen-
sive since it is equivalent to solving a linear programming
problem, which has the best practical computational com-
plexity of the order O(max{|P |3, |Q|3}) [39]. On the other
hand, the computational complexity of Chamfer divergence
can be scaled up to the order O(max{|P |, |Q|}). Therefore,
Chamfer divergence is still preferred in practice due to its
favorable computational complexity.

Given the above observation, ideally, we would like to
utilize a distance between P and Q such that it is equiva-
lent to the EMD and has linear computational complexity in
terms of max{|P |, |Q|}, which is comparable to the Cham-
fer divergence. It leads us to the notion of sliced Wasserstein
distance in the next section.

4.2. Sliced Wasserstein distance and its variants

In order to circumvent the high computational complexity
of EMD, the sliced Wasserstein distance [5] is designed
to exploit the 1D formulation of Wasserstein distance in
Equation (3).

4.2.1 Sliced Wasserstein distance

In particular, the idea of sliced Wasserstein distance is that
we first project both target probability measures µ and ν on
a direction, says θ, on the unit sphere to obtain two projected
measures denoted by πθ♯µ and πθ♯ν, respectively. Then,
we compute the Wasserstein distance between two projected
measures πθ♯µ and πθ♯ν. The sliced Wasserstein distance
(SWD) is defined by taking the average of the Wasserstein
distance between the two projected measures over all possi-
ble projected direction θ. In particular, for any given p ≥ 1,
the sliced Wasserstein distance of order p is formulated as
follows:

SWp(µ, ν) =
(∫

Sn−1

W p
p

(
πθ♯µ, πθ♯ν)dθ

) 1
p

. (6)

The SWp is considered as a low-cost approximation for
Wasserstein distance as its computational complexity is of
the order O(n log n) where n is the maximum number of
supports of the discrete probability measures µ and ν. When
p = 1, the SWp is weakly equivalent to first order WD or
equivalently EMD [4]. The equivalence between SW1 and
EMD along with the result of Lemma 1 suggests that SW1 is
stronger metric than the Chamfer divergence while it has an
appealing optimal computational complexity that is linear on
the number of points of point clouds, which is comparable
to that of Chamfer divergence.

We would like to remark that since the dimension of
points in point clouds is generally small (≤ 6), sliced Wasser-
stein distance will still be able to retain useful information of
the point clouds even after we project them to some direction
on the sphere. Due to its favorable computational complexity,
sliced Wasserstein distance had been used in several appli-
cations: point cloud registration [28], generative models on
2D images; see, for examples [45, 36, 14, 25, 26, 49, 27].
However, to the best of our knowledge, this distance has not
been used for deep learning tasks on 3D point clouds.

Monte Carlo estimation. In Equation (6), the integral is
generally intractable to compute. Therefore, we need to
approximate the integral. A common approach to approx-
imate the integral is by applying the Monte Carlo method.
In particular, we sample N directions θ1, . . . , θN uniformly
from the sphere Sd−1 where d is the dimension of points in
point clouds, which results in the following approximation
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of sliced Wasserstein distance:

SWp(µ, ν) ≈
( 1

N

N∑
i=1

W p
p

(
πθi♯µ, πθi♯ν

)) 1
p

. (7)

where the number of slices N is tuned for the best perfor-
mance.

Since N plays a key role in determining the approxima-
tion of sliced Wasserstein distance, it is usually chosen based
on the dimension of the probability measures µ and ν. In our
applications with 3D point clouds, since the dimension of
the points in point clouds is generally small, we observe that
choosing the number of projections N up to 100 is already
sufficient for learning 3D point clouds well.

Max-sliced Wasserstein distance. To avoid using uninfor-
mative slices in SWD, another approach focuses on taking
only the best slice in discriminating between two given distri-
butions. That results in max-sliced Wasserstein distance [13].
For any p ≥ 1, the max-sliced Wasserstein distance of order
p is given by:

MSWp(µ, ν) := max
θ∈Sn−1

Wp

(
πθ♯µ, πθ♯ν). (8)

4.2.2 An adaptive-sliced Wasserstein algorithm

Another drawback of the Monte Carlo estimation in SWD
is that it does not give information about how close the esti-
mated value is to the true one. Therefore, we introduce the
novel adaptive-sliced Wasserstein algorithm (ASW). In par-
ticular, given N uniform random projections {θi}N1 drawn
from the sphere Sn−1, for the simplicity of presentation, we
denote swi = W p

p

(
πθi♯µ, πθi♯ν) for all 1 ≤ i ≤ N . Fur-

thermore, we denote sw = SW p
p (µ, ν) the true value of

SW distance that we want to compute. The Monte Carlo
estimation of the SW distance can be written as follows:
swN := 1

N

∑N
i=1 swi, which is an unbiased estimator of the

true value sw. Similarly, the biased and unbiased variance
estimates are respectively defined as:

s2N :=
1

N

N∑
i=1

(
swi − swN

)2
, s̄2N :=

N

N − 1
s2N . (9)

Our idea of adaptivity is to dynamically determine the num-
ber of projections N from the observed mean and variance of
the estimators. To do so, we leverage a probabilistic bound
of the error of the estimator and choose N such that the error
bound is below a certain tolerance threshold. Particularly,
applying central limit theorem, we have

P
(
|swN − sw| < ks̄N√

N

)
≈ ϕ(k)− ϕ(−k) (10)

where ϕ(k) :=
∫ k

−∞
e−x2/2
√
2π

dx. We set k = 2 so that the
above probability is around 95%.

Algorithm 1: Adaptive sliced Wasserstein.
Input: Two point sets, positive integers N0, s; ϵ > 0;

maximum number of projections M
Ouput: swN

Sample N0 projections ;
Compute sw := swN0

, sw2 := sw2
N0

, N := N0 ;

while sw2 − (sw)2 > (N−1)ϵ2

4 & N ≤ M do
Sample s projections ;
Compute sws, sw2

s ;
Assign sw := N×sw+s×sws

N+s ;

Assign sw2 := N×sw2+s×sw2
s

N+s ;
Assign N := N + s ;

end

Given a predefined tolerance ϵ > 0, we aim for

ks̄N√
N

≤ ϵ, or
k2s̄2N
N

≤ ϵ2. (11)

From Equation (9), we note that s̄2N
N =

s2N
N−1 and so it

is desirable to choose N such that k2s2N
N−1 ≤ ϵ2. Rewrit-

ing the biased variance in Equation (9), we get s2N =
1
N

∑N
i=1 sw

2
i − (swN )2. Denote sw2

N := 1
N

∑N
i=1 sw

2
i ,

the condition becomes

sw2
N − (swN )2 ≤ (N − 1)ϵ2

k2
.

That leads us to the construction of Algorithm 1. In this
algorithm, we start by estimating the SWD with an initial
number of projections N = N0, and then dynamically up-
date N with extra s samples by estimating the online mean
and variance of the distance estimator until the estimated
error satisfies the error bound. We note that ASW algorithm
can be used to compute other variants of SWD, such as,
generalized sliced-Wasserstein distance [24].

5. Experiments
In general, a good distance metric is expected to have

good performance in a wide range of downstream tasks.
Here we compare the performance of different autoencoders
trained with Chamfer discrepancy, Earth Mover’s distance,
sliced Wasserstein distance and max-sliced Wasserstein dis-
tance. We consider the following tasks in our evaluation:
point cloud reconstruction, transfer learning, point cloud
registration, and point cloud generation.

Implementation details. We follow the same architecture
of the autoencoder used in [42], which is based on Point-
Net [44], with 256-dimensional embedding space. The ar-
chitecture of our autoencoder is shown in Figure 2. We train
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Figure 2: The network architecture of the autoencoder used
in all of our experiments. The classifier is only used in the
transfer learning experiment. All layers are followed by
ReLU activation and batch normalization by default, except
for the final layers.

Method CD SWD EMD

CD-AE 0.014 6.738 0.314
EMD-AE 0.014 2.295 0.114
SSW-AE (ours) 0.007 0.831 0.091
MSW-AE (ours) 0.007 0.865 0.093
ASW-AE (ours) 0.007 0.854 0.092

Table 1: Quantitative measurements of the discrepancy be-
tween the input point clouds and their reconstructed versions
on ModelNet40. We use Chamfer discrepancy (CD), sliced
Wasserstein distance with 100 slices (SWD), and EMD as
the evaluation metrics.

the autoencoder on the ShapeNet Core-55 dataset [6] for
300 epochs with the following loss functions: Chamfer dis-
crepancy (CD-AE), Earth-mover distance (EMD-AE), max-
sliced Wasserstein distance (MSW-AE) and sliced Wasser-
stein distance. In the case which the autoencoder trained
with sliced Wasserstein distance, we conduct experiments
for each of two algorithms: Monte Carlo estimation and
ASW. We will call these two autoencoders SSW-AE and
ASW-AE, respectively. For Monte Carlo estimation, we set
the number of slices 100. For ASW, we set the parameters
in Algorithm 1 as follows: N0 = 2, s = 1, ϵ = 0.5 and
M = 500. Our models are trained with an SGD optimizer
with an initial learning rate 0.001, a momentum of 0.9, and
a weight decay of 0.0005. We use an NVIDIA V100 GPU
for both training and evaluation, with batch size of 128 and
a point cloud size of 2048.

Method Accuracy (%)

CD-AE 83.9
EMD-AE 84.4
SSW-AE (ours) 86.8
MSW-AE (ours) 86.5
ASW-AE (ours) 86.8

Table 2: Classification performance of different autoen-
coders on ModelNet40 [50]. Our proposed SW models can
learn a better latent representation compared to Chamfer and
EMD.

3D point cloud reconstruction. We test the reconstruc-
tion capability of the autoencoders on the ModelNet40
dataset [50]. We measure the differences between the origi-
nal point clouds and their reconstructed versions using Cham-
fer discrepancy (CD), sliced Wasserstein distance with 100
slices (SWD), and EMD. The results are shown in Table 1.
Figure 3 shows the qualitative results from different autoen-
coders. As can be seen, CD-AE performs well when being
evaluated by Chamfer discrepancy, but not by SWD and
EMD. On the contrary, from Lemma 1, minimizing Wasser-
stein distance leads to minimizing Chamfer distance as well.
Experiments with other Wasserstein metrics including gener-
alized sliced Wasserstein [24] could be found in the supple-
mentary material.

Transfer learning. We further evaluate the performance of
the autoencoders by using their latent vectors as features for
classification. Particularly, for an input 3D shape, we feed its
point cloud into an autoencoder and extract the correspond-
ing latent vector. This vector is then classified by a classifier
trained on the de-facto 3D classification benchmark of Mod-
elNet40 [50]. The architecture of the classifier is shown in
Figure 2. The input is a 256-dimension feature vector and the
output is a 40-dimension vector representing the prediction
scores of 40 classes in ModelNet40. We train our networks
for 500 epochs with a batch size of 256. We use an SGD op-
timizer with 0.001 learning rate, 0.9 momentum, and 0.005
weight decay. The classification results are shown in Table 2.
As can be seen, autoencoders trained with sliced Wasserstein
distance outperformed both Chamfer and EMD. We further
investigate performance of classifiers in case point clouds in
ModelNet40 are perturbed by noise. We find that features
learned with SWD are the most robust to noise, outperform-
ing both CD and EMD by about 3% of accuracy. Details can
be found in the supplementary material.

Point cloud generation. Next, we evaluate our method on
the point cloud generation task. Following [1], we split the
chair category of ShapeNet into train/validation/test sets in
a 85/5/10 ratio. We train the autoencoders using different
distance metrics for 104 epochs. After that, we train a gener-
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Figure 3: Qualitative results of autoencoders trained on single class using different loss functions. From top to bottom: input
point clouds, CD-AE (red), EMD-AE (green) and SSW-AE (magenta).Compared to our models, CD-AE fails to reconstruct
properly most of the 3D shapes.

JSD (↓) MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Method CD EMD CD EMD CD EMD

CD-AE 38.97 0.65 23.44 31.91 5.47 86.63 100.00
EMD-AE 3.73 0.61 10.44 35.75 35.75 86.34 87.96
SSW-AE (ours) 3.24 0.79 11.22 28.51 37.96 91.43 91.80

Table 3: Quantitative results of point cloud generation task on the chair category of ShapeNet. ↑: the higher the better, ↓: the
lower the better. JSD, MMD-CD, and MMD-EMD scores are all multiplied by 102.

ator on the latent space of an autoencoder, same as [1]. Our
generators, parameterized by a multi-layer perceptron, learn
to map a 64-dimensional vector drawn from a normal distri-
bution N (0, I64) to a latent code learned by an autoencoder
Platent, where I64 is the 64× 64 identity matrix. We train the
generators by minimizing the optimal transport distance be-
tween the generated and ground truth latent codes. We report
the quantitative in Table 3.We use the same evaluation met-
rics as proposed by [51]. Qualitative results and results for
MSW-AE and ASW-AE can be found in the supplementary.

3D point cloud registration. Finally, we consider the prob-
lem of 3D point cloud registration. In this problem, we need
to estimate a rigid transformation between two 3D point
clouds. We follow the same setup as [42] and use the autoen-
coders for local feature extraction. Evaluation is performed
on the standard 3DMatch benchmark [54]. We also compare
our models against CZK [7], a method that used geometric
features. The final results are shown in Table 4. Our meth-
ods outperform other models by a good margin. Results for
MSW-AE and ASW-AE can be found in the supplementary.
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CD-AE EMD-AE SSW-AE CZK [7]

home1 59.4 60.4 60.4 63.2
home2 47.2 46.5 47.8 40.3
hotel1 62.6 62.1 69.8 64.3
hotel2 43.6 44.9 48.7 66.7
hotel3 46.2 34.6 65.4 57.7
kitchen 58.4 57.0 62.6 49.9
lab 42.2 46.7 48.9 37.8
study 50.4 50.0 55.6 54.7

Average 51.3 50.3 57.4 54.3

Table 4: 3D registration results (recall) on the 3DMatch
benchmark. We compare the models that trained with sliced
Wasserstein (SW-AE) and squared sliced Wasserstein (SSW-
AE) against Chamfer discrepancy (CD-AE) and a geometric-
based approach (CZK). More details can be found in the
suppplementary.

Distance Runtime (ms)

EMD 385
CD 120
SWD 138

Table 5: Training time per iteration in milliseconds of differ-
ent distance functions. We compare the sliced Wasserstein
distance (SWD) against Chamfer discrepancy (CD) and ap-
proximated EMD.

Runtime performance. We report the training time per
iteration when training the autoencoder using Sliced Wasser-
stein with fixed number of slices, Chamfer and approximated
EMD. We train over 104 iterations with a batch size of 128
and report the average timing. For Chamfer and EMD, we
use the implementation from [51]. Otherwise, we use our
Python implementation. Table 5 shows the runtime perfor-
mance of different metrics. Our proposed sliced Wasserstein
distance is as fast as Chamfer discrepancy, while being more
accurate. Compared to EMD, sliced Wasserstein distance is
almost three times faster.

Convergence rate. Our proposed sliced Wasserstein dis-
tance also has better convergence rate compared to Chamfer
and EMD. To demonstrate this point, we calculate the er-
ror during training using exact EMD. Results in Table 6
show that all of the SW variants converge much faster than
Chamfer and EMD.
Different architecture. We further performed experiments
on point cloud capsule networks [55] to show that our
method is agnostic to network architecture. As illustrated in
Table 7, SWD is agnostic to network architecture we tested,
i.e., SWD also works well for the point cloud capsule net-

Method Epoch 50 Epoch 150 Epoch 300

CD-AE 0.268 0.275 0.314
EMD-AE 0.171 0.152 0.144
SSW-AE 0.106 0.097 0.091
MSW-AE 0.110 0.099 0.093
ASW-AE 0.109 0.098 0.092

Table 6: Convergence rate of different distance metrics dur-
ing training. We report the exact EMD errors at epoch 50,
150 and 300. Sliced Wasserstein distance has the best con-
vergence rate.

Method CD SWD EMD Accuracy

PCN-SSW 0.006 0.761 0.084 88.78
PCN-CD 0.003 3.035 0.156 88.45

Table 7: Quantitative measurements of the discrepancy be-
tween the input point clouds and their reconstructed versions
on ModelNet40. The last column is the classification accu-
racy on ModelNet40.

work [55] (PCN), which has a very different design from
the original PointNet. We trained PCN on ShapeNetCore55
dataset and tested on ModelNet40. As can be seen, using
SWD can result in a slight performance improvement com-
pared to Chamfer distance in the reconstruction task. Using
SWD with PCN leads to a significant improvement of almost
2% in the classification task.

6. Conclusion

In the paper, we propose using sliced Wasserstein dis-
tance for learning representation of 3D point clouds. We
theoretically demonstrate that the sliced Wasserstein distance
is equivalent to EMD while its computational complexity is
comparable to Chamfer divergence. Therefore, it possesses
both the statistical and computational benefits of EMD and
Chamfer divergence, respectively. We also propose a new
algorithm to approximate sliced Wasserstein distance be-
tween two given point clouds so that the estimation is close
enough to the true value. Empirically, we show that the latent
codes of the autoencoders learned using sliced Wasserstein
distance are more useful for various downstream tasks than
those learned using the Chamfer divergence and EMD.
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learning 3d surface generation. In CVPR, 2018. 1

[19] Pedro Hermosilla, Tobias Ritschel, and Timo Ropinski. Total
denoising: Unsupervised learning of 3D point cloud cleaning.
In ICCV, 2019. 1, 2

[20] Nhat Ho, XuanLong Nguyen, Mikhail Yurochkin, Hung Hai
Bui, Viet Huynh, and Dinh Phung. Multilevel clustering via
Wasserstein means. In ICML, pages 1501–1509, 2017. 2

[21] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise convolutional neural networks. In CVPR, 2018. 1

[22] Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang. Pro-
gressive point cloud deconvolution generation network. In
ECCV, 2020. 1

[23] Viet Huynh, Nhat Ho, Nhan Dam, Long Nguyen, Mikhail
Yurochkin, Hung Bui, and Dinh Phung. On efficient multi-
level clustering via Wasserstein distances. Journal of Machine
Learning Research, pages 1–43, 2021. 2

[24] Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland
Badeau, and Gustavo Rohde. Generalized sliced wasserstein
distances. In NeurIPS, 2019. 2, 5, 6

[25] Soheil Kolouri, Phillip E. Pope, Charles E. Martin, and Gus-
tavo K. Rohde. Sliced Wasserstein auto-encoders. In ICLR,
2019. 2, 4

[26] Soheil Kolouri, Gustavo K. Rohde, and Heiko Hoffmann.
Sliced wasserstein distance for learning gaussian mixture
models. In CVPR, June 2018. 4

[27] Soheil Kolouri, Yang Zou, and Gustavo K. Rohde. Sliced
wasserstein kernels for probability distributions. In CVPR,
June 2016. 4

[28] Rongjie Lai and Hongkai Zhao. Multi-scale non-rigid point
cloud registration using robust sliced-wasserstein distance via
laplace-beltrami eigenmap. arXiv preprint arXiv: 1406.3758,
2014. 4

[29] Trung Le, Tuan Nguyen, Nhat Ho, Hung Bui, and Dinh Phung.
LAMDA: Label matching deep domain adaptation. In ICML,
2021. 2

[30] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and
Daniel Ulbricht. Sliced wasserstein discrepancy for unsuper-
vised domain adaptation. In CVPR, June 2019. 2

[31] Chun-Liang Li, Tomas Simon, Jason Saragih, Barnabas Poc-
zos, and Yaser Sheikh. Lbs autoencoder: Self-supervised
fitting of articulated meshes to point clouds. In CVPR, June
2019. 2

[32] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-
zos, and Ruslan Salakhutdinov. Point cloud GAN. arXiv
preprint arXiv:1810.05795, 2018. 1

[33] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning
efficient point cloud generation for dense 3D object recon-
struction. In AAAI, 2018. 1

[34] Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient opti-
mal transport: An analysis of greedy and accelerated mirror
descent algorithms. In ICML, pages 3982–3991, 2019. 3

[35] Tianyi Lin, Nhat Ho, and Michael I. Jordan. On the efficiency
of Sinkhorn and Greenkhorn and their acceleration for optimal
transport. arXiv preprint arXiv: 1906.01437, 2019. 3

[36] Kimia Nadjahi, Alain Durmus, Umut Simsekli, and Roland
Badeau. Asymptotic guarantees for learning generative mod-
els with the sliced-wasserstein distance. In NeurIPS, pages
250–260, 2019. 4

[37] Khai Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Dis-
tributional sliced-Wasserstein and applications to generative
modeling. In ICLR, 2021. 2

[38] Khai Nguyen, Son Nguyen, Nhat Ho, Tung Pham, and Hung
Bui. Improving relational regularized autoencoders with
spherical sliced fused Gromov Wasserstein. In ICLR, 2021. 2

10486



[39] O. Pele and M. Werman. Fast and robust earth mover’s dis-
tance. In ICCV, 2009. 1, 3, 4
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