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Abstract

Multi-source Domain Adaptation (MSDA) is more prac-
tical but challenging than the conventional unsupervised
domain adaptation due to the involvement of diverse mul-
tiple data sources. Two fundamental challenges of MSDA
are: (i) how to deal with the diversity in the multiple source
domains and (ii) how to cope with the data shift between
the target domain and the source domains. In this paper,
to address the first challenge, we propose a theoretical-
guaranteed approach to combine domain experts locally
trained on its own source domain to achieve a combined
multi-source teacher that globally predicts well on the mix-
ture of source domains. To address the second challenge,
we propose to bridge the gap between the target domain
and the mixture of source domains in the latent space via a
generator or feature extractor. Together with bridging the
gap in the latent space, we train a student to mimic the pre-
dictions of the teacher expert on both source and target ex-
amples. In addition, our approach is guaranteed with rigor-
ous theory offered insightful justifications of how each com-
ponent influences the transferring performance. Extensive
experiments conducted on three benchmark datasets show
that our proposed method achieves state-of-the-art perfor-
mances to the best of our knowledge.

1. Introduction

Recent advances in deep learning have enjoyed great
success in performing visual learning tasks under the col-
lection of massive annotated data [26, 64, 50, 54, 3]. How-
ever, directly transferring knowledge of a learned model,
which is trained on a source domain, to a novel target
domain can undesirably degrade its performance due to
the existence of domain and label shifts [49]. To ad-
dress these issues, a diverse range of approaches in do-

main adaptation (DA) has been proposed from shallow do-
main adaptation [45, 16, 5, 6] to deep domain adaptation
[13, 32, 51, 12, 55, 9, 29, 41, 40]. While the conventional
DA aims to transfer knowledge from a labeled source do-
main to an unlabeled target domain, in many real-world
contexts, labeled data are collected from multiple domains,
for example, images taken under different conditions (e.g.,
weather, poses, lighting conditions, distinct backgrounds,
and etc) [70]. This has arisen a very practical and use-
ful setting for transfer learning named multi-source domain
adaptation (MSDA) in which we need to transfer knowledge
from multiple distinct source domains to a single unlabeled
target domain.

For multi-source domain adaptation, there exist two fun-
damental challenges: (i) how to deal with the diversity in
the labeled source domains and (ii) how to cope with the
domain shift between the target domain and the source do-
mains. The first challenge makes it harder to train a single
model that is expected to work well on multiple source do-
mains due to the requirement to resolve diverge data com-
plexity imposed on model training. To overcome this chal-
lenge, inspired by [36, 23], we propose combining domain
experts into a multi-source teacher by mixing the domain
expert predictions using the coefficients learned by a do-
main discriminator. Our rigorous theory demonstrates that
the performance of this multi-source teacher expert predict-
ing globally on the mixture source domains is at least bet-
ter than that of the worst domain expert predicting locally
on its domain (see Theorem 1). Therefore, if we can train
qualified domain experts, their combination leads to another
qualified expert with significantly broader coverage.

To address the second challenge, as suggested by The-
orem 3, we employ a joint feature extractor that maps the
target domain and the mixture of source domains into the
same latent space with the help of adversarial learning. Fur-
thermore, together with closing the divergence of the target
domain and mixture of source domains on the latent space,
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we train a target-domain student to imitate the multi-source
teacher on both source and target examples while enforcing
the clustering assumption [4] on the target-domain student
to strengthen the student’s generalization ability.

• We propose an approach named Student-Teacher
Ensemble Multi-source Domain Adaptation (STEM)
with theoretical guarantees for multi-source domain
adaptation. Not only driving us in devising our STEM,
the rigorous theory developed provides us an insight-
ful understanding of how each model component really
influences the transferring performance.

• We conduct extensive experiments on three bench-
mark datasets including Digits-five, Office-Caltech10,
and DomainNet. Experimental results show that our
STEM achieves state-of-the-art performances on those
three benchmark datasets. More specifically, for
Digits-five and Office-Caltech10 datasets, our STEM
wins the baselines on all pairs and surpasses the
runner-up baselines by 3.2% and 1.5% on average,
while for DomainNet dataset, our STEM wins the
runner-up baseline on 5 out of 6 pairs and surpasses
the runner-up baseline by 6.0% on average.

2. Related Work
2.1. Unsupervised Domain Adaptation

A variety of unsupervised domain adaptation (UDA) ap-
proaches have been successfully applied to generalize a
model learned from labeled source domain to unlabeled
novel target domain. Several existing methods based on
discrepancy-based alignment to minimize a different dis-
crepancy metric to close the gap between source and target
domain [32, 59, 56, 68, 31]. Another branch of UDA has
leveraged adversarial learning wherein generative adversar-
ial networks [18, 42, 22, 8, 28] were employed to align
source and target domain on feature-level [13, 58, 33, 43] or
pixel-level [15, 2, 53, 66]. On the category-level, some ap-
proaches utilized dual classifier [52, 31], or domain proto-
type [63, 46, 65] to investigate the category relations across
domains.

2.2. Multi-Source Domain Adaptation

The aforementioned UDA methods mainly consider
single-source domain adaptation, which is less practical
than multi-source domain adaptation. The fundamental
study in [7, 36, 1] has shed light upon the wide applications
of MSDA, such as in [11, 67]. Based on the above works,
Hoffman et al. [23] gave strong theoretical guarantees for
cross-entropy and other similar losses, which is a normal-
ized solution for MSDA problems. Recently, Zhao et al.
[70] deployed domain adversarial networks to align the tar-
get domain to source domains. Xu et al. [67] proposed a

new model to deal with the category shift, which is the case
where sources may not completely share their categories.
Peng et al. [47] introduced a model that aligned moments
of source and target feature distributions in latent space. A
multi-source distilling model was proposed in [71] to fine-
tune generator and classifier separately and utilized domain
weight to aggregate target prediction. Finally, the work in
[61] deployed a graph convolutional network to conduct do-
main alignment on the category-level.

3. Our Proposed Framework

3.1. Problem Setting

In this paper, we address the problem of multi-source do-
main adaptation in which we have K source domains with
collected data and labels, and a single target domain with
only collected data. We wish to transfer a model learned on
labeled source domains to an unlabeled target domain. Let
us denote the collected data and labels for the source do-
mains by DS

k =
{(

sxk
i , y

k
i

)}NS
k

i=1
where k is the index of a

source domain and label yki ∈ {1, 2, ...,M} with the num-
ber of classes M , and collected data without labels for the
target domain DT = {txi}N

T

i=1.
We further equip source domains with data distributions

PS
1:K whose density functions are pS1:K (x). Also, we de-

fine pS1:K (y | x) as the conditional distributions that assign
labels to each data example x for the source domains. Re-
garding the target domain, we define its data space as X T ,
data distribution and density function as PT and pT (x), re-
spectively. We further define the conditional distribution
that assigns labels for the target domain as pT (y | x).

Furthermore, we denote D as a joint distribution with
density function p(x, y) used to generate data-label pairs
(i.e., (x, y) ∼ D). Note that for the sake of notion sim-
plification, we overload the notion D to denote both joint
distribution for generating data-label pairs and a training set
sampled from this distribution. Let h be a classifier in which
h (x, y) specifies the probability to assign the data example
x to a class y ∈ {1, ...,M} and h (x) = [h (x, y)]

M
y=1 is the

prediction probability vector w.r.t. x. We consider the loss
function ℓ(h (x) , y) and define the general loss w.r.t. the
data-label joint distribution D as follows:

L (h,D) := E(x,y)∼D [ℓ (h (x) , y)]

=

∫
ℓ (h (x) , y) p (x, y) dxdy.

Finally, given a discrete distribution π over {1, ...,K},
we define PS

π :=
∑K

k=1 πkPS
k which is a mixture of

PS
1:K with density function pSπ (x) =

∑K
k=1 πkp

S
k (x) and

DS
π :=

∑K
k=1 πkDS

k with density function pSπ (x, y) =∑K
k=1 πkp

S
k (x, y). Moreover, the mixing proportion π can

be the uniform distribution [ 1K , ..., 1
K ] or proportional to the
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Figure 1. Overall framework of STEM for multi-source domain adaptation, which consists of cooperative agents, namely a multi-source
teacher expert hS and a target-domain student hT . Our model is trained to implement simultaneously two tasks: (i) achieving the teacher
expert hS by first training to obtain domain experts hS

1:K using their labels (orange and purple arrows), and then output the teacher hS

using a weighted ensembling strategy (black arrows) and (ii) training the student hT with the aim to mimic the prediction of its teacher
expert hS (green arrows) with the support of D to close the gap between the mixture of source data distributions and the target distribution
on the latent space.

number of training examples in the source domains (i.e.,
NS

1:K).

3.2. Overall Framework of STEM

Figure 1 illustrates the overall framework of our STEM.
Source and target domains are mapped to a latent space via a
shared generator or feature extractor G. On the latent space,
we train the domain experts hS

1:K and a source domain dis-
criminator C for which we can combine them to achieve a
multi-source teacher expert hS . Particularly, the source do-
main discriminator is trained to distinguish the source do-
mains, hence rendering the probabilities to assign an exam-
ple to the source domains. Therefore, given a source ex-
ample, the domain experts more relevant to this example
contribute more to the final decision. Furthermore, we de-
velop a theory to demonstrate that the multi-source teacher
expert hS can predict well on the mixture of source domains
with the performance at least better than the worst domain
expert on its source domain. Note that to support the source
domain discriminator C to do its task, the latent represen-
tations from the individual source domains are encouraged
to be separate, hence increasing their coverage on the latent
space. Meanwhile, with the assistance of adversarial learn-
ing framework [18], we train G with the support of a dis-
criminator D to bridge the gap between the target distribu-
tion and the mixture of source distributions, which enables
the multi-source teacher expert hS to transfer its knowledge
to predict well the target examples. Moreover, inspired by
the principle of knowledge distillation [21] in which we can
conduct a student to distill knowledge and outperform its
teacher, we train an additional target-domain student hT to

mimic the predictions of the multi-source teacher expert hS

on the target and source examples. Finally, we develop a
rigorous theory to quantify the loss in performance for this
imitating.

3.3. Ensemble based Teacher Expert

In what follows, we present how to conduct the multi-
source teacher expert hS , an ensemble expert which lever-
ages knowledge of domain experts. Particularly, using the
labeled source training sets DS

1:K , we can train qualified do-
main expert classifiers hS

1:K with good generalization ca-
pacity (i.e., L

(
hS
k ,DS

k

)
≤ ϵ for some small ϵ > 0). The

next arising question is how to combine those domain ex-
perts to achieve a multi-source teacher expert hS that can
work well on DS

π (i.e., L
(
hS ,DS

π

)
≤ ϵ). Inspired by

[36, 23], we leverage the domain experts to achieve a more
powerful multi-source teacher expert by a weighted ensem-
bling as follows:

hS (x, y) =

K∑
k=1

πkp
S
k (x, y)∑K

j=1 πjpSj (x, y)
hS
k (x, y) , (1)

where y ∈ {1, 2, ...,M}, and hS
k (x, y) and hS (x, y) spec-

ify the y-th values of hS
k (x) and hS (x) respectively.

The following theorem shows that the multi-source do-
main teacher expert hS can work well on the mixture joint
distribution DS

π . More specifically, it works better than the
worst domain expert on its source domain, hence if each do-
main expert is an ϵ-qualified classifier (i.e., L

(
hS
k ,DS

k

)
≤

ϵ), the multi-source teacher expert hS is also an ϵ-qualified
classifier (i.e., L

(
hS ,DS

π

)
≤ ϵ).
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Theorem 1. If ℓ is a convex function, the following state-
ments hold true (the proof of this theorem is adapted from a
proof in [36, 23]):

i) L
(
hS ,DS

π

)
≤ max1≤k≤K L

(
hS
k ,DS

k

)
.

ii) If each domain expert is an ϵ-qualified classifier (i.e.,
L
(
hS
k ,DS

k

)
≤ ϵ), the multi-source teacher expert hS is also

an ϵ-qualified classifier (i.e., L
(
hS ,DS

π

)
≤ ϵ).

So far the question of how to weight the domain ex-
perts hS

1:K to form multi-source teacher expert hS is still
left unanswered. Moreover, [23] proposed using DC-
programming (i.e., difference of convex) [10] for estimat-
ing weights. However, this approach seems to be overly
complicated and there is not any convincing evidence of
the effectiveness of this work for real-world datasets (i.e.,
the reported performance for the Office-31 dataset in the
context of the standard multiple source setting without any
transfer learning is only approximately 84.7%). In this pa-
per, we propose a new approach to weight the domain ex-
perts, which is hinted from the following theoretical obser-
vation. Assume that we have K distributions R1:K with den-
sity functions r1:K (z). We form a joint distribution D of a
data instance z and label t ∈ {1, ...,K} by sampling an in-
dex t ∼ Cat(π) (i.e., the categorical distribution w.r.t. π),
sampling x ∼ Rt, and collecting (z, t) as a sample from D.
With this equipment, we have the following proposition.

Proposition 2. If we train a source domain discriminator
C to classify samples from the joint distribution D using the
cross-entropy loss (i.e., CE (·, ·)), the optimal source do-
main discriminator C∗defined as

C∗ = argminCE(z,t)∼D [CE (C (z) , t)]

satisfies C∗ (z) =
[

πkrk(z)∑
j πjrj(z)

]K
k=1

.

Proposition 2 suggests us a way to compute the weights
of the domain experts in Eq. (1) in which for a given
y = m, the distributions pS1:K (x, y = m) play roles of
r1:K (z) where z = (x, y = m). More specifically, for
each m ∈ {1, ...,M}, we sample t ∼ Cat (π), then sample
(x, y = m) from pSt (x, y = m), and train a source domain
discriminator Cm (x, y = m) (i.e., only consider (x, y) in
which x has label y = m) to distinguish the source domain
of (x, y = m). We finally use Cm (x, y = m) to estimate
the weights of the domain experts. In addition, to conve-
niently train the source domain discriminators Cm, we share
their parameters, hence having an unique C that receives a
pair (x, y) and predicts its source domain t. Therefore, we
obtain the expert teacher

hS (x, y) =

K∑
k=1

C (x, y, k)hS
k (x, y) . (2)

To leverage the information of multiple source domains
and encourage learning multiple-source domain-invariant
representations for transfer learning in the sequel, we em-
ploy a feature extractor G to map multiple source domains
and the target domain to a latent space. The domain experts
hS
1:K and the source domain discriminator are trained on the

latent space. The formula in Eq. (2) is rewritten as:

hS (G (x) , y) =

K∑
k=1

C (G (x) , y, k)hS
k (G (x) , y) .

At the outset, we want to emphasize that our principle
to learn representations is different from that in some re-
cent works in MSDA, typically [47]. In [47], the moment
distance was used to force the representations of multiple
source domains to be identical in the latent space, while
ours encourages the representations of the individual source
domains to be separate so that the source domain discrim-
inator C can distinguish them more effectively. By this
way, we increase the coverage of the representations from
the multiple source domains, which makes the representa-
tions from the target domain more conveniently to adapt the
source representation in the transfer learning phase.

3.4. Performance of The Multi-source Teacher Ex-
pert on the Target Domain

We have possessed a qualified multi-source teacher ex-
pert hS that expects to predict well data examples sampled
from DS

π (i.e., a mixture of DS
1:K) as indicated in Theorem

1. It is natural to ask the question of the factors that influ-
ence the performance of hS when predicting on the target
joint distribution DT . The following theorem answers this
question.

Theorem 3. If ℓ is a convex function and upper-bounded by
a positive constant L, the general loss L

(
hS ,DT

)
is upper-

bounded by:

i)A
[
maxk L

(
hS
k ,DS

k

)
+ Lmaxk EPS

k
[∥∆pk (y | x)∥1]

]α−1
α

where A = exp
{
Rα

(
PT ∥PS

π

)}α−1
α L

1
α in which

Rα
(
PT ∥PS

π

)
represents the Rényi divergence be-

tween those distributions and ∆pk (y | x) :=[∣∣pSk (y = m | x)− pT (y = m | x)
∣∣]M

m=1
represents

the label shift between the labeling assignment mechanisms
of an individual source domain and target domain.

ii) A
[
ϵ+ Lmaxk EPS

k
[∥∆pk (y | x)∥1]

]α−1
α

provided

that L
(
hS
k ,DS

k

)
≤ ϵ, ∀k = 1, ...,K.

We now interpret Theorem 3 which lays foundation for
us to devise our STEM in the sequel. The general loss of
interest L

(
hS ,DT

)
is upper-bounded by the construction

of three terms, each of which has a specific meaning.
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(i) The expert-loss term maxk L
(
hS
k ,DS

k

)
represents the

worst general loss of the domain experts hS
1:K . Minimizing

this term implies training the domain experts to work well
on their domains.

(ii) The label-shift term EPS
k
[∥∆pk (y | x)∥1] where

∆pk (y | x) :=
[∣∣pSk (y = m | x)− pT (y = m | x)

∣∣]M
m=1

specifies the label shift indicating the divergence of the
ground-truth target labeling function and the ground-truth
source labeling function on a source domain. This term is
constant and reflects the characteristics of collected data.

(iii) The domain-shift term Rα
(
PT ∥PS

π

)
expresses the

data shift between the mixture source distribution PS
π and

the target distribution PT .
The observation in (iii) hints us using adversarial learn-

ing framework [18] to bridge the gap between the represen-
tations of the multiple source domains and the target domain
on the latent space using an additional discriminator D (see
Section 3.6.3).

3.5. Target-Domain Student

The multi-source teacher expert hS is guaranteed to
work well on the mixture of source data distributions PS

π ,
while the generator G with the support of a discriminator D
in adversarial learning framework [18] aims to close the dis-
crepancy gap between the mixture of source data distribu-
tions PS

π and the target distribution PT on the latent space.
Therefore, the multi-source teacher expert hS is expected
to work well on the target domain. However, the ill-posed
problem of GAN (e.g., the mode collapsing problem) could
occur during training, so that using directly hS to predict
target samples in latent space is not the best solution, which
motivates us to design the student network hT . Particularly,
in Figure 2a, GAN works perfectly, hence both hS and hT

work equally well. In another case, since GAN does not
mix up well the class 1 and 2 of source and target domains
(Figure 2b), hS predicts well on the source domain but un-
well on the target one. By enforcing the clustering assump-
tion on hT [4] (i.e., hT preserves clusters and is encouraged
to give the same prediction for source and target data on the
same cluster), the possible ill-posed training of GAN is mit-
igated. Additionally, inspired by the principle of knowledge
distillation [21] in which we can conduct a student to distill
knowledge and outperform its teacher, we propose to train
hT which aims to mimic the predictions of the teacher hS

on the mixture source and target domains. This also helps to
mitigate the negative impact from possible ill-posed training
of GAN, while offering us an opportunity to apply regular-
ization techniques such as VAT [37] and label smoothing
[38] to hT . We note that in our framework, it is hard to
apply those regularization techniques directly to the teacher
hS , but it is convenient to apply to hT . Indeed, we decide to
apply VAT to hT (see Section 3.6.2) and observe its superi-
ority to the teacher in terms of predictive performance (see

Section 4.2.4).

Figure 2. The motivation of the student hT .

3.6. Training Procedure of Our STEM

3.6.1 Training Multi-Source Teacher Expert

To work out the multi-source teacher expert hS , we simul-
taneously train domain experts hS

1:K on the labeled training
sets DS

1:K and the source domain discriminator C to offer
the weights for leveraging the domain experts. We propose
two workarounds to train C and ensemble the domain ex-
perts. Basically, we minimize:

∑K
k=1 Lie

k + αLC , where
α > 0 and consider two variants.

Theoretical oriented version. For the theoretical ori-
ented version, we feed (G (x) , y) to source domain dis-
criminator C with the aim to predict the data source index
of x

Lie
k = E(x,y)∼Ds

k

[
CE

(
hS
k (G (x)) , y

)]
,

LC = E(x,y,t)∼D [CE (C (G (x) , y) , t)] ,

hS (G (x) , y) =
∑K

k=1 C (G (x) , y, k)hS
k (G (x) , y) ,

where D is formed by sampling t ∼ Cat (π) and (x, y) ∼
DS

t and CE (·, ·) is the cross-entropy loss.

Simplified version. For the simplified version, instead of
feeding (G (x) , y) to the source domain discriminator C,
we only feed G (x) to this discriminator with the aim to
predict the data source index of x

Lie
k = E(x,y)∼Ds

k

[
CE

(
hS
k (G (x)) , y

)]
,

LC = E(x,t)∼D [CE (C (G (x)) , t)] ,

hS (G (x) , y) =
∑K

k=1 C (G (x) , k)hS
k (G (x) , y) ,

where D is formed by sampling t ∼ Cat (π) and x ∼ PS
t .

According to our ablation study in Section 4.2.2, the sim-
plified version performs slightly better than the theoretical
oriented version, while easier to train due to its simplicity.
Therefore, we stick with the simplified version and detail
the training of other components based on this version.

9356



3.6.2 Training Target-Domain Student

We train the target domain student hT to mimic the teacher
hS on the predictions for target and mixture of source ex-
amples using the following loss:

Lm = EPS
π

[
ℓ
(
hT (G (x)) , hS (G (x))

)]
+ EPT

[
ℓ
(
hT (G (x)) , hS (G (x))

)]
.

Moreover, Virtual adversarial training (VAT) [37] in con-
junction with minimizing entropy of prediction [19] with
the aim to ensuring the clustering assumption [4] has been
applied successfully to UDA [55, 27, 44]. Inspired by this
success, we propose minimizing

Lclus = Lent + Lvat,

where H is the entropy,

Lent = EPT
[
H
(
hT (G (x))

)]
,

Lvat = Ex∼PT

[
max x′:∥x′−x∥<θDKL

(
hT (G (x)) , hT (G (x′))

)]
with which DKL represents a Kullback-Leibler divergence
and θ is very small positive number. The total loss to train
the student hT is as follows:

Lstu = Lm + βLclus,

where β > 0 is a parameter.

3.6.3 Training Discriminator

The discriminator D is employed to distinguish the exam-
ples from the mixture of source data distributions PS

π and
the target distribution PT . The loss to train D is as follows:

Ld = −EPS
π
[logD(G(x))]− EPT [log (1−D(G(x)))] .

3.6.4 Training Generator

We train the generator G to bring the target examples to the
mixture of source examples and provide appropriate repre-
sentations for learning hS and hT with the following loss:

K∑
k=1

Lie
k + αLC + Lstu − γLd, (3)

where γ > 0 is are parameters.

3.6.5 Overall Training

We simultaneously update G, C, hS , hT by minimizing:

K∑
k=1

Lie
k + αLC + Lm + βLclus − γLd. (4)

We alternatively update D by minimizing Ld. In addition,
the pseudocode of our STEM is presented in Algorithm 1.

Algorithm 1 Pseudocode for training our STEM.

Input: Sources DS
k =

{(
sxk

i , y
k
i

)}NS
k

i=1
, target DT =

{txi}N
T

i=1.
Output: Classifiers hS , hT , source discriminator C, gener-

ator G.
1: for epoch in epochs do
2: for iter in iter per epoch do
3: Sample minibatches of sources

{(
sxk

i , y
k
i

)}m

i=1
and target {txi}mi=1.

4: Update G, C, hS , hT according to (4).
5: Update D by minimizing Ld.
6: end for
7: end for

4. Experiments
4.1. Experiments on Benchmark Datasets

This section describes our experiment settings. We
compare our STEM with the state-of-the-art baselines for
MSDA on three benchmark datasets: Digits-five, Office-
Caltech10, and DomainNet to demonstrate its merits.

4.1.1 Experimental setup

Implementation detail. In the experiments, we use Adam
optimizer (β1 = 0.5, β2 = 0.999) [25] with Polyak av-
eraging [48] for Digits-five and Office-Caltech10, and the
learning rate is set to 2× 10−4 and 10−4, respectively. For
DomainNet, we apply Stochastic Gradient Decent (SGD)
[57] (learning rate = 5 × 10−2, momentum = 0.9, decay
rate = 5× 10−4) to optimize the model.

For STEM, the trade-off hyper-parameter α is fixed to
1.0 in all experiments, while the parameters (β, γ) (with a
recommended range of [10−4, 1] for each parameter) are set
to (0.1, 0.1) for Digit-five, (0.01, 0.1) for Office-Caltech10,
and (10−4, 10−4) for DomainNet.
Performance comparison. Following the previous work
[61], we conduct the experiments to evaluate the model
performance with the MSDA standards: (1) Single best:
the highest classification accuracy among single-source do-
main adaptation results; (2) Source combine: the result on
single-source domain adaptation where the source domain
is a combination of multiple domains; (3) Multi-source: the
evaluation of the adaptation from multiple source domains
to the target domain.

4.1.2 Experiment Results on Digits-five

Digits-five contains five common digit-datasets: MNIST
[30], Synthetic Digits [14], MNISTM [14], SVHN [39], and
USPS [24]. This is a benchmark dataset in MSDA, with ten
classes corresponding to the digits ranging from 0 to 9 in
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Standard Methods →mm →mt →up →sv →sy Avg

Single
Best

Source-only 59.2 97.2 84.7 77.7 85.2 80.8
DAN [32] 63.8 96.3 94.2 62.5 85.4 80.4

CORAL [56] 62.5 97.2 93.5 64.4 82.8 80.1
DANN [14] 71.3 97.6 92.3 63.5 85.4 82.0
ADDA [58] 71.6 97.9 92.8 75.5 86.5 84.8

Source
Combine

Source-only 63.4 90.5 88.7 63.5 82.4 77.7
DAN [32] 67.9 97.5 93.5 67.8 86.9 82.7

DANN [14] 70.8 97.9 93.5 68.5 87.4 83.6
JAN [35] 65.9 97.2 95.4 75.3 86.6 84.1

ADDA [58] 72.3 97.9 93.1 75.0 86.7 85.0
MCD [52] 72.5 96.2 95.3 78.9 87.5 86.1

Multi-
Source

MDAN [70] 69.5 98.0 92.4 69.2 87.4 83.3
DCTN [67] 70.5 96.2 92.8 77.6 86.8 84.8

M3SDA [47] 72.8 98.4 96.1 81.3 89.6 87.7
MDDA [71] 78.6 98.8 93.9 79.3 89.7 88.1
CMSS [69] 75.3 99.0 97.7 88.4 93.7 90.8

LtC-MSDA [61] 85.6 99.0 98.3 83.2 93.0 91.8
STEM (ours) 89.7 99.4 98.4 89.9 97.5 95.0

Table 1. Classification accuracy (%) on Digits-five.

each domain. In each experiment on Digits-five, one do-
main will be chosen as the target domain and the rest as the
source domains.

In Table 1, we report the performance of our STEM com-
pared with the baselines. Our STEM outperforms the base-
lines on all transfer tasks. As far as we know, LtC-MSDA
[61] is the current state-of-the-art on Digits-five. Compared
to this baseline, our STEM significantly surpasses some
transfer tasks, i.e., →mm, →sv, and →sy by sizeable mar-
gins of 4.1%, 6.7%, and 4.5% respectively and rank the first
on average with a significant gap of 3.2%.

4.1.3 Experimental Results on Office-Caltech10

Office-Caltech10 [17] consists of four domains: Amazon
(A), Caltech (C), DSLR (D), and Webcam (W). There are
ten categories in each domain, and the total number of im-
ages is 2, 533. In this experiment, we split the training and
testing set with a ratio of 80% and 20%, respectively, and
use ResNet-101 [20] pre-trained on ImageNet as a back-
bone.

In Table 2, we present the results of STEM and the base-
lines. Overall, it can be seen that our STEM surpasses the
baselines in all four settings and achieves 98.2% on aver-
age. Since the baselines already achieve impressive perfor-
mances on all adaptation tasks, it is hard to gain significant
improvements. However, on two adaptation tasks (i.e., →W
and →D), our model yields impressive performances with
two perfect scores of 100%, while STEM also achieves re-
markable improvements on the other tasks.

Standard Methods →W →D →C →A Avg
Source

Combine
Source-only 99.0 98.3 87.8 86.1 92.8
DAN [32] 99.3 98.2 89.7 94.8 95.5

Multi-
Source

Source-only 99.1 98.2 85.4 88.7 92.9
DAN [32] 99.5 99.1 89.2 91.6 94.8

DCTN [67] 99.4 99.0 90.2 92.7 95.3
JAN [35] 99.4 99.4 91.2 91.8 95.5

MEDA [62] 99.3 99.2 91.4 92.9 95.7
MCD [52] 99.5 99.1 91.5 92.1 95.6

M3SDA [47] 99.5 99.2 92.2 94.5 96.4
CMSS [69] 99.6 99.3 93.7 96.6 97.2

STEM (ours) 100 100 94.2 98.4 98.2
Table 2. Classification accuracy (%) on Office-Caltech10 dataset.

4.1.4 Experimental Results on DomainNet

DomainNet was first introduced in [47] and has become the
most challenging dataset in MSDA. It consists of around
0.6 million images of 345 categories from 6 domains: cli-
part (clp), infograph (inf), quickdraw (qdr), real (rel) and
sketch (skt). Prominently, the high number of classes and
enormous noise in this dataset makes it challenging to gain
satisfactory performances even when training and testing
for supervised classification tasks in an individual domain,
especially the infograph domain. Moreover, a significant
difference in the distribution of each domain causes the do-
main shift problem when transferring knowledge. For all
experiments on this dataset, we utilize ResNet-101 [20] pre-
trained on ImageNet as the backbone.

We compare STEM with the current state-of-the-art
method which is LtC-MSDA [61]. As shown in Table 3,
our STEM exceeds LtC-MSDA on 5 out of 6 transfer tasks
with significant improvements of 8.9% on →clp task, 9.4%
on →qdr task, and 6.5% on →rel task. Averagely, STEM
also yields an impressive improvement of 6.0%.

4.2. Ablation Study

4.2.1 Latent Space Visualization

The crucial factors for the success of our STEM include (i)
the mix-up of target domain and the mixture of source do-
mains in the latent space and (ii) the target examples are
located in their matching classes in the source domains. To
visually demonstrate why STEM can achieve good perfor-
mances, we utilize t-SNE [60] to visualize the representa-
tions of target and source examples in the latent space. It is
noticeable that in Figure 3, we visualize the case in which
the target domain is USPS and the rest serves as source do-
mains. As shown in Figure 3 (Left) wherein we visualize
the mixture of source domains and the target domain when
the model is trained with source domains only. In Figure 3
(Right), we show how accurately the target examples match
the classes in the source domains when training the model
with STEM approach. It is evident that our STEM forms
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Standard Methods →clp →inf →pnt →qdr →rel →skt Avg

Single Best

Source-only 39.6 8.2 33.9 11.8 41.6 23.1 26.4
DAN [32] 39.1 11.4 33.3 16.2 42.1 29.7 28.6
RTN [34] 35.3 10.7 31.7 13.1 40.6 26.5 26.3
JAN [35] 35.3 9.1 32.5 14.3 43.1 25.7 26.7

DANN [14] 37.9 11.4 33.9 13.7 41.5 28.6 27.8
ADDA [58] 39.5 14.5 29.1 14.9 41.9 30.7 28.4
MCD [52] 42.6 19.6 42.6 3.8 50.5 33.8 32.2

Source
Combine

Source-only 47.6 13.0 38.1 13.3 51.9 33.7 32.9
DAN [32] 45.4 12.8 36.2 15.3 48.6 34.0 32.1
RTN [34] 44.2 12.6 35.3 14.6 48.4 31.7 31.1
JAN [35] 40.9 11.1 35.4 12.1 45.8 32.3 29.6

DANN [14] 45.5 13.1 37.0 13.2 48.9 31.8 32.6
ADDA [58] 47.5 11.4 36.7 14.7 49.1 33.5 32.2
MCD [52] 54.3 22.1 45.7 7.6 58.4 43.5 38.5

Multi-
Source

MDAN [70] 52.4 21.3 46.9 8.6 54.9 46.5 38.4
DCTN [67] 48.6 23.5 48.8 7.2 53.5 47.3 38.2

M3SDA [47] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
MDDA [71] 59.4 23.8 53.2 12.5 61.8 48.6 43.2
CMSS [69] 64.2 28.0 53.6 16.0 63.4 53.8 46.5

LtC-MSDA [61] 63.1 28.7 56.1 16.3 66.1 53.8 47.4
STEM (ours) 72.0 28.2 61.5 25.7 72.6 60.2 53.4

Table 3. Classification accuracy (%) on DomainNet dataset.

Figure 3. The t-SNE visualization of the transfer task →up with
label and domain information in two settings: Source-only (left)
and our STEM (right). Each color denotes a class while the circle
and triangle markers represent the mixture of source and target
data respectively.

source domains and target domain into the same clusters
and the target examples can find their matching classes in
the source domains, hence the label shift is mitigated. This
explains the qualified performances of our STEM.

4.2.2 Simplified and Theoretical-Oriented Domain
Discriminator C

We conduct an ablation study to compare two variants of
the domain discriminator C: theoretical oriented and sim-
plified versions (see Section 3.6.1). As shown in Table 4,
the simplified variant performs better than the theoretical
oriented one. We conjecture that this is because the sim-
plified variant still keeps the principal spirit of the theoret-
ically oriented one, while much easier to train due to its
simplicity. Therefore, we select the simplified variant in all
experiments.

Method →mm →mt
Theoretical C 86.8 99.1
Simplified C 89.7 99.4

Table 4. Comparison of the theoretical oriented and simplified ver-
sion of the proposed method

Lvat Lent →mm →up
83.04 96.86

! 86.25 96.11
! 86.82 97.11

! ! 89.71 98.42
Table 5. Ablation study for the affection of VAT and entropy term.

4.2.3 Clustering Assumption Effect

We now speculate the effect of VAT and conditional entropy
terms on our model performance. According to Table 5,
adding Lvat (first row) or Lent (second row) alone improves
the performance, while combining these two losses (third
row) even boosts the performance further.

Component Digit-five Office-Caltech10 DomainNet
hS 92.7 97.9 51.6
hT 95.0 97.9 53.4

Table 6. The comparison of teacher and student performance.

4.2.4 Teacher and Student Performances

We observe that the performance of the student hT totally
depends on that of the teacher hS . In what follows, we com-
pare the performance of the teacher and student on the target
domain. We report the average of the teacher and student’s
accuracy scores for all transfer tasks regarding each dataset.
As shown in Table 6, the student outperforms its teacher ex-
cept for Office-Caltech10 dataset. This totally makes sense
because the student not only strictly imitates its teacher, but
also is strengthened the generalization ability by enforcing
the clustering assumption (see Section 3.6.2).

5. Conclusion
In this paper, we propose Student-Teacher Ensemble

Multi-source Domain Adaptation (STEM) for multi-source
domain adaptation. Our approach gives strong theoreti-
cal guarantees and provides an insightful understanding of
how each model component really influences the transfer-
ring performance. Experiments conducted on three bench-
mark datasets, including Digits-five, Office-Caltech10, and
DomainNet, demonstrate that our STEM achieves state-of-
the-art performances to the best of our knowledge.
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