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Abstract

The inverted index is one of the most commonly used
structures for non-exhaustive nearest neighbor search on
large-scale datasets. It allows a significant factor of accel-
eration by a reduced number of distance computations with
only a small fraction of the database. In particular, the in-
verted index enables the product quantization (PQ) to learn
their codewords in the residual vector space. The quantiza-
tion error of the PQ can be substantially improved in such
combination since the residual vector space is much more
quantization-friendly thanks to their compact distribution
compared to the original data. In this paper, we first raise
an unremarked but crucial question; why the inverted in-
dex and the product quantizer are optimized separately even
though they are closely related? For instance, changes on
the inverted index distort the whole residual vector space.
To address the raised question, we suggest a joint opti-
mization of the coarse and fine quantizers by substituting
the original objective of the coarse quantizer to end-to-end
quantization distortion. Moreover, our method is generic
and applicable to different combinations of coarse and fine
quantizers such as inverted multi-index and optimized PQ.

1. Introduction

For decades, approximate nearest neighbor search has
been a vital problem in various fields including computer
vision. It is especially difficult with high-dimensional and
large-scale datasets because of its impractical requirements
for computational costs and memory overhead. To address
such difficulty, efficient indexing and compact data repre-
sentation techniques have been highlighted.

The Product Quantization (PQ) [16] and its varia-
tions [11, 19, 3, 29, 15, 8, 23, 21] has been recognized as
the most popular and successful solution, since they pro-
vide significant factors of data compression rate and effi-
ciency in distance estimation. Specifically, the PQ divides
the high-dimensional vector intoM disjoint sub-vectors and
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Figure 1: This figure describes difference between coarse
center updates of conventional inverted index and those of
our proposed method. While the conventional inverted in-
dex considers the distortion of the coarse centers only, the
proposed method also considers the quantization error of
the fine quantizer in the coarse center updates.

quantizes those sub-vectors intoK sub-codewords indepen-
dently. In this way, the PQ utilizes MK representations
with a small memory footprint. Moreover, it is empirically
shown that the PQ-based techniques provide superior search
quality than parallel research directed toward the same goal,
the binary hashing methods [2, 27, 14, 28, 13, 9]

The inverted index provides a non-exhaustive search by
a simple shortlisting mechanism based on the data cluster-
ing. A practical scalable search system is implemented by
the following procedure; given a query, the inverted index
collects the shortlist which is a small fraction of the whole
data, and the PQ re-ranks the candidates according to the
estimated distances with the compact codes. Behind this
visible synergy effect between them towards high scalabil-
ity in terms of both speed and memory, the inverted index
transforms the data into quantization-friendly residual vec-
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tors suitable for the PQ. Since the residual vector has a much
more compact distribution compared to its original data, the
PQ benefits from it to further reduce the quantization distor-
tion.

In this paper, we raise a new question about the afore-
mentioned tight relationship between the coarse (inverted
index) and fine (product) quantizers; why they are learned
separately? For instance, a change in the coarse quantizer
significantly affects the distribution of residual vectors. As a
result, we suggest that coarse and fine quantizers should be
jointly and collaboratively optimized. To this end, we pro-
pose a joint optimization of the coarse and fine quantizers
by substituting the objective of the coarse quantizer to end-
to-end quantization distortion. Finally, the designed scheme
is orthogonal to the conventional inverted index techniques
without any additional time and memory overhead at encod-
ing, decoding, and query time. The experimental validation
with various indexing and encoding techniques on several
benchmarks are available in Sec. 5.

Our main contributions are summarized as follows:

• We highlight the necessity of joint optimization of the
coarse and fine quantizers.

• We propose a joint optimization of coarse and fine
quantizers by replacing the objective of coarse quan-
tizer into the distortion of the fine quantizer.

• Our proposed method is orthogonal to the conventional
inverted index techniques without any additional time
overhead at encoding, decoding, and query time.

• Experimental results show that our method achieves
state-of-the-art performances over the five large-scale
ANN datasets.

2. Related Work
2.1. Product Quantization

Product quantization (PQ) [16] is a vector quantization
method that aims to compress data by learned representative
codewords. Usually, the PQ is used in large-scale datasets
that require extortionate memory size. The PQ divides
an input vector into several sub-vectors and applies vec-
tor quantization on each sub-vectors. Also, the PQ allows
efficient computation of Euclidean distances between the
uncompressed query and the large number of compressed
vectors, which is called Asymmetric Distance Computation
(ADC) via an instance lookup table.

The original PQ divides an input vector uniformly with-
out considering the correlation among dimensions. This
method works well with structured features like SIFT, but
it is not always the best way. To manage the input vector ef-
ficiently, the original PQ paper proposed to apply a random
rotation for all vectors preliminary to make dimensions un-
correlated. Besides, the author of [17] proposed to optimize

an orthogonal matrix by a set of reflection with a variance
balancing criterion. The Optimized Product Quantization
(OPQ) [11] is an extension of these ideas. The OPQ com-
putes a rotation matrix that minimizes the quantization error
iteratively by formulating an Orthogonal Procrustes Prob-
lem [12].

While the original PQ represents the vector as a con-
catenation of the codewords from sub-dimensions, Addi-
tive Quantization (AQ) [3] and Composite Quantization
(CQ) [29] represent a vector as the sum of codewords whose
dimensionality is identical to the original vector. These
addition-based methods are a generalization of the PQ, and
the PQ is a special case of the AQ where the codewords
from different codebooks are orthogonal.

2.2. Inverted Index System with PQ

Although the linear scan with Asymmetric Distance
Computation (ADC) of the PQ improved search speed, the
search is still exhaustive. To handle over the very large-
scale database, [16] proposed a search system with in-
verted indexing [25], which is called IVFADC. It groups
the database into several disjoint subsets by K-means clus-
tering and allows accelerated search by comparing distance
with only a small fraction of the database. For each coarse
group residual vector, the displacement between the given
vector and the center of a group it belongs to, is encoded by
the PQ.

Locally Optimized Product Quantization (LOPQ) [19]
improves the performance of the IVFADC by locally defin-
ing the product quantizer for each subset of the database
independently. However, it requires much larger memory
consumption and slows down the retrieval because of its
multiple quantizers.

The Inverted Multi Index (IMI) [4] is a multi-
dimensional extension of IVFADC. IMI decomposes data
space into a Cartesian product of two sub-spaces and clus-
ters each sub-space independently. Then the subsets of the
database are defined by the pair of indices from each sub-
space. Representing subsets by the combination of indices
enables a much finer partition of search space without in-
creasing query time.

The idea of IVFADC encoding residual vectors is similar
to Residual Vector Quantization (RVQ) [7] where residual
from the previous quantization step is further encoded re-
cursively. Its improved versions [6, 1] optimized fine code-
words across different steps jointly. However, in both IV-
FADC and RVQ, the optimization of the coarse and fine
quantizers remains independent whereas they are highly re-
lated. Moreover, the joint optimization techniques are con-
fined to exhaustive retrieval task, and not verified on non-
exhaustive retrieval task which is crucial to deal with large-
scale datasets.
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Figure 2: Illustration of proposed joint optimization of the coarse and fine quantizer. The grey circles represent data points.
The black solid arrow and red dashed arrow indicates fine codeword and fine-distortion, respectively. The blue arrow shows
the direction of the updating. The overall procedure of the optimization consists of four steps. First, compute the fine-
distortion with proposed objective (Eq. 9). Then, accumulate the computed fine-distortion (Eq. 11). Next, adjust the coarse
quantizer with the accumulated error vector (Eq. 10). Last, update the fine quantizer with adjusted coarse indices. Conse-
quently, the coarse and fine quantizers are optimized collaboratively.

3. Background and Motivations
3.1. Background

Let us briefly review the Product Quantization (PQ)
and the IVFADC, and define notations that we will use
throughout the paper. When D-dimensional database X =
{xn}Nn=1, xn ∈ RD and a query y ∈ RD is given, finding
nearest neighbor of y is formulated as follow:

n = argmin
n∈{1,...,N}

||y − xn||2. (1)

Eq. 1 takes O(DN) of time complexity and 4DN bytes
of memory consumption. To manage this time and memory
usage, the PQ proposed a compact code encoding method to
trade-off retrieval accuracy against resources. First, given
D-dimensional vector x ∈ RD is divided into M sub-
vectors, x = [x1, ..., xM ], xi ∈ RD/M . Next, product quan-
tizer qp is trained by clustering the sub-vectors of each sub-
space m ∈ {1, ...,M} into set of K number of codeword
Cm = {cmk }Kk=1. Then, a vector xn is encoded into PQ
code, qp(x, n) = [i1(x1n), ..., i

M (xMn )], as follows by the
trained product quantizer qp:

im(xmn ) = argmin
k∈{1,...,K}

||xmn − cmk ||2. (2)

The quantization distortion which represents the amount of
lost information of the encoded vector can be measured as
follows:

E(xn, C) =

M∑
m=1

min
k∈{1,...,K}

||xmn − cmk ||2. (3)

While the product quantizer reduces the retrieval time
significantly, it is highly suggested to combine the PQ and
the inverted file system to avoid exhaustive search on the
large-scale databases. Coarse quantizer qc with K ′ number
of coarse centers is learned by K-means clustering. Then
residual vector r(x) = x − qc(x) between a vector from
the database x and its nearest coarse center is utilized to
training the product quantizer qp which we refer to the fine
quantizer. Finally, x̃ is a reconstruction of x and defined as
follows:

x̃ = qp(x− qc(x)) + qc(x). (4)

Approximated distance d(·, ·) between the database vector
x and the given query y is computed as follows:

d(x, y) ≈ d(x̃, y) = d(x̃− qc(y), y − qc(y)), (5)

where the x and y are in same coarse cluster and qc(x) =
qc(y).

3.2. Motivation

Prior inverted index techniques utilize the K-means to
cluster the inverted indices. The objective function of the
K-means clustering is finding a partition of data S that min-
imize the following objective:

argmin
S

k∑
i=1

∑
x∈Si

||x− µi||2 (6)
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Figure 3: This figure shows the end-to-end quantization er-
ror of the conventional method and ours. Starting from a
pre-trained inverted index system, qc is updated by 10 itera-
tions further and qp retrained with updated qc for each step.
While joint optimization of coarse and fine quantizers im-
proves the end-to-end distortion, the conventional objective
remains around the initial error.

where µi is mean vector of the set Si. Training the K-means
clusters consists of the following two alternating steps:

S
(t)
i = {xp : ||xp−µ(t)

i ||
2 ≤ ||xp−µ(t)

j ||
2 ∀j , 1 ≤ j ≤ K ′}.

(7)
Assignment step to finding closest cluster for each vector,
and center update step to minimize Eq. 6.

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (8)

Inverted indices or coarse codeword µ = [µ1, ..., µK′ ]
learned by the K-means algorithm play a crucial role in
training the fine quantizer because the residual vector is de-
fined by its nearest coarse codeword. However, this pro-
cedure of the K-means algorithm has no guarantee of mini-
mizing the quantization error of the fine quantizer. We insist
that the objective function of the coarse quantizer should
consider not only the error of itself but also the error of the
fine quantizer.

4. Our Approach
4.1. Coarse Objective to Minimize Fine-Error

To optimize coarse quantizer with considering end-to-
end quantization distortion, we substitute the original ob-
jective function of the coarse quantizer into the objective
function of the fine quantizer.

argmin
S

K′∑
i=1

∑
x∈Si

||qp(x− µi)− (x− µi)||2 (9)

It minimizes the quantization error of the residual vector
r(x) = x − qc(x) whereas the K-means algorithm only

Algorithm 1 Joint optimization process of coarse and fine
quantizers

Input: coarse quantizer qc, fine quantizer qp, number of
coarse centers K ′, scaling factor s, learning set X ,
number of maximum optimization steps T .

Output: Optimized qc and qp.
1:
2: procedure JOINT OPTIMIZATION
3: for i=1,...,T do
4: with fixed fine quantizer:
5: UpdateCoarseQuantizer()
6: with fixed coarse quantizer:
7: UpdateFineQuantizer()
8:
9: procedure UPDATE COARSE QUANTIZER

10: Compute initial quantization error (Eq. 3).
11: while True do
12: for i=1,...,K ′ do
13: Compute mean error vector (Eq. 11).
14: Update coarse centers (Eq. 10).
15: Re-assignment step (Eq. 7).
16: Compute quantization error (Eq. 3).
17: if Quantization error is converged. then
18: break
19:
20: procedure UPDATE FINE QUANTIZER
21: Compute residual vectors (Eq. 12).
22: Training Fine quantizer with the residual vectors.

minimizes error between a vector x and its corresponding
coarse center qc(x). Fig. 1 describes the difference between
a conventional K-means objective function (Eq. 6) and the
proposed one (Eq. 9).

Similar to the K-means, the proposed objective (Eq. 9)
is trained by two alternating steps: assignment and update.
We modified the update step for the coarse indices C ′ =
[c′1, ..., c

′
K′ ] as follows:

c
′(t+1)
i = c

′(t)
i + s ∗ Ei, (10)

where s is a scaling factor, and Ei is the mean error vector
of the i-th coarse center.

Ei =
1

|Si|
∑
x∈Si

{(x− qc(x))− qp(x− qc(x))} (11)

We start the initial state from trained K-means clustering.
After the update step (Eq. 10), vectors from the learning

set X is re-assigned with the updated coarse quantizer in
the assignment step (Eq. 7). These procedures are repeated
until the proposed objective function is converged.

12213



Method K ′
64bit 128bit

R@1 R@10 R@100 R@1 R@10 R@100

IVFADC 210 0.2962 0.7036 0.9566 0.4714 0.9026 0.9930
Ours 210 0.3108 0.7301 0.9652 0.4964 0.9277 0.9921

IVFOADC 210 0.2952 0.7194 0.9626 0.4752 0.9125 0.9945
IVFOADC + Ours 210 0.3214 0.7555 0.9715 0.5001 0.9311 0.9930

Multi-D-ADC 28 0.3027 0.7291 0.9673 0.4843 0.9242 0.9980
Multi-D-ADC + Ours 28 0.3181 0.7482 0.9766 0.5129 0.9338 0.9973

Table 1: Comparison on SIFT-1M dataset.

Method K ′
64bit 128bit

R@1 R@10 R@100 R@1 R@10 R@100

IVFADC 210 0.1998 0.5814 0.8959 0.3214 0.7580 0.9585
Ours 210 0.2028 0.5977 0.9083 0.3318 0.7848 0.9729

IVFOADC 210 0.1978 0.5828 0.9109 0.3228 0.7783 0.9706
IVFOADC + Ours 210 0.2072 0.6094 0.9215 0.3386 0.8037 0.9788

Multi-D-ADC 28 0.1833 0.5686 0.9032 0.3090 0.7604 0.9702
Multi-D-ADC + Ours 28 0.1943 0.5822 0.9143 0.3219 0.7905 0.9780

Table 2: Comparison on Conv-1M dataset.

4.2. Joint Optimization of Coarse and Fine Qaun-
tizer.

In the conventional inverted index system, the coarse and
fine quantizers are trained independently. First, the coarse
quantizer is trained with the K-means clustering algorithm.
Then, the fine quantizer is trained using the residual be-
tween the coarse index and the database vector.

We introduce the joint optimization of the coarse and fine
quantizers. Our optimization scheme is illustrated in Fig. 2.
Our objective function (Eq. 9) updates the coarse quantizer
to minimize the quantization error of the fine quantizer.
Then, the residual vector between the coarse index and the
database vector are redefined as follow:

r(x)(t+1) = x− q(t+1)
c . (12)

Thus, we can further minimize the quantization error by re-
training the fine quantizer to be tailored with the redefined
residual vectors. Consequently, the coarse quantizer also
can be optimized further to minimize distortion of the re-
defined fine quantizer. This sequence of optimizing is re-
peated iteratively. The overall procedure of our method is
summarized in Algorithm 1.

We conduct an experiment to measure quantization dis-
tortion by adding ten extra iterations for the coarse quan-
tizer and the redefining fine quantizer as shown in Fig. 3.
Starting from the same pre-trained inverted index system,

the quantization error with our objective is reduced signif-
icantly. However, the distortion of the conventional objec-
tive remains around the initial level regardless of additional
clustering iterations. This experiment justifies that our col-
laborative optimization improves the traditional method.

4.3. Extension to Inverted Multi Index

The Inverted Multi Index (IMI) introduced a new in-
verted index structure that enables much fine indexing with-
out increasing query time. It decomposes vector X ∈ RD

into two halves, where X1 ∈ RD
2 and X2 ∈ RD

2 . Then it
computes the inverted index on X1 and X2 independently,
and produces two coarse codebooks U = [u1, ...uK′ ] and
V = [v1, ..., vK′ ]. The database is divided into K ′ × K ′

number of disjoint subsets while the number of compar-
isons between the coarse centers and query vector remains
K ′ +K ′.

The proposed method can be applied to the IMI orthog-
onally. To this end, the update step can be modified as fol-
lows:

u
(t+1)
i = u

(t)
i + s ∗ Eu

i ,

v
(t+1)
i = v

(t)
i + s ∗ Ev

i (13)

whereEu andEv is mean error vector fromX1, X2 ∈ RD
2 ,

respectively.
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Method K ′
64bit 128bit

R@1 R@10 R@100 R@1 R@10 R@100

IVFADC 210 0.0780 0.2190 0.4850 0.1350 0.3410 0.6670
Ours 210 0.0900 0.2410 0.4990 0.1470 0.3670 0.6830

IVFOADC 210 0.1380 0.3660 0.7010 0.1860 0.5420 0.8790
IVFOADC + Ours 210 0.1470 0.3780 0.7290 0.2100 0.5610 0.8770

Multi-D-ADC 28 0.1250 0.3640 0.7390 0.2340 0.5630 0.8860
Multi-D-ADC + Ours 28 0.1430 0.3880 0.7370 0.2390 0.5820 0.8960

Table 3: Comparison on GIST-1M dataset.

Method K ′ R@1 R@10 R@100

IVFADC
213

0.0973 0.3410 0.6744
Ours 0.1143 0.3848 0.7088

Multi-D-ADC
210

0.1253 0.3732 0.6786
Multi-D-ADC + Ours 0.1372 0.3769 0.6878

Multi-D-ADC
211

0.1317 0.3658 0.6360
Multi-D-ADC + Ours 0.1449 0.3790 0.6381

Table 4: Comparison on SIFT-1B dataset

5. Evaluation
5.1. Protocol

We evaluate our method on following benchmarks:

• SIFT-1M [16]: It contains one million 128-
dimensional SIFT local descriptor [20] vectors for
database, 100K learning set, and 10K query vectors.

• SIFT-1B [16]: It is extended version of the SIFT-1M
dataset. It contains one billion vectors for database, 0.1
billion learning set. We use 500K vectors randomly
sampled from the learning set for training.

• Deep-1B [5]: It contains 96-dimensional DNN fea-
tures from fully connected layer of GoogLeNet [26]
architecture for a billion images on the Web.

• Conv-1M: We randomly sample 1M images for
database, 100K for learning set and 10K for query
from ImageNet database [10]. Then, we extract 512-
dimensional global average pooled feature from conv5
layer of the VGG network [24].

• GIST-1M [16]: 960-dimensional global color GIST
descriptors [22], it has one million database, 500K
learning set and 1K query vectors. We randomly se-
lected 100K vectors for training from the learning set.

We compare the following combinations of coarse and
fine quantizers:

Method K ′ R@1 R@10 R@100

IVFADC
213

0.1738 0.3886 0.6361
Ours 0.1751 0.3925 0.6527

Multi-D-ADC
210

0.1645 0.3538 0.5887
Multi-D-ADC + Ours 0.1666 0.3529 0.5907

Multi-D-ADC
211

0.1706 0.3603 0.5908
Multi-D-ADC + Ours 0.1734 0.3612 0.5931

Table 5: Comparison on Deep-1B dataset

• IVFADC: Inverted file system [25] based on the Prod-
uct Quantization [16].

• IVFOADC: IVFADC with the OPQ [11].

• Ours: Proposed joint optimization of the coarse and
fine quantization with the IVFADC.

• IVFOADC + Ours: Proposed joint optimization
of the coarse and fine quantization with the IV-
FOADC [11].

• Multi-D-ADC: Inverted Multi Index [4] with the PQ.

• Multi-D-ADC + Ours: Proposed joint optimization
of the coarse and fine quantization with the Multi-D-
ADC.

The retrieval performance is measured by average
recall@R, the proportion of queries that have their first
nearest neighbor of uncompressed space within top-R near-
est neighbors in quantized space.

We fixed hyper-parameters for all experiments except ab-
lation study and billion scale datasets, M = {8, 16} and
K = 256 for product quantizer, the number of optimiza-
tion steps T = 10 and scaling factor s = 0.1. The number
of coarse indices is set to K ′ = 210 and K ′ = 28 for IV-
FADC and IMI, respectively on SIFT-1M, Conv-1M, and
GIST-1M. Note that the IMI has K ′ indices for each sub-
space, and the database is divided into K ′ ×K ′ number of
disjoint subsets. For each query, we guarantee the number
of candidates L at least 50k.
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Method L R@1 R@10 R@100

IVFADC
0.1M

0.0809 0.2560 0.4248
Ours 0.0933 0.2730 0.4330

IVFADC
0.5M

0.0954 0.3255 0.6160
Ours 0.1110 0.3622 0.6340

IVFADC
5M

0.0985 0.3490 0.7147
Ours 0.1153 0.3996 0.7685

IVFADC
10M

0.0985 0.3493 0.7166
Ours 0.1155 0.4002 0.7714

Multi-D-ADC
1K

0.0770 0.1831 0.2446
Multi-D-ADC+Ours 0.0791 0.1936 0.2600

Multi-D-ADC
10K

0.0979 0.2608 0.3604
Multi-D-ADC+Ours 0.1009 0.2735 0.3856

Multi-D-ADC
0.1M

0.1202 0.3700 0.6115
Multi-D-ADC+Ours 0.1298 0.3715 0.6260

Multi-D-ADC
0.5M

0.1250 0.3753 0.6774
Multi-D-ADC+Ours 0.1348 0.3789 0.6849

Multi-D-ADC
5M

0.1262 0.3689 0.6594
Multi-D-ADC+Ours 0.1393 0.3744 0.6700

Table 6: Ablation study for L on SIFT-1B 64bits encoding

5.2. Results on million scale datasets

Table. 1, Table. 2, and Table. 3 report recall@R scores
of non-exhaustive ANN search on the SIFT-1M, Conv-1M,
and GIST-1M, respectively. Generally, the method with
Ours shows better results than without it. For example,
Ours, IVFOADC + Ours, and Multi-D-ADC + Ours on
64bits encoding improve its conventional counterpart for
4.93%, 8.88%, and 5.09% in terms of R@1 as shown in
Table. 1. Moreover, the performance improvement of R@1
scores is larger than R@10 and R@100. On SIFT-1M and
Conv-1M dataset, Ours is even superior to not only IV-
FADC, but also IVFOADC without combining with OPQ.
As shown in Table. 2, IVFOADC improves IVFADC only
2.24% while the proposed method increases its conven-
tional counterpart 3.77% and 5.46 with and without OPQ
respectively in terms of R@10 score on 64bits encoding.
The experimental results verify that the proposed method
consistently improves with various combinations of coarse
and fine quantizers, thus it is orthogonal to conventional in-
verted index systems.

5.3. Results on billion scale datasets

For billion scale datasets, we set K ′ = 213 and K ′ =
{210, 211} for IVFADC and IMI, respectively. The number
of minimum candidates L is set to one million for the bil-
lion scale database. Table. 4 and Table. 5 report the per-

Method K ′ R@1 R@10 R@100

IVFADC

29

0.2838 0.6973 0.9517
Ours 0.2985 0.7229 0.9574
IVFOADC 0.2918 0.7098 0.9587
IVFOADC + Ours 0.3170 0.7355 0.9683

IVFADC

210

0.2962 0.7036 0.9566
Ours 0.3108 0.7301 0.9652
IVFOADC 0.2952 0.7194 0.9626
IVFOADC + Ours 0.3214 0.7555 0.9715

IVFADC

211

0.2902 0.7021 0.9574
Ours 0.3086 0.7370 0.9684
IVFOADC 0.3090 0.7236 0.9657
IVFOADC + Ours 0.3290 0.7548 0.9774

Multi-D-ADC
27

0.3027 0.7268 0.9677
Multi-D-ADC + Ours 0.3182 0.7453 0.9768

Multi-D-ADC
28

0.3027 0.7291 0.9673
Multi-D-ADC + Ours 0.3181 0.7482 0.9766

Multi-D-ADC
29

0.3166 0.7427 0.9723
Multi-D-ADC + Ours 0.3280 0.7703 0.9795

Multi-D-ADC
210

0.3397 0.7636 0.9799
Multi-D-ADC + Ours 0.3446 0.7850 0.9845

Table 7: Ablation study forK ′ on SIFT-1M 64bits encoding

formance comparison on SIFT-1B and Deep-1B. The re-
sults show that the proposed method is applicable to the
billion scale dataset and the improvement is even superior
than the million scale datasets. For instance, the improve-
ment of R@1 score of Ours over IVFADC is 17.47% on
SIFT-1B whereas it is 4.93% on SIFT-1M. Moreover, the
performance gains of Multi-D-ADC+Ours are 9.49% and
10.02% on K ′ = 210 and K ′ = 211, respectively. They are
about twice the gain on SIFT-1M.

5.4. Ablation study

We conduct ablation studies with respect to two param-
eters: the number of coarse indices K ′ and the minimum
number of candidates L. First, we verifies our method on
L = {0.01%, 0.05%, 0.1%, 0.5%, 1%} while fixing other
parameters. For example, 1M number of candidates are
0.1% of a billion-scale database. The result of ablation
study for L on SIFT-1B dataset is summarized in Table. 6.
Regardless of the size of L, the proposed method con-
sistently improves the performance. Especially, the per-
formance gap increases with large L in terms of R@10
and R@100. For instance, proposed method improves the
R@100 score about 7.65% with L = 10M while it is
1.93% and 2.92% with L = 0.1M and L = 0.5M respec-
tively. Second, an ablation study for the number of coarse
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Method K ′ Fixed L, avg recall Fixed L, avg W Fixed W , avg recall Fixed W , avg L

IVFADC
28

0.9840 12.6501 0.9848 54242.7205
Ours 0.9805 12.2584 0.9786 56314.9056

IVFADC
210

0.9965 48.8316 0.9963 52370.7237
Ours 0.9942 48.5948 0.9933 52592.1584

IVFADC
212

0.9992 181.7226 0.9990 56188.6639
Ours 0.9983 187.8200 0.9984 53996.8614

Table 8: Pruning quality study on SIFT-1M 64bits encoding.

indices is conducted on the SIFT-1M dataset. We verifies
our method on K ′ = {29, 210, 211} on IVFADC and IV-
FOADC based method, and K ′ = {27, 28, 29, 210} on IMI
based method while fixing other parameters as M = 8
and L′ = 50, 000. As reported in Table. 7, the proposed
method consistently improves the performance regardless
of the number of coarse indices K ′.

5.5. Indexing Quality Analysis

Although the proposed method has identical time com-
plexity with the IVFADC, an imbalance of the inverted lists
can slow down the actual retrieval time. For instance, if
the coarse clusters have uneven cluster size, some queries
should recompute their residual vector and lookup table
many times to guarantee the sufficient number of candi-
dates. To validate proposed method does not harm the qual-
ity or balance of the inverted lists, we conduct indexing
quality analysis. We measure an average number of ac-
cessed inverted-lists W with fixed minimum candidate size
L = 50, 000, and an average number of candidates L with
a fixed number of retrieved inverted-lists W . Recall with
fixed L or W indicates whether the ground truth is included
in the candidate list regardless of its rank. Table. 8 shows
the experimental results and it verifies that the proposed
method does not harm the indexing quality of the coarse
index. The differences of average recall between IVFADC
and Ours are much less than 1% for both fixed L and fixed
W . The average number of accessed inverted-lists W and
average number of candidates L differ less than 5%.

5.6. Overhead Analysis

Note that the proposed method does not have any ad-
ditional overhead in encoding, decoding, and search time,
but training time. With learning set X where |X| = N ,
the training time complexity of the proposed method is de-
scribed by:

O(T ∗ u ∗ND(K +K ′)) (14)

where T is a number of optimization steps, u is an average
number of iterations of learning the coarse quantizer. Time
and memory consumption of the encoding, decoding, and
retrieval is identical to the IVFADC.

Method K L search time (ms)

IVFADC
213 1M

38.9356
Ours 39.2435

IVFADC
213 5M

178.7390
Ours 176.1460

Multi-D-ADC
210 1M

44.4053
Multi-D-ADC + Ours 49.8225

Multi-D-ADC
210 5M

165.1767
Multi-D-ADC + Ours 160.8871

Table 9: Average search times on SIFT-1B dataset.

Table. 9 demonstrates the practical average retrieval time
per query on SIFT-1B dataset with FAISS framwork [18].
The IVFADC and Ours shows negligible search time dif-
ference.

6. Conclusion
The problem of the conventional inverted index sys-

tem that its coarse and fine quantizers optimized in a non-
collaborative way is first pointed out in this paper. To ad-
dress the problem, we have proposed a joint optimization
of the coarse and fine quantizers by replacing the original
objective function of the inverted index into the distortion
of the fine quantizer. The proposed method can be orthogo-
nally applied to the conventional inverted index techniques
including the IVFADC, IVFOADC, and IMI without any
time and memory overhead on encoding, decoding, and
searching time. We have evaluated our method with various
combinations of the coarse and fine quantizers on several
benchmarks, and the advantage of the proposed method is
consistently demonstrated over the baselines.
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