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Abstract

We present Neural Articulated Radiance Field (NARF),
a novel deformable 3D representation for articulated ob-
jects learned from images. While recent advances in 3D im-
plicit representation have made it possible to learn models
of complex objects, learning pose-controllable representa-
tions of articulated objects remains a challenge, as current
methods require 3D shape supervision and are unable to
render appearance. In formulating an implicit representa-
tion of 3D articulated objects, our method considers only
the rigid transformation of the most relevant object part
in solving for the radiance field at each 3D location. In
this way, the proposed method represents pose-dependent
changes without significantly increasing the computational
complexity. NARF is fully differentiable and can be trained
from images with pose annotations. Moreover, through the
use of an autoencoder, it can learn appearance variations
over multiple instances of an object class. Experiments
show that the proposed method is efficient and can general-
ize well to novel poses. The code is available for research
purposes at https://github.com/nogu-atsu/NARF.

1. Introduction

In this work, we aim to learn a representation for render-
ing novel views and poses of 3D articulated objects, such
as human bodies, from images. Our approach follows the
inverse graphics paradigm [27, 26, 37, 28] of analyzing an
image by attempting to synthesize it with compact graphics
codes. These codes are typically disentangled to allow for
rendering of scenes/objects with fine-grained control over
individual appearance properties such as object location,
pose, lighting, texture, and shape. For the case of humans,
synthesis of novel views and poses can be useful for appli-
cations such as movie making, photo editing, virtual cloth-
ing [64, 29] and motion transfer [33, 4].

Various inverse graphics based approaches have been
specifically designed for static scenes [00, 21, 54], rigid ob-
jects [9, 68, 62, 56, 3], blend shapes for keypoints [61, 4]
and dense meshes [64, 33]. However, efficient deformation
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Figure 1. Training pipeline of Dlsentangled NARF (NARFD).
NAREF is an efficient pose-aware 3D representation trained from
only pose-annotated images. The learned representation is part-
based and able to render novel poses of articulated 3D objects by
changing the input object pose configurations.

modeling of articulated 3D objects using neural networks
remains a challenging task due to the large variance of joint
locations (especially for endpoints such as hands), severe
self-occlusions, and high non-linearity in forward kinematic
transformations [69]. Though work has been done to en-
able explicit control over the underlying human pose [33]
and key point locations [4], their neural rendering meth-
ods are either limited to 2D [4], which prevents modeling
of view-dependent appearance [7], or based on mesh repre-
sentations [33], where rendering quality can be affected by
the resolution of the discrete template mesh.

Recent progress on the implicit representation of 3D ob-
jects and scenes, such as signed distance functions [20, 43]
and occupancy fields [12, 38], has greatly promoted the de-
velopment of the inverse graphics paradigm. Such repre-
sentations are lightweight in model size, continuous, and
differentiable, making them highly practical in compari-
son with the previously-dominant volumetric representa-
tions [11, 16, 24, 39, 46, 55, 57, 67]. Particularly, Milden-
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hall et al. [40] propose the neural radiance field (NeRF) that
takes a single continuous 5D coordinate (3D spatial location
and 2D viewing direction) as input and outputs the volume
density and view-dependent emitted radiance at each spa-
tial location. Combined with a classical differentiable vol-
ume rendering technique [23], it is able to synthesize novel
views by learning from a sparse set of input views of static
scenes. NeRF completely discards the mesh-based repre-
sentation and replaces it with a radiance-based model which
can effectively and efficiently encode view-dependent ap-
pearance, enabling it to reproduce scenes of complex ge-
ometry with high fidelity.

In this paper, we extend NeRF to an articulated NeRF,
called a Neural Articulated Radiance Field (NARF), to rep-
resent articulated 3D objects. Accounting for 3D articula-
tion within the NeRF framework is a challenging problem
because a complex, non-linear relationship exists between
a kinematic representation of 3D articulations and the re-
sulting radiance field, making it hard to model implicitly in
a neural network [69]. In addition, the radiance field at a
given 3D location is influenced by at most a single artic-
ulated part and its parents along the kinematic tree, while
the full kinematic model is provided as input. As a result,
dependencies of the output to irrelevant parts may inadver-
tently be learned, which is known to hurt model generaliza-
tion to poses unseen in training [65].

To address these issues, we propose a method that pre-
dicts the radiance field at a 3D location based on only the
most relevant articulated part. This part is identified using
a set of sub-networks that output the probability for each
part given the 3D location and the 3D geometric configu-
ration of the parts. The spatial configurations of parts are
computed explicitly with a kinematic model, rather than
modeled implicitly in the network. A NARF then predicts
the density and view-dependent radiance of the 3D location
conditioned on the properties of only the selected part. An
overview of the method is shown in Fig. 1.

The presented NARF has the following properties:

* Itlearns a disentangled representation of camera view-
point, bone parameters, and bone pose, allowing these
properties to be individually controlled in rendering.

* A dense 3D representation is learned from a sparse set
of 2D images with pose annotations of the articulated
object, which could potentially be obtained through
external pose estimation techniques on multi-view im-
ages with known camera parameters [22].

* Part segmentation is learned from images with pose
annotation. Additional supervision is not needed.

* NARF can be trained for articulated objects of various
shape and appearance, through the use of an autoen-
coder that extracts latent shape and appearance vectors
which are additionally disentangled.

With this approach, it becomes possible to render both novel
views and poses of articulated 3D objects from pose anno-
tated 2D images with little increase in computational com-
plexity.

2. Related Work

Articulated 3D Shape Representations The deforma-
tion of articulated objects is traditionally modeled by skin-
ning techniques [18, 19, 30, 31] in which the location of
surface mesh vertices is determined from bone transforma-
tions controlled by the kinematics [2]. Effective skinning
models with subtle pose-dependent and identity-dependent
deformation modeling have been developed for the human
body [34, 17, 42] and animals [70]. However, the represen-
tation capacity of skinning based models is limited to the
resolution of the discrete template mesh, and sophisticated
shading techniques [48] are usually required for high qual-
ity image rendering. In addition, a large amount of 3D scan
data and expert supervision are required to prepare a tem-
plate mesh.

Recently, Deng et al. [8] proposed a neural network
based articulated shape representation (NASA). NASA
learns the neural indicator/occupancy function [6, 38, 44]
of every point in space, conditioned on a latent pose vector
that encodes a piece-wise decomposition. NASA provides a
continuous and differentiable representation for 3D articu-
lated shapes. However, ground truth occupancy is required
to train the network, and NASA does not learn appearance,
a critical element for rendering.

Articulated Pose Conditioned Image Generation The
recent advance of image generation models such as vari-
ational autoencoders (VAE) [25] and generative adversar-
ial networks (GANs) [15] provides powerful tools for gen-
erating realistic-looking images. Image generation for ar-
ticulated objects (typically persons) conditioned on tar-
get poses is an important direction with various appli-
cations like movie making, photo editing, virtual cloth-
ing [64, 29] and motion transfer [33, 4]. A majority of
these works [4, 35, 36, 52, 58, 10, 1] generate the image
of a person in a target pose by learning a GAN model from
2D keypoint maps of the target pose. The appearance infor-
mation of this person is provided by explicit concatenation
with an image of this person in the target pose [35, 52],
automatically encoded for a single person [4] or using auto-
encoders [36]. These works are limited to 2D, which pre-
vents modeling of view-dependent appearance [7]. Some
works [64] leverage the underlying 3D mesh representation
and transfer appearance from one mesh to another using
aligned mesh triangles. The quality of a mesh based rep-
resentation is bounded by the resolution of its discrete tem-
plate mesh, and a 3D template mesh is required.

Implicit 3D representation Our work builds on the re-
cent success of the implicit 3D representation. This rep-
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resentation is memory efficient, continuous, and topology-
free, and has been used for learning 3d shape [38, 44, 53],
3d texture [41], static scenes [40, 54], parts decomposi-
tion [14, 13], articulated objects [8], deformation [47, 32,

, 45], 3d reconstruction from sparse images [49, 50], and
image synthesis [51, 5].

Early methods required ground truth 3D geometry [38,

], but in combination with differentiable rendering, they
evolved to learn from 2D images. In particular, neural ra-
diance fields (NeRF) [40] is capable of learning a 3D rep-
resentation of complex scenes using only multi-view posed
images. However, NeRF addresses static scenes and can-
not handle deformable objects. Very recently, methods have
been proposed to extend NeRF to learn deformations and
dynamics [47, 32, 63, 45]. These models have been suc-
cessful in learning deformable implicit representations us-
ing posed video frames [47, 32, 63, 45]. However, these
models do not take into account the structure of the object,
so they cannot generate images with explicit pose control.

3. Method

In this section, we present neural articulated radiance
field, a novel implicit representation for articulated 3D ob-
jects based on NeRF. We start by briefly reviewing the basic
NeRF formulation for static scenes in Sec. 3.1. In Sec. 3.2,
NeRF is extended to be conditioned on pose via a kine-
matic model, and a straightforward baseline is derived from
this. We reformulate the pose-conditioned NeRF to allow
for rigid object transformations as well as global shape vari-
ations in Sec. 3.3. In Sec. 3.4, we represent articulated
3D objects as a composition of movable rigid object parts
controlled by forward kinematic rules. To achieve con-
stant model complexity with respect to the number of object
parts, we propose an efficient Disentangled NARF architec-
ture. The training strategy is then presented in Sec. 3.5.

3.1. Neural Radiance Field Revisited

A neural network is used to represent a Radiance Field
such that 3D location x = (z,y,z) and 2D viewing di-
rection d is converted to density ¢ and RGB color value
c. The density o acts like a differential opacity controlling
how much radiance is accumulated by a ray passing through
x [40].

F@ : (W(X)ﬁ(d)) - (670)7 (1)
where v(p) = [(sin(2'7p), cos(2!mp)]& is a positional en-
coding (PE) layer that maps an input scalar into a higher
dimensional space to represent high-frequency detail of the
scene. Fg consists of two ReLU MLP networks. Specifi-
cally, the volume density o is a function of the location x
only, while the RGB color c is a function of both location x
and viewing direction d.

Fo, : (v(x)) = (0, h), Fo_: (h,y(d)) = (c), (2)

where h is a hidden feature vector.

Classical volume rendering [23] is used to render the
color C(r) of a camera ray r(¢t) = o + td with near and
far bounds t,, and ¢, and where o denotes the camera posi-
tion.

T(t) = exp(— / o(r(s))ds), 3

n

C(r) = / "Ton)e(t) ddt @

n

T'(t) denotes the accumulated transmittance along the ray.
The integrals are computed by a discrete approximation
over sampled points along the ray r.

I esp <_ ng5k> () = 3Ty (1 - expl(=ay6)e,
k=1

Here, 0; and c; are the density and color at the j th point on
the ray r, and 4, is the distance between the 5" and (j+1)"
sample points.

NeReF is trained on images of a single static scene taken
from multiple views with known camera parameters. The
density and color of each location are trained so that the
rendered image for each of the views becomes close to its
ground truth. After training, high resolution images can be
synthesized from any viewpoint.

3.2. Pose-Conditioned NeRF: A Baseline

Our goal is to extend the representation capacity of
NeRF from static scenes to deformable articulated ob-
jects whose configurations can be described by a kinematic
model [2]. The radiance field of a 3D location is thus
conditioned on the pose configuration. Once this “pose-
conditioned NeRF” is learned, novel poses can be rendered
in addition to novel views, by changing the input pose con-
figurations.

In this work, we focus on modeling articulated objects
without considering the background. Therefore, for com-
pactness, we assume that the backgrounds are pre-cleaned.

Kinematic Model Formally, the kinematic model [2] rep-
resents an articulated object of P + 1 joints, including end-
points, and P bones in a tree structure where one of the
joints is selected as the root joint and each remaining joint
is linked to its single parent joint by a bone of fixed length.

Specifically, the root joint J, is defined by a global trans-
formation matrix TY. Let ¢, be the bone length from the
it" joint J; to its parent, i € {1,...P}, and @; denotes the
rotation angles of the joint with respect to its parent joint.
A bone, considered as a rigid object, defines a local rigid
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transformation between a joint and its parent. The transfor-

mation matrix T?___; is computed as

Rot(0;)Trans(¢;), (6)

7 _
local —

where Rot and Trans are the rotation and translation matrix,
respectively. The global transformation from the root joint
to joint .J; can thus be obtained by multiplying the transfor-
mation matrices along the bones from the root joint to the
i joint:

Ti = (erpa(i)ngocal)TO (7
where Pa(7) includes the i*" joint and all of its parent joints
along the kinematic tree. The corresponding global rigid
transformation [ = {R‘ t'} for the i*" joint can then be
obtained from the transformation matrix T*.

Baseline The most straightforward way to condition the
radiance field at a 3D location x on a kinematic pose config-
uration P = {T?, ¢, 0} is to directly concatenate a vector
representing P as the model input. Since the forward kine-
matic computation is a complex non-linear function [69]
that is hard to simulate in neural networks, we use the trans-
formations [’ = {R?,t'} obtained by the forward kinemat-
ics as network inputs.

FE: (v(x),7({l'li =1,..., P}),y(d)) = (5,¢)  (8)

We refer to this naive approach as Pose-conditioned NeRF
(P-NeRF). The implementation details can be found in the
supplemental material. Though P-NeRF establishes depen-
dency between the radiance field and pose, generalization
with this model is difficult because of the following two rea-
sons.

* Implicit Transformations. An articulated object con-
sists of several rigid bodies, and the surface points
on the object should move with the rigid transforma-
tions of the parts when the pose changes. Therefore,
the movement of points can be explicitly described us-
ing rigid body transformations of each part, but such
transformations may be difficult for a neural network
to learn implicitly.

 Part Dependency. The density at a 3D location de-
pends only on the parameters of the bone it lies on
and its parents along the kinematic tree. However, all
the parameters are used to estimate the radiance field
of a single location in Eq. 8. As the training on such
3D locations is backpropagated to all the parameters,
the network may learn erroneous dependencies that do
not physically exist. Correct pose predictions may still
be obtained for test poses seen in the training data,
but model generalization to novel poses may be de-
graded [65].

Towards addressing the above issues, we decompose the
articulated object into P rigid object parts. Each part has

its own local coordinate system defined by the rigid trans-
formation [* = {R‘ t'}, which is explicitly estimated us-
ing forward kinematics, rather than modeled implicitly by
a neural network. Then, we show how a rigidly trans-
formed object part can be effectively modeled in a rigidly
transformed neural radiance field (RT-NeRF) in Section 3.3.
Based on RT-NeRF, we describe in Section 3.4 how to train
a single unified NeRF that encodes multiple parts in a man-
ner that avoids the part dependency issue.

3.3. Rigidly Transformed Neural Radiance Field

Given a rigid transformation | = {R,t} of an object,
we now estimate the radiance field in the object coordinate
system where the density is constant with respect to a local
3D location. Formally,

Fb : (7(x") = (0,h) 9)

where x! = R™!(x — t) represents the 3D location in the
local object coordinate system.

We expect the model to handle certain shape variations.
For example, the limb length and thickness of a child should
differ significantly from those of an adult. To account for
shape variation, we further condition the model on bone pa-
rameter .

F5¢: (7(x1),7(¢)) = (o, h) (10)

Meanwhile, the color ¢ at a local 3D location may change
with a transformation of the object coordinate system, as
this may lead to changes in the local lighting condition.
Since the RGB color ¢ at a local 3D location should further
depend on rigid transformation I, we use a 6D vector se(3)
representation £ of transformation [ as a network input.

FE+ (h,y(d"),7(€)) — (c) (11)

where d' = R~'d is the 2D view direction in the object
coordinate system.

Combining Eqgs. 10-11, the rigidly transformed neural ra-
diance field (RT-NeRF) defined in the I = {R, t} space is
expressed as

F5: ((x),7(d), 7(6),7(C)) = (o) (12)

RT-NeRF serves as the basic building block in the neural ar-
ticulated radiance field, and we will next show how it is uti-
lized to overcome the ’Implicit Transformations’ and ’Part
Dependency’ issues.

3.4. Neural Articulated Radiance Field

The proposed neural articulated radiance field (NARF)
is built upon RT-NeRF. We first introduce two basic solu-
tions, Part-Wise NARF and Holistic NARF, and analyze the
pros and cons of each. Then, we propose our final solution
named Disentangled NARF that shares the merits of both
Part-Wise and Holistic NARF. Conceptual figures are visu-
alized in Fig. 2.
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Figure 2. Three types of neural articulated radiance field. Inputs
other than position x are omitted for greater clarity.

Part-Wise NARF (NARFp) Given a kinematic 3D pose
configuration of an articulated object {TY, ¢,6}, we first
compute the global rigid transformation {I’|i = 1,..., P}
for each rigid part using the forward kinematics in Egs. 6-7.
To estimate the density and color (o, ¢) of a global 3D lo-
cation x from a 2D viewing direction d, we train a separate

RT-NeRF, F., %,
It i—1 iy gl i—1
x =R (x—t'),d =R 'd (13)

&€ (), 1(@) 7€) 4(0) = (¢o'). (14)

for each part using Eq. 12 and combine the densities and
colors {o?,clli = 1,..., P} estimated by different RT-
NeRFs into one. We denote this approach as Part-Wise
NARF (NARFp).

Since a surface point of an object can belong to only one
of the object parts, only one of the estimates in {o*, ct|i =

., P} should be nonzero. The density and color (o, ¢)

of a global 3D location x can be determined by taking the
estimate with the highest density. However, the max op-
eration is not differentiable, so we instead use the softmax
function, which is a differentiable weighted sum over all the
estimates:

o= > P16Xp( a'/T)o’ c= Z P1 exp(o’/7)c’ . (15)

2 i=1 exp(0/T) 2 i=1 exp(0/T)

where 7 is the temperature parameter of the softmax func-
tion. Volume rendering is then applied using the combined
density o and color ¢ to generate the rendered color C(r)
by Eq. 5. Since the rendering and softmax operations are
both differentiable, the image reconstruction loss can pass
gradients to all the RT-NeRF models for effective training.

We note that, in addition to color C(r), the foreground
mask M(r) can also be estimated as an integral of the opac-
ity along the camera ray:

N
r) =Y T(1 - exp(—0;6;)) (16)

We can further render a segmentation image that indicates
which RT-NeRF (object part) is used for rendering each
pixel:

s;(r) = argmax{ojli € [1, P]} a7
N
r) = D T30~ exp(—050)))(s;(r) ==1)  (18)

where s; is the index of the part with the greatest density,
and S* denotes a segmentation mask for the i*" part.

Discussion. The NARFp approach models the rigidly
transformed parts of an articulated object in separate RT-
NeRFs, where each part has a consistent radiance field un-
der different 3D pose configurations. As the rigid transfor-
mation of each RT-NeRF is computed explicitly via forward
kinematics, rather than implicitly within the network, the
issue of implicit transformations and part dependency are
avoided. The part dependency issue is also addressed by
taking the estimate with the highest density while suppress-
ing the contribution of other parts for a global 3D location
in Eq. 15. However, its computation is inefficient for the
following reasons.

* The computational cost is proportional to the number
of object parts, limiting the representation capacity for
complex articulated objects.

* Training is dominated by the large number of zero den-
sity point samples. As a surface point on an object can
belong to only one of the object parts, it will be trained
as a zero density sample for the remaining parts. Since
parts with small densities do not affect the value of the
equation very much, it is not really necessary to calcu-
late the density of those parts.

Holistic NARF (NARFy) To address the above issues,
we present another approach that combines the inputs of the
RT-NeRF models in NARFp then feeds them as a whole
into a single NeRF model for direct regression of the fi-
nal density and color (o, ¢). We call this approach Holistic
NARF (NARFp). Formally,

Fg& - Cat({y(x")i € [1, P1},7(¢) = (o h), (19)
F¢ : Cat(h, {(v(d"), y(€")i € [1, PI}) = (¢), (20)

where Cat denotes the concatenation operator.

Discussion. There is only a single NeRF model trained
in NARFy. The computational cost is almost constant to
the number of object parts and the zero density problem
is naturally avoided. However, unlike Part-Wise NARF,
NARF; does not satisfy Part Dependency, because all pa-
rameters are considered for each 3D location. Moreover,
object part segmentation masks cannot be generated from
Eq. 18 without part dependencies.
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Disentangled NARF (NARFp) We propose Disentan-
gled NARF (NARFp) which shares the merits of both
NARFp and NARFy while avoiding their weaknesses by
introducing a selector S.

The selector S identifies which object part a global 3D
location x belongs to. S consists of P lightweight sub-
networks for each part. For the i*" part, a sub-network 0%,
takes the local 3D position of x in I = {R’,t'} and the
bone parameter ¢ as input and outputs the probability p* of
x belonging to the ‘" part. Since x should be assigned to
only one of the object parts, the softmax activation is used
to normalize the selector’s outputs:

exp(o')
> i1 exp(o)

It can be seen that OL is actually an occupancy net-
work [38, 8] defined in the local object coordinate system.
Comparing this with NASA [8], NASA’s occupancy net-
works learn absolute occupancy values to estimate an ex-
plicit surface, but our networks learn relative occupancy val-
ues to other parts for part selection. For implementation, we
use a two-layer MLP with ten hidden nodes for each occu-
pancy net, which is lightweight yet effective.

Disentangled NARF is defined by (softly) masking out
the irrelevant parts in the concatenated input using the out-
puts p’ of the selector.

F5: Cat({y(x") xp'li € [L, P}, 7(¢) = (0, h), (22)

Fg : Cat(h, {(v(d") * p', (&) * p')]i € [1, P]}) — (c)
(23)

Of = (4(x1),7(¢)) = (o)), p' = @)

Note that though we have removed the dependency on ir-
relevant parts by masking their inputs, the resulting input
is still in the form of a concatenation. This is done pur-
posely because all the bones share a single NeRF, which
needs to distinguish the different bones in order to generate
the corresponding density and color. Different bones are
distinguished by dimensions of the concatenated vector that
represent them, similar to part identity encoding. The de-
tailed network architecture can be found in Figure A of the
supplemental material.

Since the selector outputs the probabilities of a global
3D location belonging to each part, we can generate the
segmentation mask by selecting the locations occupied by
a specific part followed by Eq. 18:

sj(r) = argmax{p|i € [1, P]} 24)

3.5. Training Details

The positional encoding dimensions we set for the 3D
location x and other parameters are 10 and 4 respectively.
During training, at each optimization iteration, we ran-
domly sample a batch of camera rays from the set of all

pixels, and then follow the hierarchical volume sampling
strategy of the original NeRF [40] to query N samples for
each ray. With known kinematic 3D pose configuration
{TY, ¢, 0}, the samples’ densities and colors are estimated
by the NARF model. Volume rendering is then used to ren-
der the color C(r) and mask M(r) of this ray using Eq. 5
and 16, respectively. The loss is the total squared error be-
tween the rendered and true pixel colors and masks.

L= [lICEx) — Cx)l5 + |IM(r) - M()[5] (25

reR

where R is the set of rays in each batch, C and M are the
ground truth color and foreground mask. In the supplemen-
tal material, we empirically show that the extra mask loss
helps to learn a cleaner background. Other training details
on the learning rate, batch size and optimizer can be found
in the supplemental material.

4. Results of Training on a Single Object

In this section, we evaluate our model in the case of a
single articulated 3D object.

Dataset and Settings We create our own synthetic dataset
of human bodies for experimentation. It consists of two per-
sons, one male and one female, selected from the human 3D
textured mesh (THUman) dataset [66]. Each person has 56
and 48 different poses, 26 of which are used for training and
the others for testing. We render 100 images with various
orientations and scaling of each mesh for training and 20
for testing, ending up with 2600 training images for each
person. Note that the viewpoint distribution of training and
testing sets are the same under this setting. We denote this
test data setting as the novel pose/same view setting. All
rendered images have a resolution of 128 x 128. Addition-
ally, we introduce three other test settings for a more com-
prehensive comparison. The same pose/same view setting
uses testing images rendered from the same poses and same
viewpoint distribution as in training. The novel pose/novel
view setting uses novel poses and a different viewpoint dis-
tribution than in training. Finally, the same pose/novel view
setting uses the same poses but the viewpoint distribution is
different from training. The kinematic 3D pose configura-
tions are inferred from the SMPL model parameters pro-
vided by the THUman dataset and we use bone length as
the bone parameter ¢ in Eq. 10.

Metrics Three metrics are used to evaluate performance.
The peak signal to noise ratio (PSNR) and structural simi-
larity index (SSIM) [59] are two commonly used evaluation
metrics for image reconstruction (higher is better). In ad-
dition, we introduce the L2 distance error of mask images
(Mask), which better describes how close the 3D shape of
the rendered object is to the ground truth (lower is better).
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Cost

Same pose, same view

[ Novel pose, same view |

Same pose, novel view

Novel pose, novel view

Method | #Params  #FLOPS _#Memory | Mask] PSNR{ SSIM{ | Mask] PSNR{ SSIM{ | Mask] PSNR{ SSIM{ | Mask] PSNR{ SSIM{
CNN 15.6M - - 76.9 20.12 09429 | 1348 2730 09211 | 365.9 25.19 0.8532 | 3922 2453 0.8470
P-NeRF | 0.85M 156M 356K 7787 2142 0.8006 | 1077.0 2042 07696 | 8449 21.19  0.7897 | 1110.1 2027  0.7648
D-NARF | 0.66M 121M 382K | 2182.6 1890  0.1143 | 2308.2 18.81  0.1140 | 2137.3 19.09  0.1144 | 22413 18.88  0.1133
NARFp | 11.8M  2140M  6544K 92.0 2856 09258 | 1162 2683 09052 | 1015 2754 09144 | 1258 2650 09104
NARFy 1.06M 197M 344K 55.6 2991  0.9470 376.8 24.09  0.8665 70.5 28.81  0.9370 374.6 23.98 0.8646
NARFp | LIOM  205M 382K 50.5  30.86 09586 | 1144  27.93 0.9317 64.1 2944 09466 | 1238 2724  0.9230
Table 1. Quantitative comparison for a single object. Best results in bold.
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Figure 3. Generative results comparison for a single object with a novel pose and novel view. One model per person identity. Triangles
point to areas that should be noted. NARFp best generalizes to novel view/novel poses among the six methods.
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Figure 4. Disentangled representations learned by NARFp. For
bone parameter interpolation, the right leg length is interpolated.

Baselines In addition to the three variants of NARF
(NARFp, NARFy and NARFp), three other baselines are
included for comparison. The first is a 2D CNN-based
method similar to [4] that generates the target subject image
from “pose stick figures”. The pose stick figures in our case
are generated by projecting the 3D joints into the 2D image
(with given camera parameters) then adding lines to connect
these 2D keypoints. The second is the P-NeRF method de-
scribed in Sec. 3.2. The third one is D-NARF, a simple
extension of D-NERF [45] to articulated objects. D-NARF
aims to learn the mapping ¥ : x — x’ that transforms a
given point to its position in a canonical shape space. In our
implementation, a static NeRF model for a canonical pose
P¢ is learned, then a mapping network [45] W estimates
the deformation field between the scene of a specific pose
instance P and the scene of the canonical pose P€. The de-
tails of the three baselines can be found in the supplemental
material.

Results Quantitative comparison results are given in Ta-
ble 1. #Params, #FLOPS, and #Memory denote the number

of parameters, floating point operations per ray, and number
of elements to preserve during forward propagation per ray,
which is proportional to the memory cost.

It can be seen that our method, NARFp, outperforms
the others under all the evaluation metrics and test data set-
tings (best results shown in bold). Particularly, it exhibits
high performance under novel pose and/or novel view set-
tings (slight performance drop on SSIM within 4%) with
low computational cost (close to a single NeRF model, P-
NeRF). Hence, we can conclude that NARFp, effectively
and efficiently learns the radiance field of an articulated 3D
object and the model generalizes to novel poses and views
with high fidelity.

In contrast, all the other methods are deficient in one way
or another. The CNN-based method fails when tested un-
der novel views (10% performance drop on SSIM) since
it is difficult to learn an effective 3D representation from
2D inputs. P-NeRF and D-NAREF fail in almost all cases
mainly due to both the Implicit Transformations and Part
Dependency issues. NARFp exhibits good performance
and generalization ability but requires much more com-
putation (10x #FLOPS and 17x #Memory of NARFp).
NARFy is less effective when tested on novel poses (8%
performance drop on SSIM) due to the Part Dependency is-
sue.

Qualitative results under the novel pose/novel view set-
ting are shown in Fig. 3. Rendered RGB images (first
row), depth maps (second row), and part segmentation maps
(third row), as well as ground truth RGB images (bottom
left corner) are displayed. It can be seen that the NeRF
based methods (except for the CNN-based one) can obtain
depth images and the “part dependent” methods (NARFp
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and NARFp) can obtain segmentation maps. Our final solu-
tion NARF generates higher quality RGB, depth and seg-
mentation maps for novel views and poses than the others.
Moreover, as shown in Fig. 4, NARFp learns a disentan-
gled representation of camera viewpoint, bone parameters
and pose, allowing these appearance properties to be indi-
vidually controlled in rendering.

5. Appearance Variation with Autoencoder

In this section, we train an autoencoder based on NARF
to model shape and appearance variation among multiple
articulated objects. The autoencoder consists of an encoder
and decoder. First, a 2D CNN-based encoder is used to gen-
erate a latent vector z from an input image. The obtained
latent vector together with the given camera viewpoint and
human pose are fed into our NARF based decoder to recon-
struct the input image.

Following the implementation for the NeRF-based gen-
erator [51], we first decompose z into a shape latent vector
zs and an appearance latent vector z,. Then, zs is con-
catenated to the density-dependent inputs, namely, the posi-
tionally encoded location x and bone parameters . Mean-
while, z, is concatenated to the color-dependent inputs,
namely, the positionally encoded view direction d and the
local transformation £. Specifically, when combining the
autoencoder with the NARFp model, we have

) #p'li € [1, P}, 7(C), 75) — (0, h),
L (26)
Fgé™ : Cat(h, {(v(d" )p',7(€) )i € [1, I}, 2a) = (e)
27
The encoder and decoder are trained jointly using the same
loss in Eq. 25. For the experiment, we use the best per-
forming NARFp by default. Comparison results for other
models can be found in the supplemental material.

Fé’f’z : Cat({y(x!

Dataset We create another synthetic human body dataset
from THUman [66] for experimentation. All of the males
(112 in total) and poses (35 on average for each person) in
the THUman dataset are used. We render 10 images for
each pose with randomly sampled viewpoints to generate
35450 images for training and 3940 images for evaluation.
All rendered images have a resolution of 128 x 128.

Results Fig. 5 shows the reconstructed RGB images as
well as the additional depth images and segmentation maps
generated from the input RGB images. A single autoen-
coder is trained for all objects, indicating that appearance
variation is effectively modeled. Fig. 6 shows that the
NARF-based autoencoder learns a disentangled represen-
tation of camera viewpoint, bone parameters, human pose,
and color appearance, allowing these properties to be indi-
vidually controlled in rendering. For color appearance, it is
controlled by replacing the appearance latent vector z, with

Yy

o
N\EN

=

~

i A

Figure 5. Single-view reconstruction results from NARFp with an
autoencoder. All outputs are generated from a single model.
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Figure 6. Disentangled representations learned with an autoen-
coder. For bone parameter interpolation, the head position is inter-
polated.

that of another person. Additional results can be found in
the supplemental material.

6. Conclusion and Future work

In this paper, we propose a method for learning implicit
representations for articulated objects. We show that it is
possible to learn explicitly controllable representations of
viewpoint, pose, bone parameters, and appearance from 3D
pose annotated images. Although pose annotation is re-
quired to train the model, the model is differentiable and
thus may be extended to reduce the required supervisory
information, for example, by simultaneously training 3D
pose estimation and segmentation with the model. In ad-
dition, since the proposed representation provides explicit
3D shape and part segmentation, it may be applied to unsu-
pervised depth estimation and segmentation learning.
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