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(b) Bicubic (c) IKC [10] (d) KGAN[2]+ZSSR[34] (e) DUF [16]

(a) Low-resolution (LR) input frame (f) TOFlow [43] (g) Deblur[30]+EDVR[12] (h) w/o kernel modeling (i) Ours
Figure 1. Blind video super-resolution results (×4). Existing video super-resolution algorithms usually assume the blur kernel in the degra-
dation is known or predefined and do not model the blur kernel in the restoration process. We show that blind image super-resolution
methods do not handle the video super-resolution problem well (see (c)-(d)), while existing video super-resolution methods without mod-
eling the blur kernel does not effectively capture the intrinsic characteristics of the video super-resolution problem which thus leads to
over-smoothed results (see (e)-(h)). Our algorithm explicitly estimates blur kernels from low-resolution videos, which is able to generate
clearer results with finer structural details.

Abstract
Existing video super-resolution (SR) algorithms usually

assume that the blur kernels in the degradation process are
known and do not model the blur kernels in the restora-
tion. However, this assumption does not hold for blind
video SR and usually leads to over-smoothed super-resolved
frames. In this paper, we propose an effective blind video
SR algorithm based on deep convolutional neural network-
s (CNNs). Our algorithm first estimates blur kernels from
low-resolution (LR) input videos. Then, with the estimated
blur kernels, we develop an effective image deconvolution
method based on the image formation model of blind video
SR to generate intermediate latent frames so that sharp im-
age contents can be restored well. To effectively explore the
information from adjacent frames, we estimate the motion
fields from LR input videos, extract features from LR videos
by a feature extraction network, and warp the extracted fea-
tures from LR inputs based on the motion fields. Moreover,
we develop an effective sharp feature exploration method
which first extracts sharp features from restored intermedi-
ate latent frames and then uses a transformation operation
based on the extracted sharp features and warped features
from LR inputs to generate better features for HR video
restoration. We formulate the proposed algorithm into an
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end-to-end trainable framework and show that it performs
favorably against state-of-the-art methods.

1. Introduction
Blind video super-resolution (SR) aims to estimate high-

resolution (HR) frames from a low-resolution (LR) se-
quence with unknown blur kernels. It is a fundamental
problem in the vision and graphics communities and has re-
ceived active research efforts within the last decade as high-
definition devices have been widely used in our daily lives.
As the HR sequences are usually contaminated by unknown
blur, it is quite challenging to restore HR videos from low-
resolution sequences.

Since blind video SR is an ill-posed problem, conven-
tional methods usually develop kinds of hand-crafted priors
to make this problem well-posed and estimate latent HR im-
age in a variational approach [9, 1, 5, 33, 23, 27]. In spite
of achieving decent results, these algorithms usually need
to solve complex energy functions or involve complicated
matching processes, and the performance is limited by the
hand-crafted priors. In addition, most of these algorithms
usually assume that the blur kernel is known or predefined
(e.g., Bicubic kernel) and do not model blur kernels in the
restoration, which cannot effectively capture the intrinsic
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characteristics of video SR [23].
Motivated by the first end-to-end trainable network for

single image SR [7], lots of methods based on deep convo-
lutional neural networks (CNNs) have been proposed [18,
8, 11, 46, 22, 20]. These approaches achieve decent results
in single image SR, but cannot be easily applied to the video
SR problem as the temporal information are not considered.
To overcome this problem, most existing algorithms focus
on developing effective motion fields and alignment estima-
tion methods. For example, the subpixel motion compensa-
tion based on optical flow [37], deformable alignment net-
works [38, 40], and spatial alignment networks [24, 4, 43].
To better restore latent frames, the recurrent approaches and
Generative Adversarial Networks (GANs) have been de-
veloped [6, 25]. These methods significantly promote the
progress of video SR. However, they usually assume the
blur kernel is known and fixed (e.g., Bicubic kernel), which
does not model unknown blur kernels and thus leads to over-
smoothed results when handling the blind video SR prob-
lem (Figure 1(e)-(f)). In addition, simply combining ex-
isting deblurring and video SR methods does not solve the
blind SR problem well as shown in Figure 1(g).

Instead of assuming known blur kernels, several algo-
rithms explicitly estimate blur kernels for SR [28, 10, 48, 2].
These algorithms show that using the estimated blur ker-
nels for image SR is able to improve the results signifi-
cantly [28, 2]. However, these algorithms are mainly de-
veloped for single image SR which cannot be extended to
video SR directly as shown in Figure 1(c)-(d). The method-
s [23, 27] simultaneously estimate underlying motion fields
and blur kernels for image restoration. However, the perfor-
mance is limited by the hand-crafted image priors. More-
over, these hand-crafted image priors usually lead to com-
plex optimization problems which are difficult to solve.

To overcome the above problems, we propose an effec-
tive video SR algorithm that simultaneously estimates un-
derlying blur kernels, motion fields, and latent HR videos
by deep CNN models so that our method can not only avoid
the hand-crafted priors but also effectively estimate blur k-
ernels and motion fields for better video restoration. The
proposed algorithm explicitly estimates blur kernels from
LR input videos and then develops an effective image de-
convolution model based on the image formation of video
SR to generate intermediate latent frames with sharp struc-
tural details. To explore sharper structural details of the
restored intermediate latent images and information of the
adjacent frames, we fuse the features extracted from LR
videos based on motion field estimation and transform the
sharp features of the intermediate latent images for better
HR video restoration. By training the proposed algorithm
in an end-to-end manner, it is able to generate clearer im-
ages with finer structural details (Figure 1). To the best of
our knowledge, this is the first algorithm that develops deep
CNNs based on a variational approach for blind video SR.

The main contributions are summarized as follows:
• We propose an effective blind video SR algorithm that

simultaneously estimates blur kernels, motion fields,
and latent images by deep CNN models.
• We develop an effective image deconvolution method

based on the image formation of video SR to generate
intermediate latent frames with sharp structural details.
• We develop a sharp feature exploration method to ex-

plore sharp features from the restored intermediate la-
tent frames for HR video restoration.
• We formulate the proposed algorithm into an end-to-

end trainable network and show that it performs favor-
ably against state-of-the-art methods on both bench-
mark datasets and real-world videos.

2. Related Work
We briefly discuss methods most relevant to this work

and put this work in proper context.
Variational approach. Since video SR is highly ill-posed,
early approaches mainly focus on developing effective pri-
ors [9, 1, 5, 33] on the HR images to solve this problem.
As these methods usually use known blur kernels to ap-
proximate the real ones which will lead to over-smoothed
results. Several methods [23, 27] simultaneously estimate
motion fields, blur kernels, and latent images in a maxi-
mum a posteriori (MAP) framework. In [23], Liu and Sun
solve video SR by a Bayesian framework, where the motion
fields, blur kernels, latent images, and noise levels are esti-
mated simultaneously. Ma et al. [27] propose an effective
Expectation Maximization (EM) framework to jointly solve
video SR and blur estimation. Although promising results
have been achieved, these algorithms require solving com-
plex optimization problems. In addition, the performance is
limited by the hand-crafted priors.
Deep learning approach. Motivated by the success of deep
learning-based single image SR [7, 18, 8, 11, 46, 22, 20],
several methods [14, 21, 17, 4, 24, 37, 43, 16, 12, 40, 38] ex-
plore the spatio-temporal information for video SR. Huang
et al. [14] develop an effective bidirectional recurrent con-
volutional network to model the long-term contextual in-
formation. Some algorithms [21, 17] first estimate mo-
tion fields based on the hand-crafted priors and then use a
deep CNN model to restore high-quality images. In [4],
Caballero et al. develop an effective motion compensation
method to explore the spatio-temporal information for video
SR. Liu et al. [24] develop a temporal adaptive neural net-
work and a spatial alignment network to better explore the
temporal information. In [37], Tao et al. propose an effec-
tive subpixel motion compensation layer based on the esti-
mated motion fields for video SR. Xue et al. [43] demon-
strate the effect of optical flow on video image restoration
and propose a unified video restoration framework to solve
general video restoration problems. Instead of explicitly us-
ing optical flow for alignment, Jo et al. [16] dynamically
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estimate upsampling filters. In [12], Haris et al. extend
the deep back-projection method [11] by a recurrent net-
work. Wang et al. [40] improve the deformable convolu-
tion [38] and develop an effective temporal and spatial at-
tention method to solve video restoration. This algorithm
wins the champions in the NTIRE19 video restoration [29].
To better model the temporal information, several method-
s develop the temporal group attention [15] and temporal
frame interpolation [42] for video SR.

To generate more realistic images, GANs have been used
to solve both single image [20, 31, 3] and video [6, 25] S-
R problems. These algorithms generate decent results on
video SR. However, these algorithms either explicitly or im-
plicitly assume that the blur kernels are known and do not
model the blur kernels for SR, which accordingly leads to
over-smoothed results.

Estimating blur kernels has been demonstrated effective
for image SR, especially for the details restoration [28, 10,
34, 2, 39, 45]. However, these algorithms are designed for s-
ingle image SR. Few of them have been developed for video
SR. Different from these methods, we propose a unified
framework based on a deep CNN model to explicitly model
blur kernels and explore the image formation of video SR to
constrain the deep CNN model so that high-quality videos
can be better-restored.

3. Revisiting Variational Methods
Instead of simply stacking deep neural networks to solve

video SR, we develop an effective and compact deep CNN
model by exploring the image formation of video SR for HR
video restoration. To better motivate our algorithm, we first
revisit how the variational methods [9, 23, 27] solve video
SR and then introduce the proposed algorithm.

Following the definitions of [9, 23, 27], the degradation
model for video SR is:

Lj = SKFui→jIi + nj , (1)

where {Lj}i+Nj=i−N denote a set of LR images with 2N + 1
frames; Ii denotes the i-th HR frame; nj denotes im-
age noise, S and K denote the matrix form of the down-
sampling operation s and blur kernel K; Fui→j

denotes the
warping matrix w.r.t. optical flow ui→j , and ui→j denotes
the optical flow from Ii to Ij .

Based on the degradation model (1), the HR frame Ii,
optical flow ui→j , and blur kernel K can be estimated from
{Lj}i+Nj=i−N by a Maximum a posteriori (MAP) [9, 23, 27]:

{I∗i ,K∗, {u∗i→j}} = arg max
Ii,K,{ui→j}

p(Ii,K, {ui→j}|{Lj}),

= arg max
Ii,K,{ui→j}

p(Ii)p(K)
∏
j

p(ui→j)

p(Li|Ii,K)
∏
j 6=i

p({Lj}|Ii,K, {ui→j})

(2)

By using hand-crafted image priors ρ(Ii), ϕ(ui→j), and
φ(K) on the HR frame Ii, optical flow ui→j , and blur k-
ernel K, respectively, the video SR process can be achieved
by alternatively minimizing [23]:

I∗i =argmin
Ii
‖SKIi − Li‖+

i+N∑
j=i−N,j 6=i

‖SKFui→j
Ii − Lj‖+ ρ(Ii),

(3)

u∗i→j = arg min
ui→j

‖SKFui→j
Ii − Lj‖+ ϕ(ui→j), (4)

and
K∗ = argmin

K
‖STIiK − Li‖+ φ(K), (5)

where TIi is a matrix of latent HR image Ii w.r.t. K [23].
Although the video SR algorithms [23, 27] based on

above model have been demonstrated effective in both
benchmark datasets and real-world videos, they need to
define the hand-crafted image priors ρ(Ii), ϕ(ui→j), and
φ(K) which usually lead to highly non-convex objective
function (2). This makes the video SR problem more d-
ifficult to solve. In addition, the performance of video S-
R is limited by the hand-crafted image priors. We further
note that most existing deep learning-based methods usual-
ly employ deep CNN models to solve video SR problem.
Although these methods do not need to define hand-crafted
priors, they cannot capture the intrinsic characteristics of
video SR as the blur kernel is assumed to be known (e.g.,
Bicubic [40], Gaussian [32]). As the blur kernels in the
degradation are complex [23], assuming known blur kernels
usually leads to over-smoothed results.

To overcome these problems, we develop an effective
deep CNN model which simultaneously estimates blur k-
ernels, motion fields, and latent frame for video SR. The
proposed model does not need the hand-crafted priors and
can capture the intrinsic characteristics of the degradation
process in video SR by modeling blur kernels. Thus, it
can generate much better super-resolved videos with clearer
structural details (Figure 1(i)).

4. Proposed Algorithm
The overview of the proposed method is shown in Fig-

ure 2. In the following, we explain the main ideas for each
component in details. For simplicity, we use three frames to
illustrate our method.

4.1. Optical flow estimation
The variational methods usually solve the problem (4) to

generate optical flow and then use it to warp adjacent frames
to the reference frame so that more reliable information can
be used for the reference frame restoration. However, solv-
ing (4) needs to define the hand-crafted prior ϕ(ui→j). In
addition, the hand-crafted prior usually leads to a complex
optimization problem which is difficult to solve. As optical
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Figure 2. An overview of the proposed method. It takes several adjacent frames as the input and super-resolves the center frame. First, we
estimate frame-dependent blur kernels K̃i by Nk and generate the intermediate HR image (Ĩi) based on an image deconvolution method
with K̃i. In the meanwhile, we estimate optical flow between adjacent LR inputs and obtain the warped features (Lf

i−1,w, Lf
i+1,w) by

applying the estimated optical flow to the extracted features from LR inputs (i.e., Lf
i−1, Lf

i+1). Then, we fuse the features Lf
i−1,w, Lf

i , and
Lf

i+1,w to obtain Hf , extract the sharp features from Ĩi (i.e.,Nd(S(Ĩi))), and generate T (Hf ) by a sharp feature transform based on Hf

and Nd(S(Ĩi)) for HR frame restoration. Finally, we embed sharp feature transform into the restoration network NI and restore the HR
frame by adding the upsampled result of Li to the output of NI . The proposed algorithm is jointly trained in an end-to-end manner. The
mathematical operators are detailed in the main contents. For simplicity, we use three adjacent frames as an example.

(a) LR & GT kernel (b) Bicubic (c) Deblurred & kernel
Figure 3. Effect of the intermediate latent image restoration and
blur kernel estimation. Using the estimated blur kernel to deblur
LR images generates much sharper images (c).

flow can be efficiently estimated by deep neural network-
s, we use the PWC-Net [36] as the proposed optical flow
estimation algorithm given its small model size and decent
performance.

Given any three adjacent frames Li−1, Li, and Li+1, the
PWC-Net (denoted as No in Figure 2) is used to compute
optical flow ui−1→i and ui+1→i based on the adjacent two
input frames (Li−1, Li) and (Li+1, Li), where the PWC-
Net for the computations of ui−1→i and ui+1→i shares the
same parameters.

Based on the estimated optical flow, we perform the
warping operation in a deep feature space instead of an im-
age space. Let Lfi−1, Lfi , and Lfi+1 denote the features of
Li−1, Li, andLi+1, which are extracted by deep CNN mod-
elNe, we use the bilinear interpolation method to obtain the
warped features Lfi−1(x + ui−1→i) and Lfi+1(x + ui+1→i)

according to [36] (i.e., Lfi+1,w, Lfi−1,w in Figure 2).

4.2. Blur kernel estimation
The blur kernel estimation can be achieved by solv-

ing (5). However, the accuracy of the blur kernels highly

depends on whether the latent HR frames are accurate or
not. In addition, using the hand-crafted prior φ(K) usually
leads to a complex optimization problem which is difficult
to solve. To overcome these problems, we develop a deep
CNN model Nk to effectively estimate blur kernels.

Given the HR images {Ii} and the corresponding LR im-
ages {Li}, the proposed network Nk takes the LR images
{Li} as input and outputs blur kernels. Different from [23]
assuming that the blur kernels are all the same among differ-
ent frames, we estimate frame-dependent blur kernels. To
constrain the networkNk, we develop a loss function based
on (5):

Lk = ‖SK̃iIi − Li‖1, (6)

where K̃i denotes the matrix form of the output of the deep
CNN model, i.e., Nk(Li), and `1 norm is used. Figure 2
shows the network architectures of Nk. The detailed pa-
rameters are included in the supplemental material.

The estimated blur kernels are shown in Figure 3(c),
where the shape of the estimated one is visually close to
that of the ground truth kernel. We will demonstrate the
effectiveness of the blur kernel estimation in Section 6.

4.3. Latent frame restoration
With the blur kernel K̃i, we can estimate the HR frame

from the input LR frame Li according to (3). However,
solving (3) needs to define the image prior. Instead of focus-
ing on designing sophisticated image priors for HR frame
restoration, we first restore an intermediate latent HR frame
with sharp structural details and then develop a deep CNN
model to explore these restored sharp structural details for
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better HR frame restoration. To this end, we first estimate
the intermediate latent HR frame by:

Ĩ∗i = argmin
Ii
‖SK̃iIi − Li‖2 + γ‖∇Ii‖2, (7)

where ‖∇Ii‖2 is used to make the problem well-posed and
L2 norm is used so that it can be efficiently solved, and∇ =
(∇h,∇v)> denotes the gradient operator, which includes
horizontal and vertical operators.

Note that (7) is a least square problem. We can get the
closed-form solution based on the fast Fourier transform
(FFT) [44, 47] by:

Ĩi = F−1

 1

γ4

r−F(K̃i)⊗s

P(F(K̃i)r
4 )

P(F(K̃i)F(K̃i)
4 ) + γ

 ,

(8)
where r = F(K̃i)F(Li ↑s); ⊗s and P denote the element-
wise multiplication and the averaging operation at each s×s
distinct block; ↑s denotes the s-folding upsampling opera-
tion;4 = F(∇h)F(∇h)) + F(∇v)F(∇v).

Figure 3(c) shows the estimated intermediate HR image
Ĩi. Note that though Ĩi contains noise and artifacts, it al-
so contains some clear contents which facilitate the follow-
ing image restoration, especially for the structural details
restoration (Figure 1(i)).

To better explore the sharp structural details of Ĩi for fi-
nal HR frame restoration, we develop a sharp feature ex-
ploration method based on a feature fusion module and a
transformation operation by [41]. First, we fuse the warped
features from LR frames by:

Hf = Nf (C(Lfi−1,w,L
f
i ,L

f
i+1,w)), (9)

where C denotes the concatenation operation, and Nf de-
notes a feature fusion network which contains one convolu-
tional layer with filter size of 3 × 3 pixels and 128 feature
channels. Then, we use the affine transformation [41] to
generate features for HR video restoration by:

T (Hf ) = Nγ(Ĩi)⊗Hf +Nβ(Ĩi), (10)

where Ĩi = Nd(S(Ĩi)); S denotes the spatial-to-depth
transformation which is used to ensure that Ĩi has the same
spatial resolution as Hf ; ⊗ denotes the element-wise mul-
tiplication; Nγ , Nβ , and Nd are the feature extraction net-
works. Finally, we develop a deep CNN modelNI with the
residual unit [41] which takes (10) for the HR frame restora-
tion. The network architectures ofNI ,Nγ ,Nβ , andNd are
shown in Figure 2.

4.4. Loss function
Given M video training pairs

{{Lmi }
Q
i=1, {Imgt,i}

Q
i=1}Mm=1, where each video contains Q

frames, we train the proposed network by minimizing:

L =

M∑
m=1

Q∑
i=1

‖N (Lm
i−N ; ...;Lm

i ; ...;Lm
i+N )− Imgt,i‖1 + Lk, (11)

where N = {No,Ne,Nf ,Nd,Nγ ,Nβ ,NI}.

4.5. Implementation details
Training datasets. We train the proposed algorithm using
the REDS dataset [29], where the REDS dataset contains
300 videos, each video contains 100 frames with an im-
age size of 720 × 1280 pixels. Among 300 videos, 236
videos are used for training. Similar to the blind video SR
settings [23], we first apply Gaussian kernels with the stan-
dard deviation to every frame of the original video and then
downsample the filtered images by a factor of s according to
the imaging process to generate LR blurry videos, where the
standard deviation ranges from 0.4 to 2. During the train-
ing, we choose the first 50 consecutive frames from each
video in the training dataset to train the proposed algorith-
m. We use the REDS4 dataset by [40] as our evaluation
dataset, which does not overlap with the training dataset. In
addition, we further use the Vid4 dataset [23] and SPMCS
test dataset [37] as our test datasets to evaluate our model
that is trained on the REDS dataset. We use the same way
mentioned above to generate LR videos for test.

In addition to the commonly used Gaussian kernels that
are widely adopted for evaluation in blind SR problem-
s [10, 23, 26], we further evaluate our method using the blur
kernels from [2] as its blur kernels are more realistic. To this
end, we apply the generated blur kernels to the aforemen-
tioned dataset and generate the training and test datasets for
evaluations. The blur kernels and videos in the test datasets
do not overlap with those in the training datasets.
Parameter settings and training details. We empirically
set γ = 0.001. The batch size is set to be 8. The size of
each image patch is 64 × 64 pixels. In the training pro-
cess, we use the ADAM optimizer [19] with parameters
β1 = 0.9, β2 = 0.999, and ε = 10−8. The optical flow es-
timation network No is initialized by the pre-trained mod-
el [36]. We first train the blur kernel estimation network
Nk from scratch and then jointly train the whole networks.
The learning rates are initialized to be 10−4 except No and
Nk because they are pretrained. We use 10−6 for No and
Nk. All the learning rates decrease to 0.5 times after every
100 epochs. We use the Bilinear upsampling operation to
generate the upsampled result of the center frame. Similar
to [41], we use the residual learning by taking Nγ(Ĩi) as
Nγ(Ĩi) + 1 when performing (10). The algorithm is im-
plemented based on the PyTorch. More detailed network
parameters and experimental results are included in the sup-
plemental material. The source code and trained models are
publicly available on the authors websites.

5. Experimental Results
In this section, we compare the proposed algorithm a-

gainst state-of-the-art methods. Due to the page limit, we
only show small portion results. More results are included
in the supplemental material.
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Table 1. Quantitative evaluations of the state-of-the-art video SR methods on the benchmark datasets with unknown Gaussian kernels.
Methods Bicubic RCAN [46] SPMC [37] DUF [16] TOFlow [43] RBPN [12] EDVR [40] Deblur [30]+EDVR [40] KGAN [2]+ZSSR [34] IKC [10] MZSR [35] Ours

REDS4 [40] 25.19 27.15 26.61 27.19 25.96 27.15 27.54 17.93 22.69 27.36 26.24 29.18
0.6898 0.7667 0.7485 0.7819 0.7171 0.7752 0.7898 0.4687 0.6601 0.7723 0.7274 0.8372

Vid4 [23] 21.53 23.36 23.17 23.91 22.49 23.45 23.41 15.58 19.16 23.52 22.23 24.47
0.5551 0.6786 0.6726 0.7214 0.6183 0.6950 0.6902 0.3269 0.5519 0.6812 0.6004 0.7454

SPMCS [37] 24.65 27.10 26.49 27.07 25.68 26.86 26.67 17.81 22.55 27.03 25.74 27.53
0.6740 0.7819 0.7593 0.7953 0.7221 0.7800 0.7739 0.4578 0.6658 0.7770 0.7161 0.8016

(b) HR patch (c) Bicubic (d) IKC [10] (e) KGAN[2]+ZSSR[34]

(a) Ground truth HR image (f) DUF [16] (g) RBPN [12] (h) Deblur[30]+EDVR[40] (i) Ours
Figure 4. Video SR result (×4) on the REDS dataset [29]. The proposed algorithm recovers high-quality frames with clearer structures.

Evaluations on the datasets with unknown Gaussian k-
ernels. We compare the proposed algorithm against state-
of-the-art methods including the deep CNN-based methods
SPMC [37], DUF [16], TOFlow [43], RBPN [12], and ED-
VR [40]. As most existing deep learning-based video S-
R methods assume that the blur kernel is known and fixed
Bicubic one, directly comparing with these methods may be
unfair. Following the commonly used protocols (e.g., [10]),
we further use our estimated blur kernels to generate de-
blurred frames according to the deconvolution method [30]
and take the deblurred results as the input of these meth-
ods for fairness. In addition, we compare the proposed
method with state-of-the-art deep CNNs-based single blind
image SR methods including IKC [10], MZSR [35], and K-
GAN [2] with the ZSSR method [34]. We use the PSNR
and SSIM as the evaluation metrics to evaluate the quality
of each restored image on synthetic datasets. The PSNR
and SSIM values of each restored image are calculated us-
ing RGB channels based on the script by [40].

Table 1 shows the quantitative evaluation results by the e-
valuated methods on the proposed benchmark datasets with
unknown Gaussian kernels. Overall, our method outper-
forms the other algorithms by a large margin.

Figure 4 shows some results with a scale factor of 4 by
the evaluated methods on the REDS4 dataset [29]. We note
that the state-of-the-art video SR methods [16, 12] do not
recover the correct structural details well as shown in Fig-
ure 4(f)-(g) because they do not model the blur kernel. In
addition, the method that first uses the deblurring algorith-
m [30] to generate clear LR input with our estimated blur
kernels and then restores HR videos by the deep video SR
model does not generate clear frames (Figure 4(h)). This
demonstrates that simply combining deblurring and video
SR methods does not solve the blind video SR problems
well. Although several methods [10, 2] explicitly estimate
blur kernels to solve the blind SR problem, these method-

s are designed for single image and less effective for the
video SR problem as shown in Figure 4(d)-(e). As the pro-
posed algorithm develops a blur kernel estimation module
which generates an intermediate latent HR image with sharp
contents according to (7), thus facilitating clearer structural
detail restoration as shown in Figure 4(i).
Evaluations on the datasets with blur kernels from [2].
We further evaluate our method using more realistic blur
kernels, where the datasets are detailed in Section 4.5. Ta-
ble 2 shows the evaluation results on the test dataset with
blur kernels [2]. The state-of-the-art video SR method-
s [38, 15, 40] do not generate high-quality videos as they
assume that the blur kernels in the degradation are the fixed
Bicubic kernel. We note that the EDVR method [40] is ef-
fective on both the video SR problem and video deblurring
problem. However, the video SR problem solved by [40] as-
sumes that the blur kernel is the fixed Bicubic kernel while
the video deblurring problem does not consider the down-
sampling degradation. Thus, it is less effective to super-
resolve the LR images with unknown blur kernels. In ad-
dition, the commonly used baseline method that first ap-
plies the deblurring method to the LR videos and then us-
es non-blind video SR methods are not effective (see “De-
blur [30]+EDVR [40]” in Table 2). In contrast, our method
generates the results with higher PSNR and SSIM values,
suggesting the effectiveness of the proposed method.

In addition, we evaluate our method with a larger mod-
el by using 3 ResBlocks and 20 Residual Units in Ne and
NI . Table 2 shows that although using a larger model in the
proposed method generates better results, the larger model
usually involves more network parameters and needs more
computational cost as shown in Table 7.
Evaluations of blur kernels. Different from existing video
SR methods that use known blur kernels (e.g., fixed Bicu-
bic [40] or Gaussian kernels [32]) in the video SR process,
we develop a blur estimation method to estimate blur ker-
nels for video SR. To examine the accuracy of the estimated

4816



Table 2. Quantitative evaluations of the state-of-the-art video SR methods on the dataset (×4) with blur kernels from [2]. “Our-L” denotes
that we use 3 ResBlocks and 20 Residual Units inNe andNI .

Methods Bicubic RCAN [46] SPMC [37] DUF [16] RBPN [12] EDVR [40] TGA [15] TDAN [38] Deblur [30]+EDVR [40] KGAN [2]+ZSSR [34] IKC [10] DAN [26] Ours Ours-L
PSNR 25.68 27.46 27.18 27.32 27.62 28.26 27.70 27.48 19.55 26.35 27.52 27.68 29.36 30.20
SSIM 0.7147 0.7901 0.7842 0.8118 0.8125 0.8322 0.8199 0.7940 0.5436 0.7507 0.7864 0.7896 0.8495 0.8702

Table 3. Average kernel similarity of the estimated blur kernels.
Methods KGAN [2] Ours
Gaussian kernels 0.8772 0.9983
Blur kernels from [2] 0.7263 0.9663

(a) LR frame (b) KGAN [2] (c) Ours (d) GT
Figure 5. Visualizations of the estimated blur kernels generated by
the networkNk on the datasets with unknown Gaussian kernels.
Table 4. Effectiveness of the blur kernel estimation on video SR
(×4). The results are obtained from the REDS4 test dataset.

Methods Bilinear Ĩi by (7) w/o kernel modeling Bilinear of Li as Ĩi Ours
PSNR 24.73 26.65 28.87 29.04 29.18
SSIM 0.6712 0.7489 0.8280 0.8328 0.8372

blur kernels, we use the kernel similarity [13] as the metric
and compare with the kernel estimation method [2] on the
test dataset. Table 3 shows that the proposed method gener-
ates higher kernel similarity values than those by [2].

Figure 5 shows the visualizations of estimated blur k-
ernels by Nk. We note that the shape of the estimated
blur kernel is visually similar to that of the ground truth
kernel. Thus, both the quantitative and qualitative results
demonstrate that the proposed algorithm is able to capture
the degradation process well.
Real videos. We further qualitatively evaluate the proposed
algorithm against state-of-the-art methods on real videos.
Figure 6 shows a real example from [21]. The restored char-
acters by state-of-the-art methods [10, 16, 12, 15, 38] are
still blurry. In contrast, our algorithm generates the frame
with clearer characters, which demonstrates that the pro-
posed algorithm generalizes well.

6. Analysis and Discussions
We have shown that using the blur kernel estimation is

able to help details restoration in video SR. In this section,
we further analyze the effect of the proposed algorithm.
Effectiveness of the blur kernel estimation. As the most
important part, the proposed blur kernel estimation process
provides blur kernels, which thus leads to the intermediate
latent images with clear contents for better details restora-
tion. To demonstrate the effectiveness of this method, we
disable this step in the proposed algorithm for fair com-
parisons. For this case, the baseline method (w/o ker-
nel modeling) does not involve the blur kernel estimation
and the intermediate latent HR frame restoration (7). Ta-
ble 4 shows the quantitative evaluations on the benchmark
datasets. The average PSNR of our method is 0.31dB higher
than the method without blur kernel modeling on the RED-
S4 dataset, which demonstrates that using blur kernel esti-
mation generates much better results.

Another question about the effect of the blur kernel es-
timation is that one may wonder whether the intermediate
deblurred frame Ĩ really helps the latent HR frame restora-
tion. To answer this question, we replace our deblurred re-
sults with the commonly used Bilinear upsampled results of
LR input frames [40] in our algorithm (“Bilinear of Li as Ĩi
” in Table 4) for fair comparisons. Table 4 shows that using
the Bilinear upsampled results of LR input frames does not
generate good results, where the PSNR value of this base-
line is 0.14dB lower than that of the proposed one.

In addition, we note that the quality of the intermediate
deblurred frame (i.e., Ĩi by (7)) is better than that of the
Bilinear upsampled ones, where the PSNR value of the in-
termediate deblurred frames is 1.92dB higher than that of
the Bilinear upsampled ones. This further indicates that us-
ing the blur kernel estimation is able to improve the perfor-
mance of the super-resolved results.

The visualizations in Figure 7 further demonstrate that
directly estimating the HR images using deep CNN model-
s without modeling blur kernels does not generate the im-
ages with clearer structural details. In contrast, the proposed
method generates much clearer images.

Effectiveness of the sharp feature exploration. We de-
velop a sharp feature exploration method based on a feature
fusion module and a sharp feature transform to estimate fea-
tures for HR video restoration. One may wonder whether
using a simple concatenation of the features from the LR
frames and intermediate latent frames would generate the
same or even better results. To answer this question, we
further train an alternative method using the same experi-
mental settings as our method, where the network NI takes
the concatenation of the features extracted from deblurred
image by (8) and the warped features from LR input frames
as the input. That is, the input of NI is:

T (Hf ) = Nf
(
C
[
Ne
(
S(Ĩi)

)
;Lfi−1,w;L

f
i,w;L

f
i+1,w

])
.

(12)
Table 5 shows that using (12) does not generate good video
super-resolution results compared to the proposed method.

In addition, as we only use the deblurred result of the
center frame (Ĩi) for HR frame restoration in (10), one may
wonder whether using all the deblurred frames {Ĩi} would
improve the performance or not. To answer this question,
we further evaluate the proposed method when all the de-
blurred frames {Ĩi} are used for HR frame restoration. Ta-
ble 5 shows that using all the deblurred frames {Ĩi} does
not improve the performance.

Relations with model-based methods. Several methods,
e.g., [26, 44, 45], unfold the MAP-based variational model
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(b) Bicubic (c) IKC [10] (d) KGAN[2]+ZSSR[34] (e) DUF [16]

(a) Input (f) RBPN [12] (g) TDAN [38] (h) TGA [15] (i) Ours
Figure 6. Results (×4) on a real video with unknown blur. The proposed algorithm generates the frame with clearer characters.

(a) HR patch (b) Bilinear (c) Ĩi by (7)

(d) w/o kernel modeling (e) Bilinear of Li as Ĩi (f) Ours
Figure 7. Effectiveness of the blur kernel estimation on video SR
(×4). Using blur kernel estimation is able to generate the results
with clearer structural details.

Table 5. Effectiveness of the sharp feature exploration on video SR
(×4). The results are obtained from the REDS4 dataset [40].

Methods T (Hf ) by (12) T (Hf ) w/ all {Ĩi} T (Hf ) w/ only Ĩi (Ours)
PSNR 28.98 29.13 29.18
SSIM 0.8325 0.8351 0.8372

into a deep CNN regularized model and an image recon-
struction model for image SR, where these two models are
alternatively solved to generate HR images. Different from
these methods, we develop a deep CNN which takes the
variational model as a differentiable module to solve blind
video SR. The variational model (7) is used to generate
sharp image contents which are further utilized by the pro-
posed sharp feature exploration module for better HR frame
restoration. Our network directly (instead of alternatively)
estimates latent HR frames. In addition, these methods are
designed for image SR and are less effective for the blind
video SR task as demonstrated in Section 5.

Warping operation in the feature v.s. image spaces. We
evaluate the effect of the warping operation in the feature
space on the REDS4 test dataset. Table 6 shows that us-

Table 6. Effectiveness of the feature warping on video SR (×4).
The results are obtained from the REDS4 dataset [40].

Methods Image space warping Feature space warping (Ours)
PSNR 28.98 29.18
SSIM 0.8312 0.8372

Table 7. Comparisons of model size and FLOPS. The results are
tested on the images with 720× 1280 pixels.

Methods RCAN [46] RBPN [12] EDVR [40] Ours-L Ours
Model parameters (M) 15.59 12.77 20.63 20.54 14.08
FLOPs (G) 919.21 1245.42 1480.57 857.27 485.34

ing the warping operation in the deep feature space (i.e.,
“Feature space warping”) generates the results with higher
PSNR and SSIM values.
Model size and computational complexity. As our net-
work design is motivated by the variational model-based
methods instead of simply stacking deep neural networks
for video SR, it has relatively fewer model parameters and
the lowest floating point operations (FLOPs) as shown in
Table 7. All these demonstrate that the performance gains
are not due to the use of large capacity models.

7. Concluding Remarks
We have proposed an effective blind video SR algorith-

m which simultaneously estimates underlying blur kernels,
motion fields, and latent HR videos by deep CNN models.
The blur kernel estimation is able to estimate blur kernels
from LR input videos. With the estimated blur kernels, we
develop an effective image deconvolution method based on
the image formation of video SR to generate intermediate
latent HR frames with sharp structural details. We have pro-
posed a sharp feature exploration method by exploring fea-
tures from intermediate latent HR frames and input frames
for better HR video restoration. We have shown that the
proposed algorithm can be trained in an end-to-end manner
and performs favorably against state-of-the-art methods.
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