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Abstract

Attention networks perform well on diverse computer vi-
sion tasks. The core idea is that the signal of interest is
stronger in some pixels (“foreground”), and by selectively
focusing computation on these pixels, networks can extract
subtle information buried in noise and other sources of cor-
ruption. Our paper is based on one key observation: in
many real-world applications, many sources of corruption,
such as illumination and motion, are often shared between
the “foreground” and the “background” pixels. Can we
utilize this to our advantage? We propose the utility of
inverse attention networks, which focus on extracting in-
formation about these shared sources of corruption. We
show that this helps to effectively suppress shared covari-
ates and amplify signal information, resulting in improved
performance. We illustrate this on the task of camera-based
physiological measurement where the signal of interest is
weak and global illumination variations and motion act as
significant shared sources of corruption. We perform ex-
periments on three datasets and show that our approach of
inverse attention produces state-of-the-art results, increas-
ing the signal-to-noise ratio by up to 5.8 dB, reducing heart
rate and breathing rate estimation errors by as much as 30
%, recovering subtle waveform dynamics, and generalizing
from RGB to NIR videos without retraining.

1. Introduction
Attention mechanisms have been successfully applied

in many areas of machine learning and computer vi-
sion [25, 45], including object detection [32], activity recog-
nition [37], language tasks [1, 49], machine translation [2],
and camera-based physiological measurement [5]. Atten-
tion networks often perform well because they can identify
pixels that are most likely to contain strong signals of in-
terest. By focusing on pixels useful for the task of inter-
est and ignoring the remaining regions, attention networks
are often robust to diverse sources of variations in a video.
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Figure 1. Temporal changes of hair (green) and skin (red) pixel in-
tensities in a video are often correlated, e.g., when large head mo-
tion is present. Physiological signals are very subtle and strongest
in the skin but are easily corrupted. We propose an approach using
the regions ignored by most attention mechanisms (such as hair) to
provide estimates of these corruptions and learn a denoising map-
ping to remove them from the physiological signal of interest.

In this paper, we refer to the regions containing the signal
of interest as the “foreground” and the other regions as the
“background”. We focus on a counter-intuitive question –
is there important information contained within the “back-
ground” regions that are typically ignored by attention mod-
els? And, can we exploit the information in those regions to
improve the quality of estimation for the underlying signals
of interest in the “foreground”? If noise or variations not
related to the signal of interest are present in the video, they
will likely corrupt the signal of interest. If these corruptions
are random, then keeping as many “foreground” pixels as
possible and ignoring the noisy “background” pixels is suf-
ficient for a model to work well. However, these variations
are often not random, but rather they are caused by a spe-
cific source which likely similarly affects multiple regions
in the video.

To illustrate the effectiveness of using the inverse atten-
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Figure 2. Pulse and breathing signals output by a state-of-the-art CAN network and our denoising method (both shown in red). Our method
produces cleaner signals, free from motion artifacts (still present in the benchmark method), better matching the ground truth signal’s
(shown in black) subtle dynamics and shape. Notice the zoomed-in portions in the pulse waveforms with easily identifiable dicrotic notch
and diastolic peaks in our outputs which are absent in the benchmark output.

tion for denoising temporal signals, we focus on the predic-
tion problem of camera-based physiological measurement
as an exemplar application for our approach. Physiological
signals derived from a video are extremely subtle and are
easily corrupted by any variation in a video that may alter
the recorded image intensities. Therefore, this is a good and
challenging application to illustrate the denoising capability
of our method. For example, large head motion will often
similarly affect skin regions in the “foreground” as well as
several regions in the “background”, such as the hair or the
wall behind the person (see Fig. 1 for an illustration.) By
using the “background” regions, not containing the signal,
we can learn about the sources of these corruptions and use
that information to suppress changes we are not interested
in in the “foreground” pixels. We use an inverse of the at-
tention mask to select the “background” regions and to learn
an estimate of the corruptions present in a video.

Our application scenario is motivated by how the SARS-
CoV-2 (COVID-19) pandemic has rapidly changed the face
of healthcare [3, 38]. Recent research in computer vision
has led to the development of camera-based physiological
measurement techniques that leverage cameras and com-
puter vision algorithms [40, 46, 34, 7, 48, 5]. Camera-based
vital signs could improve the current telemedicine technol-
ogy, and also enable applications where wearing contact
devices for extended periods may be infeasible, such as
long-term human-computer-interaction (HCI) studies [23],
driver monitoring [30], or face anti-spoofing [17, 31]. Con-
volutional networks currently provide state-of-the-art per-
formance on heart rate (HR) and breathing rate (BR) mea-
surement from video [5, 50, 18]. While the convolutional
neural networks may be able to accurately learn what fea-
tures in the image are important for finding the physiolog-
ical signals, they may not be able to learn a good repre-

sentation of all other variations which may be present in
the video but are not related to the signal of interest be-
cause of a wide range of factors that can constitute these
corruptions. We refer to any variations not related to the
physiological signals as “corruptions” because they all de-
grade the signal quality. In the context of camera-based
physiology, these corruptions can be caused by head mo-
tion [9], facial expressions [52], speech, ambient light varia-
tions [30], video compression artifacts [50, 29], and camera
sensor noise [14]. Such corruptions may also vary greatly
across videos and datasets. Therefore, it is hard for any
model to explicitly capture a good representation of such
diverse variations and to remove them from the signals of
interest. While the sources of corruptions may not be iden-
tical in the “foreground” and in the “background” regions,
the variations in different regions of a video are often highly
correlated because they are often caused by the same source
(e.g., illumination variations from a flickering light bulb or
video compression artifacts affecting all regions in a frame).

The key observation we make is that regions ignored by
an attention mechanism in a network likely contain infor-
mation about sources of corruption that are also present in
the regions used by the attention mechanism to compute the
physiological signals. Using these “distraction” regions that
were ignored by the attention masks offers a way to estimate
these variations independently for each video without mak-
ing assumptions about the nature of the sources of the cor-
ruptions. The only assumption we make is that most regions
ignored by the attention masks do not contain the signals of
interest and consequently contain the corruptions that we
want to suppress. This assumption should hold true as long
as the attention mechanisms are able to segment the video
to some degree, which is usually the case.

We demonstrate that regions outside of the attention
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mask can be used to estimate the irrelevant intensity vari-
ations which corrupt the signal of interest. Once we have
an estimate of those variations, we can learn a denois-
ing mapping to remove them from the recovered signals.
Our approach outperforms state-of-the-art methods on three
datasets across a range of HR and BR error measures and
also generalizes well to new data, even data recorded with
different imaging modalities, such as near-infrared (NIR),
without any additional training. Our proposed approach can
even recover very subtle waveform dynamics, such as the
clearly visible dicrotic notch and diastolic peaks, shown in
Fig. 2, which is currently challenging for video-based meth-
ods. Obtaining clean and more accurate waveforms is use-
ful for determining important health metrics, such as blood
pressure [8], which is infeasible with most existing meth-
ods. Our method also obtained cleaner breathing signals
compared to the baseline (Fig. 2). The idea of using the in-
verse attention regions is likely very useful in a wide range
of vision tasks, where the attention networks are used to
make temporal predictions, such as activity recognition or
video deblurring. However, in this work, we only focused
on the physiological measurement application.

The core contributions of this paper are to: (1) pro-
pose the use of inverse attention masks for generating esti-
mates of variations which corrupt the signals of interest, (2)
present a novel method for denoising camera-based physio-
logical measurement using this approach, (3) evaluate our
method on three datasets showing state-of-the-art perfor-
mance on pulse and breathing measurement, (4) demon-
strate that our approach generalizes to NIR data without
further training. Supplementary material, including code,
models, video examples, and additional experimental re-
sults, are provided with this submission.1

2. Related Work
Attention Mechanisms. Attention mechanisms pro-

vide a way for a model to learn which parts of an image
or a video “are relevant for the task at hand and attach a
higher importance to them” [37]. During training, the at-
tention weights are learned reflecting the importance of the
embedding features. Recently, transformer models, based
solely on attention mechanisms, have become popular [45].
In convolutional neural networks (CNNs) these attention
mechanisms typically form a spatial mask. These masks can
help practitioners understand the decision-making process
of a network [11]. In certain cases, the “fixations” of the at-
tention masks generated by computer models and by human
observers were very similar [32]. Attention mechanisms
can be used to connect layers; for example, one focuses
on temporal information (e.g., trained on flows) and an-
other focuses on spatial information (e.g., trained on RGB

1https://github.com/ewanowara/
benefitofdistraction

frames). Prior work has found that these crosslink layers
guide the spatial-stream to pay more attention to the human
foreground areas and can be less affected by background
clutter [43]. In physiological measurement, two-layer net-
works have been found to be effective as both color and mo-
tion information are valuable for extracting the subtle phys-
iological signal in the presence of corruptions [5]. While
attention mechanisms often work well, they are a simple
representation of which regions are important. However,
pixels outside these regions may provide useful context or a
strong prior about the corruptions present.

Camera-Based Physiology. Volumetric changes in
blood over time lead to subtle changes in light reflected
from the skin and subtle motion variations which can be
measured with a camera [40, 46]. The physiological signal
obtained from a video can be used to recover several metrics
and vital signs, including heart rate [34], heart rate variabil-
ity [35], breathing rate [35], blood oxygenation [41] and
pulse transit time [36]. NIR [30, 4] and thermal [12, 33]
cameras have also been successfully used for measuring
physiological signals in the dark. While there has been great
progress in measuring cardio-pulmonary signals in the vis-
ible range, estimating these can still be more accurate us-
ing thermal cameras [10, 6]. Unfortunately, the signals of
interest in camera-based physiological measurement are of-
ten very subtle and can be easily corrupted by noise due to
body motions and ambient lighting changes. Early work in
camera-based physiology used properties of the physiologi-
cal signal, e.g., the periodic nature [34] and hemoglobin ab-
sorption spectra [7, 48] to recover the underlying physiolog-
ical signal via de-mixing methods [16, 19, 20, 44]. Some of
these unsupervised methods make simple assumptions that
the pulse signal should be periodic (non-Gaussian) and that
any other source signals are noise (e.g., ICA [34]). Oth-
ers, such as POS [48], assume that the plane orthogonal
to skin contains the pulsatile physiological signal and non-
orthogonal planes contain specular reflections and noise.
Others have used physical skin models to learn a mapping
from color changes [24]. In these methods, the corruptions
affecting the signals were not modeled explicitly. Recently,
several groups have demonstrated that deep learning models
free from heuristic assumptions about the signal structure
can perform better, especially in presence of large motion
and other corruptions [5, 51, 39, 22, 26, 27, 50, 15]. These
end-to-end methods did not explicitly define the corruptions
either but rather learned to recover the physiological signal
in a fully supervised manner. We show that the performance
of a state-of-the-art model is significantly improved by us-
ing the distraction regions as explicit corruption estimates.

3. Benefiting from Distraction
Intuition. Let us consider a situation where we want to

recover a subtle temporal signal, p(t), from a video that has
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many additional sources of pixel changes. Each pixel either
belongs to a “foreground” region and it contains the signal
of interest, p(t), or it belongs to the “background” region
and it does not contain p(t). If a pixel is in the “foreground”,
we can write the intensity of the ith pixel, yi(t), as:

yi(t) = ai,0(t) + αi ∗ p(t) + βi ∗ q(t) + γi ∗ n(t)

where a0 is the base intensity of the video, p(t) is the
signal of interest, q(t) are the corruptions correlated in the
“foreground” and in the “background”, and n(t) is random
camera sensor noise. α, β, and γ modulate the strength of
the signal p(t), of the correlated corruptions, q(t), and of
the random noise, n(t), respectively.

The “foreground” in our application predominantly
refers to skin pixels on the face with the physiological sig-
nal, p(t). The signal, p(t), is not present in each pixel of
the video with the same strength, e.g., some facial regions
may be occluded by facial hair or they may have changes
resulting from body motions (e.g., eyes during blinking and
mouth during talking) [30, 14]. In the context of convolu-
tional attention networks, the strength of the signal, p(t), at
each pixel, α, is equivalent to weights in the learned atten-
tion mask for all pixels, showing which regions in the video
contain the signal of interest. We may not always know in
advance which pixels belong to the “foreground” and which
belong to the “background”. However, we can assume that
all pixels with α larger than a specified threshold in the at-
tention mask should belong to the “foreground”.

In addition to the physiological signal, p(t), the intensity
of the “foreground” also changes due to other variations,
not related to p(t) but affecting the quality of the recovered
signal, p(t). These variations may include the changing
illumination, or motion of the camera or the person, q(t),
and camera sensor noise, n(t). Camera sensor noise, n(t),
is random and is usually independent and identically dis-
tributed across all pixels. However, corruption q(t) is usu-
ally not random nor is it uniformly distributed in the video
frame. Instead, it is often statistically correlated with the
variations caused by the same source in the “background”.

On the other hand, if the pixel belongs to the “back-
ground”, it will contain similar intensity variations as the
“foreground” with the exception that it will not contain the
signal of interest, p(t). We consider the “background” to
encompass all regions not containing p(t):

yi(t) = ai,0(t) + βi ∗ q(t) + γi ∗ n(t)
The physiological signal strength present in the “fore-

ground” of the video is very small, with sub-pixel level am-
plitude. So, to extract it we need to identify the presence
of the signal in many pixels and combine them into a single
estimate to improve the SNR. If we can identify the “fore-
ground” pixels which contain p(t) and ignore other pixels,

as is done by the attention networks, we might obtain a good
estimate. The SNR of p(t) obtained from the “foreground”
regions in this manner will depend on the strength of p(t)
measured by α and the amount of corruption and random
noise measured by β and γ:

SNR(p) =
αi

βi + γi

It is usually hard to remove q(t) directly from the “fore-
ground” regions selected by the attention masks because
this corruption can be caused by diverse sources which are
hard to model and suppress. But it is easier to estimate the
related q(t) present in the “background”, which we can de-
fine to be any variation in the video that is not related to
p(t). The corruptions in the “foreground” and in the “back-
ground” may not be identical because there may be differ-
ent variations in these regions of the video. However, q(t)
present in the “foreground” and in the “background” are of-
ten caused by the same source (e.g., the motion of the head
affecting the skin, considered to be the “foreground”, and
hair pixels, considered to be the “background”) and their
variations will be similar. Therefore, if we can use only
the “background” pixels to estimate the correlated varia-
tions q(t) and their strength, β, we could suppress those
variations in the “foreground”, thereby increasing the SNR
of p(t) which now will be predominantly affected by the
random noise:

SNR(p) ≈ αi

γi

See Fig. 3 for an example of a signal denoised with our
approach jointly using the attention and inverse attention
masks compared to a signal obtained with a baseline using
only the attention masks. While the corruptions, q(t), in
the “foreground” and in the “background” are highly corre-
lated, their relationship may be non-linear and it is difficult
to model it explicitly, but it can be learned with a deep learn-
ing model. We use an LSTM network to learn to suppress
the corruptions, q(t), in a video, given an estimate of the
corruptions present in the “background”. The proposed ar-
chitecture is shown in Fig. 4. In practice, the correlation
between q(t) in the “foreground” and in the “background”
is not perfect and β cannot be perfectly estimated. There-
fore, the network can be trained to estimate these as well
as possible, but it will not be able to perfectly estimate and
remove all variations caused by motion and illumination.

Physiology and Corruption Encoder. Convolutional
attention network (CAN) [5] serves as an encoder in our
architecture and it provides an estimate of the physiological
signal obtained from “foreground” regions and the estimate
of the corruptions obtained from the “background” regions.
The CAN network consists of two components working to-
gether – the appearance and the motion models. The appear-
ance model is trained directly on the input video frames. It
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Figure 3. These are examples of attention masks and inverse atten-
tion masks used to obtain the initial pulse estimates, estimates of
corruptions (only shown from the green camera channel), and the
final denoised physiological signals. Higher weights in the masks
are indicated by yellow and lower by blue. The ground truth heart
rate frequency is shown as the vertical green lines.

learns from the color and texture information which regions
in the video are likely to contain strong physiological sig-
nals. The motion model is trained on the difference of two
consecutive video frames to differentiate between the inten-
sity variations present in the video caused by the character-
istic physiological variations from the variations caused by
other sources. The attention mask then reflects a heatmap
of the strength of the pulsatile physiological signal in each
region of the frame. As shown in the first row of Fig. 3,
the attention masks mostly focus on skin regions known to
have strong physiological signals, while ignoring other re-
gions, such as the eyes, hair, and background regions (see
supplementary material for an example of an average atten-
tion mask computed over all stationary videos.) The CAN
normally outputs a single one-dimensional (1D) physiolog-
ical signal estimate. However, we perform an element-wise
multiplication of the original input frame with the inverse
of the attention mask weights to compute a secondary cor-
ruption estimate.

The “foreground” pixels can be easily found using the
attention masks output by the network because the “fore-
ground” regions are the pixels that the network primarily
focuses on to make predictions. In order to estimate the
correlated corruptions, q(t), in the “background”, we have
to find all pixels which belong to the “background”. The
“background” regions are all the pixels that do not belong to
the “foreground”, so we can obtain the “background” pixels
by creating an inverse of the attention mask. We compute

the corruptions at each time step by multiplying the inverse
attention masks with each channel of each video frame in
an element-wise manner. We then spatially average the re-
sulting weighted pixel intensities:

Qc,t =
1

H

1

W

H∑
x=1

W∑
y=1

Ix,y,t ◦Mx,y,t (1)

where It and Mt are the frame and mask at time t. Qc,t

is the corruption estimate from each [R, G, B] camera chan-
nel c at time t, and H and W are the image height and width,
respectively. The attention and the inverse attention masks
were 34 × 34 pixels and the video frames were downsam-
pled to the same size using bicubic interpolation. We nor-
malize the attention mask elements to a range between 0 and
1. To obtain a corruption estimate, we set all values larger
than a fixed threshold, T, to 0 and everything else to 1, cre-
ating a binary mask. Based on the experiments, we found
a threshold of T = 0.1 worked well. This binary inverse at-
tention mask ignores regions in the video initially used to
compute the physiological signals and keeps all other re-
gions. Examples of inverse attention masks are shown in
the second row of Fig. 3.

Denoising Model. Our denoising model is formed with
a long short-term memory (LSTM) network with the en-
coder providing physiology and corruption inputs at each
time step. The goal is to learn a denoising function to clean
the physiological estimates, given the estimates of corrup-
tions. As input to the denoising LSTM, we stacked the
physiological signal and the corruption signals generated
by the encoder. The contact physiological signal (e.g., fin-
ger pulse oximeter) was used as the ground truth signal for
training. The corruption estimates guide the LSTM to learn
which waveform features are related to the irrelevant varia-
tions and which ones are related to the physiological signal
of interest. The LSTM was able to learn to suppress the di-
verse corruptions present in the physiological signal and it
outputs a cleaner waveform matching the ground truth phys-
iological signal better (see the third row of Fig. 3). See the
video provided in the supplementary material for more ex-
amples of denoised signals.

In our experiments, we used a two-layer bidirectional
LSTM, with 128 hidden units, trained for 10 epochs with
Adam optimizer [13] and MSE loss. Because the LSTM
tends to work better on shorter sequences, we split each
video into sequences of 60 samples, with 50 % overlap be-
tween time windows, which corresponded to two seconds
for the 30 frames per second (fps) videos. Physiological
datasets are often relatively small due to the complexity as-
sociated with collecting carefully synchronized physiologi-
cal signals and high-quality videos. Therefore, we imple-
mented the CAN and the denoising LSTM as two sepa-
rate networks to reduce the number of training parameters.
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Figure 5. Examples of images used to evaluate our approach.

However, the proposed architecture could be implemented
end-to-end, given sufficient training data.

Datasets. We evaluated our approach on two RGB and
one NIR video dataset. Example images from each dataset
are shown in Fig 5. AFRL [9] has 300 videos of 25 partic-
ipants recorded at 120 fps. Each participant was recorded
12 times in each five-minute experiment with varying mo-
tion (increasing from Task 1 to Task 6) and two different
backgrounds. We center-cropped the ARFL video frames
to 492×492 pixels to remove the blank background areas.
MMSE-HR [52] has 102 videos of 40 participants recorded
at 25 fps during spontaneous emotion elicitation experi-
ments. This dataset is challenging because of the sudden
facial motions and rapidly changing heart rate. MR-NIRP
(NIR) [30] has eight participants recorded with a NIR cam-
era at 30 fps. Each participant was recorded twice, once sit-
ting still and once performing motion tasks involving talk-
ing and randomly moving the head. This dataset is particu-
larly challenging because the physiological signals are very
weak in NIR [21, 47]. More details about the datasets are
provided in the supplementary material.

4. Training Details
Training the Encoder. Due to a large number of pa-

rameters, we pretrained the encoder on the largest dataset
(AFRL [9]) and locked its weights. When training the en-
coder, the loss was calculated as the mean squared error
(MSE) between the physiological estimate and the ground
truth. We performed training and testing separately for
each of the six motion tasks from the AFRL dataset with
participant-independent cross-validation, leaving out 20%
of the participants in each validation split. For experiments
on the MMSE-HR and MR-NIRP datasets, we used the
trained model from Task 2 as these contained the most sim-
ilar head position. To maximize the diversity of the partici-
pants that this model was trained on to improve its general-
izability to new datasets, we instead used subject-dependent
cross-validation, using four minutes of each video for train-
ing and one minute for testing.

Training the Denoising Model. When evaluating on
the AFRL dataset we trained the denoising model with
the same subject-independent procedure as for the encoder
on AFRL. The MMSE-HR dataset has fewer videos than
the AFRL dataset; therefore, we used leave-one-subject-out
cross-validation where we left out all videos of one subject
and trained the model on all remaining videos, repeating
this for each subject. The MR-NIRP dataset was small and
not suited for training the networks, so we used the LSTM
trained on the AFRL dataset. This allowed us to test the
cross-dataset generalization ability of our model.

We detrended [42] and bandpass filtered the signals us-
ing a frequency passband range of [0.7 Hz, 2.5 Hz] for HR
and [0.08 Hz, 0.5 Hz] for BR. We normalized the signals
by subtracting the temporal mean, dividing by the tempo-
ral standard deviation in each video, and we normalized
their amplitudes to -1 and 1. We resampled all sequences
to 30 fps. We estimated HR and BR within 30-second non-
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overlapping time windows for signals from each video by
finding the frequencies with maximum spectral energy in
the respective passbands. We evaluated the performance of
our proposed denoising approach across all time windows
using mean absolute error (MAE), root mean square error
(RMSE), Pearson’s correlation coefficient (ρ) between the
estimated HR and the ground truth HR, SNR of the esti-
mated physiological signals [7], and waveform mean abso-
lute error (WMAE) computed between the estimated and
the ground truth signal. See the supplementary material for
the definitions of the error metrics.

5. Results and Discussion
We compared four variants of our proposed approach to

nine state-of-the-art methods for recovering the pulse sig-
nal [34, 7, 16, 44, 28, 48, 20, 5, 19] and two methods for re-
covering the breathing signal [5, 41] (see the supplementary
material for implementation details). We compared training
our model with the corruption estimates obtained from the
“background” regions (“Distraction”) and without the cor-
ruption estimates as input (“No Corr.”). We can also directly
subtract the corruption estimate from the signal estimate ei-
ther in the time domain (“Wave. Sub.”), or compute the
power spectrum of the estimated corruption and signal and
subtract the corruption spectrum from the signal spectrum
(“Freq. Sub.”).

Heart Rate Estimation. Our method achieved better
performance compared to previous approaches, including
lower HR MAE, RMSE, and waveform MAE and higher
HR correlation (ρ) and SNR (see Table 1). On the AFRL
dataset, the MAE was reduced from 2.93 beats per minute
(BPM) to 2.25 BPM (25% reduction in error), and on the
MMSE-HR dataset, the MAE was reduced from 3.74 BPM
to 2.27 BPM (39 % reduction in error). This shows that in-
formation excluded by the attention mask can be success-
fully leveraged to remove diverse corruptions, leading to
substantial improvements in signal quality. Moreover, the
proposed denoising approach is able to recover the subtle
waveform dynamics, reducing the waveform MAE by more
than 50% on MMSE-HR. While simply subtracting the cor-
ruptions from the signals in the frequency domain often im-
proved the SNR, it did not usually improve the heart rate
estimates. Subtracting the corruption signal in the time do-
main performed even worse and often had a negative impact
on the SNR. All results were statistically significant (p <
0.01) – see supplementary material for F-test results.

Breathing Rate Estimation. In addition to estimating
HR, which is based on intensity variations in the skin, our
method can also be used to estimate BR which is based
on motion variations and it may be more challenging in
presence of body motions. Only the AFRL dataset [9] had
ground truth breathing signals, therefore we were not able
to evaluate our BR results on the other datasets. Our method

achieved a reduction in MAE from 3.68 BPM to 2.44 BPM
(a 34% error reduction) over the baselines and an increase
in SNR by 5.87 dB (Table 1).

True Benefit of Distraction Regions. Using our model
without the corruption estimates works well when the sig-
nals do not change much over time and when the corrup-
tion in the training and test sets is similar. For example,
training and testing on AFRL (Table 1) was not very dif-
ficult because the head motion was predictable. However,
including the distraction regions yielded improvements in
both HR and BR estimates when the physiological signal
varied abruptly over time or there was a large domain gap
between the training and test sets. For example, distraction
regions improved the performance on MMSE-HR which
has sudden pulse variations, uncontrolled motion, and the
presence of facial expressions; and on the more challeng-
ing NIR MR-NRIP dataset (Table 1). Moreover, including
the distraction regions improved the HR and BR estimation
accuracy when we trained our model only on the stationary
videos of AFRL (Task 1) which were free of major corrup-
tions and tested on videos with large random motions (Task
6), as shown in Table 2. The SNR was often higher in the
“No Corr.” condition because the LSTM simply produced a
smoother signal leading to greater sparsity in the frequency
domain and higher SNR. However, the dominant frequency
of that signal was often erroneous, resulting in worse MAE,
RMSE, and ρ. These results show that the corruption esti-
mates are useful beyond including an initial signal estimate
alone to the model.

Transfer Learning. NIR videos of MR-NIRP are more
challenging than RGB because the physiological signal is
an order of magnitude weaker in the NIR range compared to
the visible range, making it very prone to motion artifacts.
When trained solely on RGB videos (AFRL dataset) with-
out any fine-tuning, our method outperformed all the base-
lines across all five metrics on the NIR videos from the MR-
NIRP dataset. As shown in Table 1, the MAE dropped from
7.78 BPM to 2.34 BPM (70% reduction in error). Other
baseline methods require multiple color channels and there-
fore could not be compared on NIR videos.

Varying Head Motion. Our method also showed im-
provements on videos across all head motions of AFRL [9]
(see Table 3). For instance, on videos with an angular head
rotation of 30 deg/sec (Task 4) the HR MAE was reduced
from 2.82 BPM to 1.94 BPM (30% reduction in error) and
BR MAE was reduced from 4.85 BPM to 2.88 BPM (41 %
reduction in error).

Performance by Different Skin Type. We have also
broken down the results on MMSE-HR by skin type. Dark
skin types (V - VI) are more challenging because they
have lower iPPG SNR (see supplementary materials). Our
method achieves better performance across all skin types
and especially darker skin types (MAE [BPM] on skin type
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Table 1. Including the “distraction” regions improves heart rate (HR) and breathing rate (BR) results estimation.
Heart Rate Breathing Rate

AFRL MMSE-HR MR-NIRP(NIR) AFRL
Method MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE

Distraction 2.25 5.68 6.44 0.87 0.21 2.27 4.90 5.00 0.94 0.19 2.34 4.46 2.27 0.85 0.45 2.44 4.23 14.20 0.35 0.28
No Corr. 2.12 5.37 6.86 0.88 0.21 2.80 6.36 4.30 0.90 0.21 2.56 5.23 2.28 0.80 0.40 2.49 4.26 14.06 0.34 0.27

Freq. Sub. 2.92 6.67 3.66 0.82 0.24 3.97 9.93 4.49 0.76 0.57 8.58 17.59 -4.56 -0.11 0.31 5.03 7.45 7.78 0.12 0.31
Wave. Sub. 2.92 6.66 3.09 0.82 0.24 6.09 10.84 -4.75 0.71 0.55 8.83 17.00 -4.69 -0.17 0.31 4.98 7.40 7.76 0.12 0.30

MAICA [19] – – – – – 3.91 – – 0.86 – – – – – – – – – – –
RhythmNet [28] – – – – – – 5.49 – 0.84 – – – – – – – – – – –

PVM [20] – – – – – 4.38 – – 0.82 – – – – – – – – – – –
CAN [5] 2.93 6.69 3.36 0.82 0.23 4.06 9.51 0.63 0.77 0.52 7.78 16.8 -3.24 -0.03 0.36 4.86 7.32 8.33 0.10 0.27
POS [48] 4.36 9.45 0.73 0.74 0.45 3.90 9.61 2.33 0.78 0.39 – – – – – – – – – –

Tulyakov [44] – – – – – – 11.37 – 0.71 – – – – – – – – – – –
Li [16] – – – – – – 19.95 – 0.38 – – – – – – – – – – –

Tarassenko [41] – – – – – – – – – – – – – – – 3.68 5.52 -6.22 0.29 0.29
CHROM [7] 4.07 9.72 0.29 0.72 0.41 3.74 8.11 1.90 0.82 0.37 – – – – – – – – – –

ICA [34] 5.78 11.80 0.42 0.58 0.43 5.44 12.0 3.03 0.66 0.42 – – – – – – – – – –

Table 2. Training on AFRL Task 1 and testing on Task 6. The ig-
nored regions help when the training and test set are very different.

Heart Rate Breathing Rate
Method MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE

Distraction 5.29 9.33 -2.07 0.70 0.32 4.28 6.00 5.93 0.10 0.34
No Corr. 5.61 9.72 -1.91 0.67 0.32 4.38 6.15 5.96 0.07 0.34

Table 3. Motion increasing from 1 to 6 on AFRL
Heart Rate MAE Breathing Rate MAE

Method 1 2 3 4 5 6 1 2 3 4 5 6
Distraction 1.06 2.11 1.79 1.94 2.50 4.78 1.42 1.86 1.88 2.88 2.87 4.15

No Corr. 1.14 1.90 1.80 3.39 2.04 4.52 1.47 1.95 1.68 2.96 2.99 4.15
Freq. Sub. 1.52 2.62 2.51 3.00 2.58 5.30 4.30 5.35 4.89 5.27 5.09 5.26

Wave. Sub. 1.57 2.59 2.53 3.03 2.72 5.09 4.31 5.24 4.88 5.17 5.08 5.19
CAN [5] 1.52 2.61 2.51 3.00 2.62 5.34 4.24 5.17 4.58 5.09 4.92 5.15
POS [48] 1.42 1.52 2.84 3.86 6.33 10.16 – – – – – –

CHROM [7] 1.33 1.62 2.87 2.82 3.91 11.86 – – – – – –
ICA [34] 2.18 2.64 4.74 4.93 7.02 13.18 – – – – – –

Tarassenko [41] – – – – – – 2.51 2.53 3.19 4.85 4.22 4.78

VI: Ours = 1.57, CAN = 8.77).
Inverse Mask Definition. We tested computing the in-

verse attention mask used to estimate the corruptions as
continuous or as binary values after thresholding. We also
compared using all three and individual RGB channels to
estimate the corruptions. However, we obtained compara-
ble results with different variants of the inverse attention
masks (see supplementary materials).

Importance of Different Distraction Regions. Certain
regions in the video may contain more useful information
about the sources of corruptions than others. For example,
regions closer to the face may contain more information
about the motion of the participant. We compared sepa-
rately using distraction regions closer to the face (center of
the frames) and further from the face (edges of the frames).
When the motion was small, all regions contributed simi-
larly to denoising (MAE = 1.08 BPM with center regions
and MAE = 1.07 BPM with edges). But when there was

large head motion, regions close to the head (center of the
frames) helped more (MAE = 6.53 BPM with center regions
and MAE = 8.74 BPM with edges). See supplementary ma-
terials for detailed results.

Performance on Subjects with Glasses. Interestingly,
we observed that our method performed very well on sub-
jects who wore glasses. The attention masks for subjects
with and without glasses were comparably good. However,
CAN performed worse on subjects with glasses and our ap-
proach offered a large improvement on those videos (MAE
[BPM] with glasses: Ours = 2.17, CAN = 3.33, and without
glasses: Ours = 2.55, CAN = 2.57). See supplementary ma-
terials for example attention masks and additional results.

6. Conclusion
We have presented a novel approach for generating cor-

ruption estimates from inverse attention masks to improve
camera-based physiological signal measurements. We hy-
pothesized that the corruptions affecting regions used by
the attention masks to compute the signal of interest would
likely be present in other regions in the video that are typ-
ically ignored by the attention masks. Our proposed de-
noising method outperformed all state-of-the-art methods in
heart rate and breathing rate estimation from videos. The re-
covered physiological signals were sufficiently clean to re-
cover even subtle waveform dynamics present in the ground
truth contact signals, including the dicrotic notch and the di-
astolic peaks. Moreover, our approach trained only on RGB
videos showed strong cross-dataset and cross-modality gen-
eralizability, outperforming the existing methods on chal-
lenging NIR videos.
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