
Differentiable Convolution Search for Point Cloud Processing

Xing Nie1,2, Yongcheng Liu1, Shaohong Chen4, Jianlong Chang3,
Chunlei Huo1∗, Gaofeng Meng1,2,5, Qi Tian3, Weiming Hu1, Chunhong Pan1,

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences.
2 School of Artificial Intelligence, University of Chinese Academy of Sciences. 3 Huawei Cloud & AI.

4 Xidian University. 5 Centre for Artificial Intelligence and Robotics, HK Institute of Science & Innovation, CAS.

Email: niexing2019@ia.ac.cn, {yongcheng.liu, clhuo}@nlpr.ia.ac.cn

Abstract

Exploiting convolutional neural networks for point cloud
processing is quite challenging, due to the inherent irregu-
lar distribution and discrete shape representation of point
clouds. To address these problems, many handcrafted con-
volution variants have sprung up in recent years. Though
with elaborate design, these variants could be far from op-
timal in sufficiently capturing diverse shapes formed by dis-
crete points. In this paper, we propose PointSeaConv, i.e.,
a novel differential convolution search paradigm on point
clouds. It can work in a purely data-driven manner and
thus is capable of auto-creating a group of suitable con-
volutions for geometric shape modeling. We also propose
a joint optimization framework for simultaneous search of
internal convolution and external architecture, and intro-
duce epsilon-greedy algorithm to alleviate the effect of dis-
cretization error. As a result, PointSeaNet, a deep network
that is sufficient to capture geometric shapes at both con-
volution level and architecture level, can be searched out
for point cloud processing. Extensive experiments strong-
ly evidence that our proposed PointSeaNet surpasses cur-
rent handcrafted deep models on challenging benchmarks
across multiple tasks with remarkable margins.

1. Introduction

Recently, 3D point cloud processing has received great

attention, since it plays an important role in the fields of

autonomous driving, robotics, geomatics, and so on. Nev-

ertheless, compared with 2D image processing, this task is

quite challenging due to the non-grid structure and orderless

permutation of point clouds. Furthermore, it is extremely

difficult to perform shape analysis for point clouds, as the

underlying shape formed by those discrete points is visually

∗Corresponding author.

Figure 1. A sketch of the proposed convolution search paradigm,

i.e., PointSeaConv. PointSeaConv is achieved by constructing a

dynamic and learnable directed acyclic graph (DAG). Most hand-

crafted convolutions can be regarded as its special cases.

elusive to capture.

In order to tackle this task, many geometric descrip-

tors [56] have been manually designed over the past

decades. Though usable in certain scenarios, these descrip-

tors often suffer from unsatisfactory performance and poor

task-adaptivity. Recently, convolutional neural networks

(CNN) in deep learning technologies has made remarkable

achievements in the processing of regular data, e.g., image

[22, 45], video [48], and speech [37]. Accordingly, there

has been a growing interest in exploiting the power of CNN

for irregular point cloud processing [33, 44, 58].

To facilitate the application of classic CNN, some re-

searchers transform point clouds into regular multi-view

images [13, 50] or voxel grids [42, 71]. While practica-

ble, these transformations usually lead to the loss of shape

information because of self-occlusions or quantization arti-

facts. As a pioneer, PointNet [43] learns directly on point

7437

clouds with shared multi-layer perceptrons (MLP) and max-

pooling operation. Despite its encouraging performance

on shape analysis, PointNet has difficulty in learning fine-

grained shape representation due to the lack of local mod-

eling. To overcome this issue, PointNet++ [44] builds an

explicit local-to-global CNN-like architecture with multiple

set abstraction layers. However, it performs convolution by

simply applying PointNet on the local regions, which could

be powerless in capturing diverse local structures.

Plenty of follow-up research, therefore, is devoted to

manually design convolution variants, which is expected to

grasp local structures well. The typical methods along this

route are EdgeConv [58], PointCNN [29], RS-Conv [33],

KPConv [54], PointConv [59], and so on. They either con-

struct local graph connections collocated with graph con-

volution methods, or empirically introduce local geometric

statistics (e.g., density) into convolution operation. Though

achieving decent performance, these convolutions greatly

depend on heuristic rules and experienced engineering.

In this paper, we argue that the manually-designed con-

volution could be suboptimal for point cloud processing, e-

specially in the era of data-driven deep learning. The key

challenge for convolution learning on point clouds is how

to make it being capable to sufficiently capture diverse lo-

cal structures. This motivates us, accordingly, to construct

an auto-created convolution search paradigm, which can be

directly driven by irregular structures in point clouds.

To this end, we propose PointSeaConv, i.e., a novel d-

ifferentiable convolution search paradigm on point clouds.

Concretely, we first formulate a general convolution for ge-

ometric structure modeling and transform it into a search-

able process. This is achieved by constructing a dynamic

and learnable directed acyclic graph (DAG). Consequently,

the convolution expression can be determined by the DAG

while the convolution weight can be learned on the DAG.

Moreover, most handcrafted convolutions can be regarded

as special cases of our searchable one (Fig. 1). We then

develop a joint and differentiable optimization framework

for optimizing the search of internal convolution and ex-

ternal architecture, simultaneously. Especially, the epsilon-

greedy algorithm is introduced into the search process,

which greatly alleviates the effect of discretization error. As

a result, PointSeaNet, a deep network that captures geomet-

ric structures at both convolution level and architecture lev-

el, can be searched out for point cloud processing.

The key contributions can be summarized as follows:

• We propose a novel differentiable convolution search

paradigm, i.e., PointSeaConv. It can work in a purely

data-driven manner and thus is capable of creating a

group of suitable convolutions for point cloud process-

ing. To our best knowledge, we are the first to conduct

fundamental convolution search on point clouds.

• We propose a joint and differential optimization frame-

work for simultaneous search of internal convolu-

tion and external architecture. Under the framework,

PointSeaNet, a deep network that sufficiently captures

geometric structures of point clouds at both convolu-

tion level and architecture level, can be searched out.

• We innovatively introduce epsilon-greedy algorithm

into the search framework. Thanks to the algorithm,

the adverse effect of discretization error can be greatly

alleviated during the whole search process.

2. Related Work
2.1. Point Cloud Processing

In this section, we briefly review existing deep learning

methods for for point cloud processing. According to the

data type of input, these methods can be generally divided

into projection-based networks and point-based networks.

Projection-based networks [50, 53, 65] project 3D point

clouds into 2D multiple views from various angles. Despite

of impressive performance, most of them suffer from infor-

mation loss due to occluded surfaces and viewpoint selec-

tions. Alternatively, volumetric-based networks [12, 36, 49]

convert point clouds into uniform 3D grids and then apply

CNNs on the volumetric grids. The key criticisms of these

methods are the heavy computational burden and loss of de-

tails. Unlike these methods, our work is able to directly

process point clouds without any pre/post-processing step.

Point-based networks directly consume point cloud and

become increasingly popular. Inspired by PointNet [43],

much research has been devoted to elaborately designing

sophisticated networks to learn pointwise local features.

These methods can be generally classified as 1) pointwise

MLP networks [1, 15, 44, 51, 70], 2) point convolution

networks [3, 14, 33, 54, 59], 3) data indexing network-

s [20, 26, 46, 69]. However, these methods lack internal

mechanisms to generate convolution operators according to

local geometric structures. In contrast, our PointSeaNet

can automatically search fundamental convolution opera-

tions driven by input point clouds.

2.2. Neural Architecture Search (NAS)

Neural architecture search (NAS) methods inherently

aim to provide an automatic way of designing architec-

tures to replace the manual ones. Early methods employ

reinforcement learning [72, 73] and evolutionary algorith-

m [10, 61] to find the optimal architecture. Further, one shot

approaches [4, 6, 7, 31] are proposed to reduce the computa-

tional costs by training the super-network only once, which

is sampled and evaluated subsequently. The pioneering

work DARTS [31] introduces a differentiable framework to

relax the search space and hence improves the efficiency

of search period. Most of them are elaborately designed

7438

to tackle various 2D vision problems and have achieved

superior performance [11, 40]. Recently, some approach-

es have focused on neural architecture search for irregular

point cloud processing [28, 52, 68]. However, these meth-

ods heavily rely on fixed convolution operators, such as ex-

isting graph convolutions (e.g., EdgeConv [58], GAT [57]

and SemiGCN [19]) and pre-defined convolution kernels on

2D images, which results in incapability to sufficiently cap-

ture geometric structures for point clouds. Through our d-

ifferentiable convolution search paradigm, by comparison,

fundamental convolution operators collaboratively working

with external architecture can be searched out.

3. Methodology
In this section, we first formulate a general convolution

(Sec. 3.1), of which the image convolution can be seen as

a special case. We then adapt this general convolution to

learn geometric information in point clouds, by transform-

ing it into a convolution search problem (Sec. 3.2). Finally,

we show how the convolution search can be collocated with

external architecture search in a joint and differentiable op-

timization manner (Sec. 3.3).

3.1. General Convolution Formulation

General convolution. The key properties of convolution

are local connectivity and weight sharing (over different lo-

cal regions) [25]. Technically, inside a local region, the

convolution can be generally decomposed into two steps:

(i) transforming the feature vector of each unit in this local

region and (ii) aggregating all the transformed features for

summarizing the local information. Formally, given a local

region {p1,p2, . . . ,pn} with n units, in which pj ∈ R
F×1

denotes the feature vector of the j-th unit, then the general

convolution with above two steps can be formulated as

p = G({ψ(pj)}j=1,...,n

)
1, (1)

where the output p ∈ R
F ′×1 is obtained by a transformation

function ψ(·) at step (i) and an aggregation function G(·) at

step (ii). In addition, ψ(·) is usually shared over different

local regions to achieve weight sharing property.

Image convolution. Notably, the image convolution can

be seen as a special case of this general convolution. To

be specific, the local region in the image is arranged with

a regular grid structure and all the units (i.e., pixels) in this

region are fixed and ordered. Thus the image convolution

can be written as

p =
∑
j

Wj � pj , (2)

where Wj ∈ R
F ′×F denotes the convolutional weight ma-

trix for pj and “�” indicates the matrix multiplication. That

1In this paper, we omit the bias term and activation function for clarity.

Essential association (EA) Advantages

e1:ni global features [43]

e2:nj local features [3, 21, 27, 33, 44]

e3:ni − nj geometric relations [15, 29, 33, 47, 62]

e4: ||ni − nj ||2 Euclidean distance [15, 33, 38, 53, 54]

e5:ni−
∑

nk∈N (ni)
nk

|N (ni)| salient information [16, 53]

Table 1. A summary of five essential association (EA) candidates.

|N (ni)| indicates the number of all points in N (ni).

is, ψ(pj) and G(·) in Eq. (1) are implemented as Wj � pj

and summation here, respectively. Moreover, note that the

weight W is learned on pixel values, i.e., pj |j=1,...,n, hence

it shows great power to capture semantic patterns reflected

by color information.

3.2. Convolution Search on Point Clouds

Existing challenges. Recently, the image convolution in

Eq. (2) has been adapted by many researchers for transfer-

ring its great power in image processing into point cloud

processing. However, this is in fact quite challenging. The

reasons are twofold: (i) it is very intractable to achieve the

permutation invariance to point set, whilst ensuring that the

convolution is capable of sufficiently learning local struc-

tures; (ii) the weight sharing property of convolution is hard

to implement due to the irregular structures (i.e., variable

number of points) over different local regions. Although

these issues are partly alleviated by recent convolution vari-

ants [29, 33, 44, 58, 62], most of them are manually de-

signed. Such handcrafted convolutions not only rely heav-

ily on expert knowledge with long-term design cycle, but

also show poor generalization in various scenarios [34].

Geometric modeling. In this paper, we argue that it could

be suboptimal to manually design the convolution for point

cloud processing. Hence we propose an entirely different

route, i.e., transforming the general convolution in Eq. (1)

into a convolution search problem on point clouds. Formal-

ly, we model the points in a local region as the central point

pi and its surrounding neighbors pj ∈ N (pi). Note that

the shape information in point clouds is from relative spatial

distribution among points. This is quite different from the

2D image, where meaningful information is from the value

of pixels, not grid distribution. Accordingly, we propose to

learn the shape information by learning the geometric asso-

ciations between pi and its neighbors N (pi). Thus, Eq. (1)

becomes

p′
i = G

({
ψ
(D(pi,pj)

)}
pj∈N (pi)

)
, (3)

where D(pi,pj) indicates the encoding function of the ge-

ometric association between pi and pj . The convolutional

output p′
i aggregates all the geometric associations between

pi andN (pi), thus it could show superior shape awareness.

Function: Searchable construction. The key problem for

the convolution in Eq. (3) is how to design the concrete ex-

pressions of ψ(·) and D(·, ·). Instead of the common hand-

7439

MLPMLP

Convolution Search

Concat

Essential Association

+ + + + +

,

'
,

'

exp{ }

exp{ }

e
i j

e e
i j

e

q

5e
q

5e
q

5e
q

4e
q

4e4
q

4e
q

3e
q

3e3
q

3e
q

2e
q

2e
q

2e
q

1e
q

1e1
q

1e
q

3
e

4
e

5
e2

e

+

+

+

+

+

Convolution
Search

Convolution
Search

Convolution
Search

iConviConviConv

θ

θ
,

'
,

'

exp{ }

exp{ }

o
i j

o o
i j

o

r

1o
r

1o
r

2o
r

2o
r

2o
r

3o
r

3o
r

3o
r

4o
r

4o
r

4o
r

(b) (c)

jpip
1n 2n

Le
ve

l 1
Le

ve
l 2

Le
ve

l 0

1

2

3

4Network
search

Network
search

Network
search +

Network
search

Network
search

Cell Architecture
1,4 1()f x

2,4 2()f x

3,4 3()f x

Network
Search
Network
Search
Network
Search

(1)x

(2)x

(3)x

(4)x

1

2

search

1n 2n

3n

4n 5n

Output 3n

} +

1
e

(a)

Network Search

(3)x (3,4) (3)()f x

3

4

MLP

12
EA

13
EA 23

EA

MLP

None

Skip connection

Figure 2. An overview of our PointSeaNet. For clarity, a cell architecture (the upper part of (a)) formed by four ordered nodes is illustrated.

The search process of the whole network can be divided into convolution search and cell architecture search (i.e., network search). The

convolution search is achieved under our geometric convolution modeling in Eq. (3), which is transformed from the general convolution

in Eq. (1). Technically, it is constructed with a multi-level directed acyclic graph (DAG, Sec. 3.2), in which a set of searchable essential

associations (EA, Sec. 3.2) are conducted. The essential association is searched out from five fundamental candidates, i.e., e1 ∼ e5 in

Tab. 1. Moreover. the proposed convolution search can be collocated with external network search in a joint and differentiable optimization

manner (Sec. 3.3). As a result, a group of suitable convolutions can be searched out for point cloud processing in a purely data-driven

manner. Note that the number of searchable convolutions, i.e., Convi in network search, is variable. Best viewed in color.

crafted manner, we transform this problem into a NAS-like

search process. That is,D(·, ·) is devoted to the construction

of geometric association encoding while ψ(·) is responsible

for all the learnable parameters on this construction.

Technically, we constructD(·, ·) using a directed acyclic

graph (DAG). As the example in Fig. 2(b) shows, our DAG

can be represented as an ordered sequence of several hid-

den nodes. Each node is a feature vector and the i-th node

is denoted as ni. To deeply encode the geometric associ-

ation, a number of searchable essential associations (EA,

and EAij indicates the association between ni and nj) are

conducted on these hidden nodes. Like deep network with

multiple layers, our DAG can also be constructed with mul-

tiple levels �. Furthermore, it is noticeable that there must

be a connection between any two nodes (except the final

output nodes) in our DAG, and all the connections must

go through the essential associations. Therefore, our DAG

is capable of sufficiently encoding the geometric associa-

tion between pi and pj . As a result, the whole convolution

with our DAG can be searched out in a purely data-driven

manner. Note that this search process is different from S-

GAS [28], which just manually selects seven existing graph

convolutions (e.g., EdgeConv [58], GAT [57] and SemiGC-

N [19]) as searchable convolution candidates.

Essential association (EA). The essential association is

the core of our DAG. It has the function of transferring the

key information from preceding nodes to the output nodes.

Instead of elaborate manual design, we propose to search

an optimal association for each EA from predefined associ-

ation candidates. As summarized in Tab. 1, we define five

fundamental association candidates after a full investigation

in the field of point cloud processing. Due to the capabili-

ty to learn structural relational features on multiple aspects,

the five candidates provide informative enough search space

for our DAG in terms of learning geometric associations be-

tween pi and its neighbors pj ∈ N (pi).

Parameterization: Searchable convolution. To learn our

constructed searchable convolution, we group the learnable

parameters in function ψ(·) (Eq. (3)) on the DAG into two

parts, which are parameterized with fβ and hγ . Concretely,

fβ is responsible for the parameters in all the essential asso-

ciations (EA), which actually determine the construction of

DAG. hγ is responsible for the parameters in all the multi-

layer perceptrons (MLP) on the DAG. Thus the searchable

convolution version of Eq. (3) can be written as

p′
i = G

({
hγ

(D(pi,pj)
)}

pj∈N (pi)

)
,

D(pi,pj) = fβ
(∀ EA ∈ D(pi,pj)

)
.

(4)

In this way, an optimal combination of essential associa-

tions can be searched out to create a suitable convolution,

which is capable of sufficiently capturing diverse geometric

structures of point clouds.

In implementation, on one hand, both fβ and hγ are

shared over each neighboring point pj ∈ N (pi). Then,

with a symmetric aggregation function G, PointSeaConv

7440

Method G(·) {hγ (D (pi,pj))}pj∈N (pi)
Function expression in PointSeaConv

PointNet++ [44] max(·) MLP(e2) maxpj∈N (pi)
{MLP(e2)}

PointWeb [70] max(
∑{·}) MLP(e1, e3) max{∑pj∈N (pi)

{MLP(e1, e3)}}
DGCNN [58] max(·) MLP(e1, e3) maxpj∈N (pi)

{MLP(e1, e3)}
RS-CNN [33] max(·) MLP(e1 ⊕ e2 ⊕ e3 ⊕ e4) maxpj∈N (pi)

{MLP(e1 ⊕ e2 ⊕ e3 ⊕ e4)}
Pointwise-CNN [16]

∑
(·) MLP(e1 − e5)

∑
pj∈N (pi)

{MLP(e1 − e5)}

Table 2. Several deep learning methods on point clouds can be derived as particular settings of PointSeaConv in Eq. (4), by appropriately

selecting aggregation function and combinations of essential associations. The definition of e1 ∼ e5 is shown in Tab. 1. max denotes max

pooling and
∑

denotes summation.

can be permutation invariant to unordered points while be

capable of capturing local structures sufficiently. On the

other hand, we adopt k-nearest neighbor approach to ac-

quire N (pi). Hence PointSeaConv can achieve the weight

sharing property despite that different local regions are of

irregular structures (i.e., variable number of points).

In addition, our searchable convolution shows good gen-

eralization in point cloud processing. As summarized in

Tab. 2, most recent convolutions can be seen as special cas-

es of our searchable convolution. For example, DGCNN

[58] can be implemented by configuring MLP with e1 and

e3 in Tab. 1 to learn geometric associations.

3.3. Joint Differentiable Optimization Approach

Differentiable architecture search. Before introducing

our approach, we first briefly review cell-based NAS meth-

ods [30, 41, 73]. This class of methods represent the ar-

chitecture as a set of identical cells with different weights,

which is represented by directed acyclic graphs (DAG) with

an ordered series of nodes. Formally, x(i) denotes the out-

put of the i-th node and (i, j) denotes a directed edge from

the i-th node to j-th node. The candidate operations are

denoted as O, in which each element o(i,j)(·) propagates

the information from x(i) to x(j) across the edge (i, j). In

differentiable architecture search methods [5, 31, 63], the

continuous relaxation of candidate operations is conduct-

ed to obtain the optimal architecture. Consider continuous

variables α =
{
α(i,j)

}
as architecture parameters for edge

(i, j) and the network weights ω, the selection of candidate

operations can be relaxed as a softmax mixture over all the

possible operations within the operation spaceO. Then, the

output at j-th node is the sum of information flows from all

its predecessors. Intrinsically, the goal of NAS is to derive

the optimal architecture α� and network weights ω�(α) as-

sociated with the architecture α� by solving the following

bilevel optimization problem

α� = argmin
α
Lval (ω

�(α), α) ,

s.t. ω�(α) = argmin
ω
Ltrain (ω, α) ,

(5)

where Ltrain and Lval indicate the training and validation

loss, respectively. After the search process, the final archi-

tecture is derived by selecting the path with the highest ar-

chitecture parameters.

Joint Optimization. To enable end-to-end training for

convolution search, we perform architecture search for the

optimal convolution and cell architecture simultaneously

under the differentiable architecture search framework as

in [5, 31, 63], denoted as convolution search and network
search, respectively. Intuitively, the overall search frame-

work is shown in Fig. 2, which takes a cell structure with

4 nodes and its connection from x(i) to x(j) as an example.

Similar to the selection of candidate operations in cell struc-

ture search, we define five essential association candidates

as search space in convolution search as shown in Tab. 1,

denoted as E . In our framework of joint optimization, in

addition to the weights ω in the network, the whole archi-

tectural parameters are denoted as ρ = {θ, β}, where θ and

β indicate parameters of network search and convolution

search, respectively. In network search, as the connection

from x(i) to x(j), the output of f (i,j)
(
x(i)

)
becomes

f (i,j)(x(i)) =
∑
o∈O

exp
{
θ
(i,j)
o

}
∑

o′∈O exp
{
θ
(i,j)
o′

}o
(
x(i)

)
. (6)

In convolution search, given an input ni and its neighbors

nj ∈ N (ni) in a local neighborhood, the choice of a partic-

ular essential association can be relaxed to a softmax mix-

ture in dimension |E|

ē(i,j)(ni,nj) =
∑
e∈E

exp
(
β
(i,j)
e

)
∑

e′∈E exp
(
β
(i,j)
e′

)e(ni,nj). (7)

Accordingly, the tasks of convolution search and network

search can be summarized to learn a set of parameters ρ =
{θ, β}. This bilevel optimization process can be described

to updated ρ and ω alternately

ωt+1 ← ωt − ηω · ∇ωLval (ωt, ρt)) ,
ρt+1 ← ρt − ηρ · ∇ρLtrain (ωt+1, ρt)) ,

(8)

where ηω and ηρ denote the learning rates for ω and ρ, re-

spectively. For simplicity, we incorporate the parameters of

7441

MLP in convolution (denoted by γ in Eq. (4)) into network

weights ω.

Notably, the discrete architecture for network search

is obtained by retaining each operation with the highest

weight, f (i,j)
(
x(i)

)
= argmaxo∈O θ

(i,j)
o . With respect to

convolution search, we will introduce epsilon-greedy algo-

rithm to reduce the discretization error in the following.

Epsilon-greedy Algorithm. As pointed in [5, 9, 55], the

optimization method in DARTS [31] leads to a large dis-

cretization error after the search process due to deleting sub-

stantial candidate operations with moderate weights. Note

that, since convolution search and network search are con-

ducted simultaneously in our method, the risk of discretiza-

tion error further grows.

To alleviate the discretization error and its accumulation

during the search process, we introduce the epsilon-greedy

algorithm for efficient optimization of convolution search.

First, we make essential association candidates fixed in each

step of optimizing the weights ω, where each of them is

discretized by selecting the strongest one using greedy al-

gorithm, denoted as β̂
(i,j)
e = maxe′∈E β

(i,j)
e′ . Only in the

stage of optimizing β
(i,j)
e , all the choices of essential as-

sociation candidates are relaxed. Further, in order to avoid

removing all the moderate candidates and reduce the de-

pendence on the parameter initialization, the essential asso-

ciation candidates with the highest weight are selected by

a certain probability ε, so that the optimization process of

convolution search can be described as{
P (β

(i,j)
e = β̂

(i,j)
e) = 1− ε

P (β
(i,j)
e = βrandom) = ε

, (9)

where P (·) is a probability distribution of β
(i,j)
e , βrandom is

a random one-hot vector, and ε is a hyper-parameter to bal-

ance greedy algorithm and random algorithm. Instead of

eliminating all weak candidates, epsilon-greedy algorithm

retains more candidates that can contribute more or less to

training accuracy. In this way, dramatic improvements are

achieved by our PointSeaNet on multiple tasks. Detailed

settings and analyses are provided in the Sec. 4.

4. Experiment
In this section, we conduct comprehensive experiments

to demonstrate the capability of PointSeaNet. We first

briefly introduce some experimental settings (Sec. 4.1).

Then, we systematically evaluate PointSeaNet on challeng-

ing benchmarks across various point cloud understanding

tasks (Sec. 4.2). Finally, we provide detailed ablation stud-

ies (Sec. 4.3) to validate PointSeaNet thoroughly.

4.1. Experimental Setting

The cell architecture has 5 candidate operations: two

PointSeaConv, MLP, skip-connection and zero operation.

Method OA #params Search Cost

Pointwise-CNN [16] 86.1 - manual

PointNet [43] 89.2 3.48 manual

PointNet++ [44] 90.7 1.48 manual

PointCNN [29] 92.2 0.45 manual

DGCNN [58] 92.2 1.84 manual

PCNN [3] 92.3 8.10 manual

PointASNL [64] 92.9 - manual

InterpCNN [35] 93.0 12.8 manual

GeoCNN [23] 93.4 - manual

RS-CNN [33] 93.6 - manual

SGAS [28] 93.2 8.49 0.19

PointSeaNet† 94.0 6.70 0.23

PointSeaNet 94.2 6.75 0.25

Table 3. Shape classification results (OA: overall accuracy) on

ModelNet40.

Dataset Method #points mAP(%)

ModelNet40

PointNet [43] 1k 70.5

PointCNN [29] 1k 83.8

DGCNN [58] 1k 85.3

Densepoint [32] 1k 88.5

PointSeaNet† 1k 89.9

PointSeaNet 1k 90.3

Table 4. Shape retrieval results (mAP, %) on ModelNet40.

Each PointSeaConv has 3 levels with 5 nodes. Neighbor-

ing points are firstly gathered by k nearest neighbor in the

first operation of each cell. PointSeaNet is obtained through

two stages, a search phase and an evaluation phase. More

details are provided in the supplementary material. Further-

more, PointSeaNet† that omits epsilon-greedy algorithm in

PointSeaNet is employed as a baseline of our model.

4.2. PointSeaNet for Point Cloud Processing

Shape classification. We conduct architecture search and

evaluation on ModelNet10 and ModelNet40 classification

benchmarks [60], respectively. The former contains 3991
training models and 908 test models in 10 classes, and the

latter consists of 9843 training models and 2468 test models

in 40 classes. 1024 points are uniformly sampled by farthest

point sampling. During training, we augment the input data

with random anisotropic scaling and translation as in [20].

During testing, similar to [43, 44], we conduct ten voting

tests with random scaling and average the predictions. Ad-

ditionally, we do not use normals as additional input.

The quantitative comparisons with the other advanced

methods are shown in Tab. 3. Our PointSeaNet outperform-

s all the other methods, while using only a search cost of

0.23 GPU day on one NVIDIA TITAN Xp. Compared with

SGAS [28], which conducts architecture search with fixed

graph convolutions, PointSeaNet reduces the model params

by 20.5% and improve the overall accuracy by 1.0%. We

visualize the searched optimal cell architecture and convo-

lution on ModelNet10 in Fig. 3.

Shape retrieval. To further explore the recognition a-

7442

C_{k}Conv1
Conv1
Conv1

Conv2

Skip_connect

Conv_1x1
C_{k}Conv1

Conv1
Conv1

Conv2

Skip_connect

Conv_1x1

(a) Cell architecture

3e

Concat ConcatConcat

2e

4e4e 4e

Conv2Conv1Conv1

3e

1e

(b) Convolution

Figure 3. The best architecture and convolution on ModelNet10.

Method Input Class mIou Instance mIou

Kd-Net [20] 4k 77.4 82.3

PointNet [43] 2k 80.4 83.7

PCNN [3] 2k 81.8 85.1

PointNet++ [44] 2k, nor 81.9 85.1

SyncCNN [67] mesh 82.0 84.7

SPLATNet [49] - 82.0 84.6

DGCNN [58] 2k 82.3 85.1

RS-CNN [33] 2k 84.0 86.2

Densepoint [32] 2k 84.2 86.4

PointSeaNet† 2k 85.2 87.3

PointSeaNet 2k 85.7 87.8

Table 5. Shape part segmentation results (%) on ShapeNetPart

(nor: normal, ‘-’: unknown).

bility of PointSeaNet, we conduct 3D shape retrieval on

ModelNet40. Specifically, we employ the outputs of the

penultimate fully-connected layer for shape classification

as the global features. We evaluate PointSeaNet on Mod-

elNet40 for this task and uniformly sample 1024 points as

the input. The cosine distance is applied to obtain rela-

tive ranking order of each query shapes from the test set.

We report mean Average Precision (mAP). Tab. 4 shows

the results for the shape retrieval task, where PointSeaNet

achieves the best performance with mAP of 90.3% on Mod-

elNet40. Note that, our PointSeaNet surpasses its variant,

i.e., PointSeaNet†, with 0.4% ↑ in mAP.

Shape part segmentation. For this task, we search the op-

timal convolution and cell architecture using stacked identi-

cal cells on the ShapeNetPart benchmark [66], and then the

searched cell is stacked to form a larger network, which is

retrained on ShapeNetPart. ShapeNetPart consists of 16881
shapes with 16 categories, which is labeled in 50 parts in

total. Following [43], we randomly sample 2048 points as

Method
Area-5 6-fold

OA mIoU OA mIoU

PointNet [43] - 41.1 78.6 47.6

PointNet++ [44] - - 81.0 54.5

DGCNN [58] - - 84.1 56.1

PointCNN [29] 85.9 57.3 88.1 65.4

LSANet [8] - - 86.8 62.2

SPG [24] 86.4 58.0 85.5 62.1

RandLA-Net [15] - - 87.2 68.5

PAG [39] 86.8 59.3 88.1 65.9

PointSIFT [18] - - 88.7 70.2

Pointweb [70] 87.0 60.3 87.3 66.7

HPEIN [17] 87.2 61.9 88.2 67.8

KPConv [54] - 67.1 - 70.6

PointSeaNet† 88.1 68.2 89.6 71.2

PointSeaNet 89.2 69.0 90.3 71.9

Table 6. Scene segmentation results (%) on S3DIS (‘-’: unknown).

the input and concatenate the one-hot encoding of the ob-

ject label into the last feature layer. During testing, we also

perform ten voting tests using random scaling. Evaluation

metrics contain two types of mIoU that are averaged across

all classes and all instances respectively. Tab. 5 gives the re-

sults in this experiment, where PointSeaNet outperforms the

best handcrafted method Densepoint [32] with 1.5 ↑ in class

mIoU and 1.4 ↑ in instance mIoU respectively. The dramat-

ic improvements validate the capability of our method to

learn fine-grained features. We detail each class mIoU and

result visualizations in the supplementary material.

Large-scale scene segmentation. In this experiment, we

perform 3D scene segmentation to evaluate our PointSeaNet

on the S3DIS [2] benchmark. As a large-scale public

dataset, the S3DIS dataset contains 271 million points be-

longing to 6 large-scale indoor areas with 13 classes. We

conduct the optimal convolution and cell architecture search

on S3DIS, and provide more details in the supplementary

material. To adequately measure the generalization abili-

ty of our PointSeaNet, we adopt both Area-5 and standard

6-fold cross validation as test setting. As shown in Tab. 6,

our PointSeaNet outperforms other state-of-the-art method-

s. Notably, PointSeaNet can achieve a superior results com-

pared with its variant PointSeaNet†, with 0.7 ↑ in overall

accuracy and 0.7 ↑ in mIoU with the standard 6-fold cross

validation as test setting.

Normal estimation. We evaluate PointSeaNet with the

same parameters as in the shape part segmentation. The op-

timal architecture are searched on ModelNet40, and then a

larger network composed of searched cells is evaluated with

normal estimation as a supervised regression task on Mod-

elNet40. 1024 points are uniformly sampled as the input.

The cosine-loss between the normalized output and the nor-

mal ground truth is used to train PointSeaNet. The results in

Tab. 7 show that PointSeaNet outperforms all the compared

methods with a lower error of 0.10, which significantly re-

duces the error of RS-CNN (0.15) by 33.3%. Some result

7443

Dataset Method #points error

ModelNet40

PointNet [43] 1k 0.47

PointNet++ [44] 1k 0.29

PCNN [3] 1k 0.19

MC-Conv [14] 1k 0.16

RS-CNN [33] 1k 0.15

Densepoint [32] 1k 0.15

PointSeaNet† 1k 0.12

PointSeaNet 1k 0.10

Table 7. Normal estimation error on ModelNet40.

visualizations are provided in the supplementary material.

4.3. Ablation study

Sensitivity to hyperparameters. We conduct experiments

to evaluate the sensitivity of our method to hyperparam-

eters, i.e., upon different settings of the number of cell-

s, PointSeaConv and DAG levels. As shown in Tab. 8,

PointSeaNet can get a decent accuracy of 93.7% with on-

ly 3 cells, 2 PointSeaConv and 2 DAG levels. Note that, our

PointSeaNet with 2 DAG levels, 2 PointseaConv and 6 cells

achieves the best performance, instead of the version with

the largest amount of parameters. This clearly indicates that

deeper level can improve performance to some extent, yet

the success of PointSeaNet does not entirely come from in-

troducing more parameters.

Analysis of essential associations. We experiment on

ModelNet40 for shape classification to evaluate the

searched architecture, to analyse the five essential associ-

ations (Tab.1). The results in Tab. 9 show that the base-

line (model A) gets a low accuracy of 81.3%, which is set

to architecture search with only e1. Yet with local features

denoted by e2, it is significantly improved to 87.1% (model

B), which shows that local features are crucial for improve

performance. Then, when using geometric relations e3 to

enhance the representation ability of PointSeaNet, the accu-

racy can be further improved to 90.2% (model D). Notice-

ably, Euclidean distance e4 can bring a boost of 2.7% (mod-

el E). Finally, the salient information e5 can result in an ac-

curacy variation of 1.1% (model F).

Effectiveness of convolution search and epsilon-greedy
algorithm. We provide a detailed analysis to better un-

derstand the contributions of PointSeaNet. As can be

seen in Tab. 3, even without the epsilon-greedy algorith-

m, PointSeaNet† can also achieve a superior result (94.0%)

compared with the state-of-the-art handcrafted method RS-

CNN [33] (93.6%) and the best point-cloud-NAS method

SGAS [28] (93.2%). Though equipped with differentiable

architecture search framework, SGAS adpots the existing

graph convolutions, leading to restrict its capability to suf-

ficiently capture geometric structures on point clouds. This

adequately validate the effectiveness of our searchable con-

volution. Furthermore, the epsilon-greedy algorithm we in-

troduce into NAS can significantly boost performance for

Cells # PointSeaConv # DAG levels # params(M) OA(%)

3 2 2 4.15 93.7

6 2 2 6.75 94.2
9 2 2 9.36 94.1

6 1 2 6.26 93.8

6 2 2 6.75 94.2
6 3 2 6.95 94.0

6 2 1 6.53 93.5

6 2 2 6.75 94.2
6 2 3 8.72 93.9

Table 8. The comparisons of different number of cells, PointSea-

Conv and DAG levels during the evaluation phase.

Model e1 e2 e3 e4 e5 ε-greedy OA(%)

A � 81.3

B � � 87.1

C � � 88.9

D � � � 90.2

E � � � � 92.9

F � � � � � 94.0

G � � � � � � 94.2

Table 9. The comparisons of choices of epsilon-greedy algorithm

and several essential associations during the evaluation phase. The

definition of e1 ∼ e5 is shown in Tab. 1.

various point cloud analysis tasks. As shown in Tab. 4,

PointSeaNet surpasses its variant that omits the epsilon-

greedy algorithm, i.e., PointSeaNet†, with 0.4 ↑ in mAP on

ModelNet40 shape retrieval. Regarding large-scale scene

segmentation on S3DIS, the results in Tab. 6 show that

PointSeaNet brings 0.9% overall accuracy gains and 0.8%
mIoU gains over PointSeaNet† with Area-5 as test scene.

5. Conclusion

In this work, we present PointSeaConv, a differentiable

convolution search paradigm that operates on point clouds.

PointSeaConv is capable of creating an optimal convolu-

tion to sufficiently learn local structural features in a purely

data-driven manner. For this purpose, a dynamic and learn-

able directed acyclic graph (DAG) is constructed to repre-

sent the whole convolution. Then a joint and differentiable

optimization framework is developed to search for core con-

volution and external architecture. Meanwhile, by incorpo-

rating epsilon-greedy algorithm into convolution search, the

discretization error is sharply alleviated during the search

process, resulting in remarkably better performance.

6. Acknowledge

This research was supported by the National Key Re-

search and Development Program of China under Grant

No.2018AAA0100400, and the National Natural Science

Foundation of China under Grants 62076242, 62071466,

61976208, 91838303 and 61972394.

7444

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Learning representations and generative models for 3d point

clouds. In ICML, 2018. 2

[2] I. Armeni, O. Sener, A.R. Zamir, H. Jiang, I. Brilakis, M.

Fischer, and S. Savarese. 3d semantic parsing of large-scale

indoor spaces. In CVPR, 2016. 7

[3] M. Atzmon, H. Maron, and Y. Lipman. Point convolutional

neural networks by extension operators. ACM TOG, 37(4):1–

12, 2018. 2, 3, 6, 7, 8

[4] G. Bender, P.J. Kindermans, B. Zoph, V. Vasudevan, and

Q. Le. Understanding and simplifying one-shot architecture

search. In ICML, 2018. 2

[5] K. Bi, L. Xie, X. Chen, L. Wei, and Q. Tian. Gold-

nas: Gradual, one-level, differentiable. arXiv preprint arX-
iv:2007.03331, 2020. 5, 6

[6] A. Brock, T. Lim, J.M. Ritchie, and N. Weston. Smash: one-

shot model architecture search through hypernetworks. arX-
iv preprint arXiv:1708.05344, 2017. 2

[7] H. Cai, L. Zhu, and S. Han. Proxylessnas: Direct neural ar-

chitecture search on target task and hardware. arXiv preprint
arXiv:1812.00332, 2018. 2

[8] L. Chen, X. Li, D. Fan, K. Wang, S. Lu, and M. Cheng.

Lsanet: Feature learning on point sets by local spatial aware

layer. arXiv preprint arXiv:1905.05442, 2019. 7

[9] X. Chen, L. Xie, J. Wu, and Q. Tian. Progressive differen-

tiable architecture search: Bridging the depth gap between

search and evaluation. In ICCV, 2019. 6

[10] Y. Chen, G. Meng, Q. Zhang, S. Xiang, C. Huang, L. Mu,

and X. Wang. Renas: Reinforced evolutionary neural archi-

tecture search. In CVPR, 2019. 2

[11] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun.

Detnas: Backbone search for object detection. In NeurIPS,

2019. 3

[12] B. Graham, M. Engelcke, and L. Van Der Maaten. 3d se-

mantic segmentation with submanifold sparse convolutional

networks. In CVPR, 2018. 2

[13] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun.

Deep learning for 3d point clouds: A survey. IEEE TPAMI,
2020. 1

[14] P. Hermosilla, T. Ritschel, P. Vázquez, À. Vinacua, and Tim-

o Ropinski. Monte carlo convolution for learning on non-

uniformly sampled point clouds. ACM TOG, 37(6):1–12,

2018. 2, 8

[15] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigo-

ni, and A. Markham. Randla-net: Efficient semantic seg-

mentation of large-scale point clouds. In CVPR, 2020. 2, 3,

7

[16] B.S. Hua, M.K. Tran, and S.K. Yeung. Pointwise convolu-

tional neural networks. In CVPR, 2018. 3, 5, 6

[17] L. Jiang, H. Zhao, S. Liu, X. Shen, C. Fu, and J. Jia. Hierar-

chical point-edge interaction network for point cloud seman-

tic segmentation. In ICCV, 2019. 7

[18] M. Jiang, Y. Wu, T. Zhao, Z. Zhao, and C. Lu. Pointsift:

A sift-like network module for 3d point cloud semantic seg-

mentation. arXiv preprint arXiv:1807.00652, 2018. 7

[19] T.N Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. arXiv preprint arX-
iv:1609.02907, 2016. 3, 4

[20] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-

networks for the recognition of 3d point cloud models. In

ICCV, 2017. 2, 6, 7

[21] A. Komarichev, Z. Zhong, and J. Hua. A-cnn: Annularly

convolutional neural networks on point clouds. In CVPR,

2019. 3

[22] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NeurIPS, 2012. 1

[23] S. Lan, R. Yu, G. Yu, and L.S. Davis. Modeling local geo-

metric structure of 3d point clouds using geo-cnn. In CVPR,

2019. 6

[24] L. Landrieu and M. Simonovsky. Large-scale point cloud

semantic segmentation with superpoint graphs. In CVPR,

2018. 7

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 3

[26] H. Lei, N. Akhtar, and A. Mian. Octree guided cnn with

spherical kernels for 3d point clouds. In CVPR, 2019. 2

[27] G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns:

Can gcns go as deep as cnns? In ICCV, 2019. 3

[28] G. Li, G. Qian, I.C. Delgadillo, M. Muller, A. Thabet, and

B. Ghanem. Sgas: Sequential greedy architecture search. In

CVPR, 2020. 3, 4, 6, 8

[29] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn:

Convolution on x-transformed points. In NeurIPS, 2018. 2,

3, 6, 7

[30] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.J. Li,

L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive

neural architecture search. In ECCV, 2018. 5

[31] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055, 2018.

2, 5, 6

[32] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan. Dense-

point: Learning densely contextual representation for effi-

cient point cloud processing. In ICCV, 2019. 6, 7, 8

[33] Y. Liu, B. Fan, S. Xiang, and C. Pan. Relation-shape convo-

lutional neural network for point cloud analysis. In CVPR,

2019. 1, 2, 3, 5, 6, 7, 8

[34] Z. Liu, H. Hu, Y. Cao, Z. Zhang, and X. Tong. A closer

look at local aggregation operators in point cloud analysis.

In ECCV, 2020. 3

[35] J. Mao, X. Wang, and H. Li. Interpolated convolutional net-

works for 3d point cloud understanding. In ICCV, 2019. 6

[36] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In IROS,

2015. 2

[37] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A.

Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.

Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016. 1

[38] G. Pan, J. Wang, R. Ying, and P. Liu. 3dti-net: Learn inner

transform invariant 3d geometry features using dynamic gcn.

arXiv preprint arXiv:1812.06254, 2018. 3

7445

[39] L. Pan, C. Chew, and G.H. Lee. Pointatrousgraph: Deep

hierarchical encoder-decoder with point atrous convolution

for unorganized 3d points. In ICRA, 2020. 7

[40] J. Peng, M. Sun, Z. Zhang, T. Tan, and J. Yan. Efficient

neural architecture transformation search in channel-level for

object detection. In NeurIPS, 2019. 3

[41] H. Pham, M.Y. Guan, B. Zoph, Q.V. Le, and J. Dean. Effi-

cient neural architecture search via parameter sharing. arXiv
preprint arXiv:1802.03268, 2018. 5

[42] C.R. Qi, O. Litany, K. He, and L.J. Guibas. Deep hough

voting for 3d object detection in point clouds. In ICCV, 2019.

1

[43] C.R. Qi, H. Su, K. Mo, and L.J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

In CVPR, 2017. 1, 2, 3, 6, 7, 8

[44] C.R. Qi, L. Yi, H. Su, and L.J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

In NeurIPS, 2017. 1, 2, 3, 5, 6, 7, 8

[45] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NeurIPS, 2015. 1

[46] G. Riegler, A. Osman Ulusoy, and A. Geiger. Octnet: Learn-

ing deep 3d representations at high resolutions. In CVPR,

2017. 2

[47] M. Simonovsky and N. Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In CVPR, 2017. 3

[48] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1

[49] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M. Yang,

and J. Kautz. Splatnet: Sparse lattice networks for point

cloud processing. In CVPR, 2018. 2, 7

[50] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-

view convolutional neural networks for 3d shape recognition.

In ICCV, 2015. 1, 2

[51] X. Sun, Z. Lian, and J. Xiao. Srinet: Learning strictly

rotation-invariant representations for point cloud classifica-

tion and segmentation. In ACM MM, 2019. 2

[52] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han.

Searching efficient 3d architectures with sparse point-voxel

convolution. In ECCV, 2020. 3

[53] M. Tatarchenko, J. Park, V. Koltun, and Q. Zhou. Tangent

convolutions for dense prediction in 3d. In CVPR, 2018. 2,

3

[54] H. Thomas, C.R. Qi, J. Deschaud, B. Marcotegui, F.

Goulette, and L.J. Guibas. Kpconv: Flexible and deformable

convolution for point clouds. In ICCV, 2019. 2, 3, 7

[55] Y. Tian, C. Liu, L. Xie, J. Jiao, and Q. Ye. Discretization-

aware architecture search. arXiv preprint arXiv:2007.03154,

2020. 6

[56] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of

histograms for local surface description. In ECCV, 2010. 1

[57] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,

and Y. Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017. 3, 4

[58] Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, and

J.M. Solomon. Dynamic graph cnn for learning on point

clouds. ACM TOG, 38(5):1–12, 2019. 1, 2, 3, 4, 5, 6, 7

[59] W. Wu, Z. Qi, and L. Fuxin. Pointconv: Deep convolutional

networks on 3d point clouds. In CVPR, 2019. 2

[60] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In CVPR, 2015. 6

[61] L. Xie and A. Yuille. Genetic cnn. In ICCV, 2017. 2

[62] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. Spidercnn: Deep

learning on point sets with parameterized convolutional fil-

ters. In ECCV, 2018. 3

[63] Y. Xu, L. Xie, X. Zhang, X. Chen, G. Qi, Q. Tian, and H.

Xiong. Pc-darts: Partial channel connections for memory-

efficient differentiable architecture search. arXiv preprint
arXiv:1907.05737, 2019. 5

[64] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui. Pointasnl: Ro-

bust point clouds processing using nonlocal neural networks

with adaptive sampling. In CVPR, 2020. 6

[65] Z. Yang and L. Wang. Learning relationships for multi-view

3d object recognition. In ICCV, 2019. 2

[66] L. Yi, V.G. Kim, D. Ceylan, I.C. Shen, M. Yan, H. Su, C.

Lu, Q. Huang, A. Sheffer, and L. Guibas. A scalable ac-

tive framework for region annotation in 3d shape collections.

ACM TOG, 35(6):1–12, 2016. 7

[67] L. Yi, H. Su, X. Guo, and L.J. Guibas. Syncspeccnn: Syn-

chronized spectral cnn for 3d shape segmentation. In CVPR,

2017. 7

[68] Q. Yu, D. Yang, H. Roth, Y. Bai, Y. Zhang, A.L. Yuille, and

D. Xu. C2fnas: Coarse-to-fine neural architecture search for

3d medical image segmentation. In CVPR, 2020. 3

[69] W. Zeng and T. Gevers. 3dcontextnet: Kd tree guided hier-

archical learning of point clouds using local and global con-

textual cues. In ECCV, 2018. 2

[70] H. Zhao, L. Jiang, C. Fu, and J. Jia. Pointweb: Enhancing

local neighborhood features for point cloud processing. In

CVPR, 2019. 2, 5, 7

[71] Y. Zhou and O Tuzel. Voxelnet: End-to-end learning for

point cloud based 3d object detection. In CVPR, 2018. 1

[72] B. Zoph and Q.V. Le. Neural architecture search with rein-

forcement learning. arXiv preprint arXiv:1611.01578, 2016.

2

[73] B. Zoph, V. Vasudevan, J. Shlens, and Q.V. Le. Learning

transferable architectures for scalable image recognition. In

CVPR, 2018. 2, 5

7446

