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Abstract

Video content creation keeps growing at an incredible
pace; yet, creating engaging stories remains challenging
and requires non-trivial video editing expertise. Many video
editing components are astonishingly hard to automate pri-
marily due to the lack of raw video materials. This paper fo-
cuses on a new task for computational video editing, namely
the task of raking cut plausibility. Our key idea is to leverage
content that has already been edited to learn fine-grained
audiovisual patterns that trigger cuts. To do this, we first
collected a data source of more than 10K videos, from which
we extract more than 255K cuts. We devise a model that
learns to discriminate between real and artificial cuts via
contrastive learning. We set up a new task and a set of base-
lines to benchmark video cut generation. We observe that
our proposed model outperforms the baselines by large mar-
gins. To demonstrate our model in real-world applications,
we conduct human studies in a collection of unedited videos.
The results show that our model does a better job at cutting
than random and alternative baselines.

1. Introduction
The lack of video editing expertise is a common blocker

for aspiring video creators. It takes many training hours and
extensive manual work to edit videos that convey engaging
stories. Arguably, the most time-consuming and critical task
in video editing is to compose the right cuts, i.e., decide how
(and when) to join two untrimmed videos to create a single
clip that respects continuity editing [58]. To the untrained
eye, cutting might seem easy; however, experienced editors
spend hours selecting the best frames for cutting and joining
clips. In light of this complexity, it is pertinent to ask: could
artificial systems rank video cuts by how plausible they are?

Before delving into addressing the question above, it is
worth defining the task of video cut ranking in detail. As
Figure 1 illustrates, given two untrimmed input videos, the
goal is to find the best moments (in each video) to trigger
cuts, which join the pair into a single continuous sequence.

Input à Pair of untrimmed shots:

#"

Output à Cut Plausibility Ranking:

#2

#1

Figure 1: Ranking Cut Plausibility. We illustrate the pro-
cess of ranking video cuts. The first row show a pair of
untrimmed videos (raw footage) as the input. The output
would be the ranking of all the possible cuts across the pair
of shots. Ideally, the top ranked cuts should be the more
plausible cuts providing a smooth transition between the
shots, and the worst cuts would be places in where there is
break of spatial-temporal continuity.

A key challenge is to generate videos that make the audience
believe actions unfold continuously. This type of cutting is
often called continuity editing and aims to evoke an illusion
of reality [7, 58], even though, the source videos could be
recorded at different times. Figure 1 shows a typical trigger
for cuts – the moment when the speaker changes. In practice,
the director could give the shot order via a storyboard or
script, and it is the editor’s job to realize which patterns
make smooth transitions between shots. Our hypothesis
is that many of those cut-trigger patterns can be found by
carefully analyzing of audio-visual cues.

Despite its importance, potential impact, and research
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challenges, the computer vision community has overlooked
the video cut ranking problem. While there has been signifi-
cant progress in shot boundary detection [52], video scene
segmentation [57], video summarization [48], and video-
story understanding [9, 33], few to no works have focused
on pushing the envelope of computational video editing.

The most relevant works at addressing video cut ranking
and generation are found in the graphics and HCI commu-
nities [10, 19, 41, 65, 69]. These attempts take on a different
perspective and focus on human-computer experiences for
faster video editing. Yet, they still demand extensive work
from an editor in the loop. We hypothesize that the cut rank-
ing task has been neglected due to the lack of data, i.e., raw
footage, and its corresponding cuts done by an editor.

In this paper, we introduce the first learning-based method
to rank the plausibility of video cuts. It is important to note
that we do not have access to the raw footage for each shot
since it is difficult, i.e., requires expertise and extensive
manual work, to gather a dataset of raw videos with the
corresponding edits and cuts. Therefore, Our key idea is
to leverage edited video content to learn the audio-visual
patterns that commonly trigger cuts.

While this data is not the same as the real-world input for
generating and ranking cuts, we can still model the audio-
visual data before and after the cut, thus modeling what good
cuts look like. Additionally, this type of data can be found
abundantly, which enables the development of data-driven
models. Our results show that a model learned to solve this
proxy task can be leveraged to practical use cases.

Our approach begins with a pair of consecutive shots that
form a cut (similar to the bottom row in Figure 1). We look
for a representation that discriminates between the good cuts
(actual cuts found on edited video) against all alternative
options (random alignments). To achieve this goal, we first
collect a large-scale set of professionally edited movies, from
which we extract shot boundaries to create more than 260K
cuts and shot pairs. Using this new dataset, we train an
audio-visual model, Learning-to-Cut, which learns to rank
cuts via contrastive learning. Our experimental results show
that, while challenging, it is possible to build data-driven
models to rank the plausibility of video cuts, improving upon
random chance and other standard audio-visual baselines.
Contributions. To the best of our knowledge, we are the
first to address video cut ranking from a learning-based per-
spective. To this end, our work brings two contributions.
(1) We propose Learning-to-Cut, an audio-visual approach
based on contrastive learning. Our method learns cross-shot
patterns that trigger cuts in edited videos (Section 3).
(2) We introduce a benchmark and performance metrics for
video cut ranking, where we show the effectiveness of Learn-
ing to Cut. Moreover, we showcase that expert editors more
likely prefer the cuts generated by our method as compared
to cuts randomly ranked and other baselines (Section 4).

2. Related Work
Computational Video Editing. Earlier research in compu-
tational video editing focuses on designing new experiences
that speed up the video creation process [10, 19, 41, 65, 69].
For instance, Leake et al. propose a system for the automatic
editing of dialogue-driven scenes [41]. This system takes as
input raw footage, including multiple takes of the same scene,
and transcribed dialogue, to create a sequence that satisfies a
user-specified film idiom [7]. Although this method offers
a modern video editing experience, it still relies on a rule-
based mechanism to generate the cuts. Another line of work
focuses on designing transcript-based video editing systems.
To cite an example, QuickCut [65] and Write-A-Video [69]
develop user interfaces that allow aspiring editors to create
video montages using text narrations as input. Although
significant progress has been made to create better video
editing experiences, it is still an open question of whether
learning-based approaches can advance computational video
editing. Our work provides a step towards that direction
by introducing a benchmark for ranking the plausibility of
video cuts and an audio-visual method that learns how to
approximate them, without fixed rules and trained from an
unconstrained set of professionally edited videos.
Long-term video analysis. Many efforts have been made
to develop deep learning models that analyze and understand
long-term information [25, 72] and model relationships in
long video formats [9, 24, 33]. Recently, Bain et al. [9]
collected a dataset that contains movie scenes along with
their captions, characters, subtitles, and face-tracks. Sim-
ilarly, Huang et al. [33] created a dataset that comprises
complete movies along with their trailers, pictures, syn-
opses, transcripts, subtitles, and general metadata. Based
on these datasets, the research community has developed
solutions for new movie-related tasks, such as: shot-type
classification [56], movie-scene segmentation [57], character
re-identification and recognition [11, 32, 35, 70], trailer and
synopsis analysis [34, 71], and visual-question answering in
movies [21, 36]. Unlike previous works in long-term video
analysis, our work centers around the video creation process.
Another line of work worth a bit more closer to ours is video
summarization [22, 49, 60]. These approaches are typically
given one long video stream and their task is to select and
shorten shots while keeping the semantic meaning of the
composed video. Although video summarization techniques
compose shot sequences, they tend to disregard critical as-
pects of video editing such as maintaining spatial-temporal
continuity across shots. To the best of our knowledge, our
work is the first benchmark studying the plausibility of cuts.
As there are limited previous works aligning with our task,
we define a set of initial baselines, and a novel approach for
evaluating the ranking quality of video cuts.
Cross-Modal Representations. The joint exploration of
multiple modalities is a hot topic in the research commu-
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nity. Several works have explored self-supervised learning to
learn semantic embeddings using cross-modality supervision
by using text, audio, and visual streams [2, 4, 6, 8, 38, 40, 46,
50, 51, 53, 63]. Moreover, recent works have used already
pre-trained embeddings from different modalities on video
retrieval tasks [5, 17, 20, 42, 43, 45, 73], active speaker detec-
tion [3, 15, 16], and sign spotting [47]. Our method adopts
multimodal streams and backbones to model audio-visual
signals and learn the patterns that commonly trigger a cut.
Contrastive Losses for Video. Rapid progress has been
attained in video understanding research by leveraging con-
trastive losses [26, 46]. The InfoNCE loss [26], particularly,
has gained tremendous popularity with the advent of self
supervised learning [2, 23, 28, 29, 54, 55, 66, 67]. The idea
behind this loss is simple; given a query representation, its
goal is to maximize the similarity with a corresponding pos-
itive sample, but minimize the similarity concerning a bag
of negatives. In the video domain, the InfoNCE loss and its
variants (e.g., MIL-NCE [46]) have been used for learning:
general video representations [23, 55, 66], joint text-video
embeddings [2, 46], or audio-visual models [1, 2, 54]. Fol-
lowing the widespread adoption in the video community, our
work leverage the InfoNCE loss [26] to learn a represen-
tation that encodes how good video cuts look (and sound)
compared to all the other cut alternative for a pair of shots.

3. Learning to Cut
3.1. Leveraging Edited Video

As a reminder, a shot is a continuous take from the same
camera, and a cut occurs between a pair of shots (section 1).
We introduce a data source devised for the task of learning
suitable video cuts from professionally edited movies. The
primary purpose of this data collection is to leverage already
edited content for learning fine-grained audio-visual patterns
that trigger cuts in the video editing process. It is composed
of 10707 movie scenes along with 257064 cuts. This dataset
includes several streams of data for every shot, including
visual, audio, and transcripts. Around 32% of shots in the
dataset include speech; the remaining shots without speech
come mainly from action-driven scenes. In the supplemen-
tary material we provide additional statistics.
Gathering edited video. Movies are a great source of video
data containing creatively edited video. Following Bain et
al. [9], we downloaded 10.707 videos from MovieClips 1.
Each of these videos correspond to a single movie scene (a
section of the movie occurring in a single location with a
continuous and condensed plot). Then, we automatically
detected shot boundaries using [27]. To asses the quality of
the detections, we verified 5.000 of them and found an error
rate of 4, 34% (217 errors). Typical errors include shots with
heavy visual effects, and partial dissolves.

1MovieClips: Source of the videos

(a) (b)

(c) (d)

Figure 2: Examples of the retrieved content. Figure 2a
shows a cut driven by the visual action of entering through a
door. Figure 2b shows a cut driven by the matching audio
between two sounds. Figure 2c shows a cut driven by a
conversation an its audio-visual signal. Finally, 2d shows a
visual-reaction cut that is driven by an audio-visual action.

We find that each scene contains 114 shots on average.
Thus, an editor has to make more than a hundred cuts for
every scene in a movie. Such a level of involvement fur-
ther shows the complexity and time-consuming nature of
the editing process. An appealing property of the chosen
video source, MovieClips, is that it has weekly uploads of
famous movie scenes, along with their metadata. Since our
shot annotations are automatically generated, we can easily
augment the dataset in the future.
Data source samples. Figure 2 shows examples from the
collected data. As specified before, the cut can be driven by
visual, audio, and audio-visual cues. In Figure 2a, the visual
action of entering the door triggers the cut, while the audio
stream does it in Figure 2b. In the latter, the editor matched
two similar sounds from two different space-time locations;
this example shows a visually discontinuous cut, where the
audio matches perfectly between the two shots. The last two
examples are cuts driven by audio-visual cues.

On one hand, Figure 2c is triggered by the nature of a
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fluid conversation – we can appreciate that the cut happens
after the active speaker changes. On the other hand, the cut
in Figure 2d is driven by an action observed in both streams –
the scene shows a person’s reaction to an audio-visual action.
Note that these are just some of the triggers for cuts, and
many others exist, making it hard to list and model each of
them independently. Therefore, our next goal is to leverage
this data to learn cut triggers in a data-driven fashion.
Dataset. We use edited movies to learn the proxy task of
cutting already edited videos. To do so, we split our dataset
into train and validation sets. Since our task requires both
positive and negative examples per pair of shots, we ignore
shots shorter than one second for both sets. We use the
frame-cut info to remove all the snippets that contain shot
transitions within them to avoid the degenerate shortcut of
learning how to detect shots. After these two filters, the
training set consists of 7.494 scenes with 177.987 shots, and
the validation set consists of 3.213 scenes with 79.077 shots.

3.2. Proxy task

We propose a proxy task closely related to the actual
editing process of cutting (and merging) two shots. We
define a snippet as a short time range within a shot. A
snippet is fully contained within a shot and hence is much
shorter. Our proxy task consists of learning which pair of
snippets (from a set composed of all clips from consecutive
shots) is the best to stitch together. Since we know that the
editing process is mainly done in sequential order (stitching
the left shot to the right shot), we can try to solve a local
(two-neighboring-shots) proxy task by recurrently asking
the following question: which snippets in both of the shot
videos are the best to stitch together?. The best place to cut
in each of the two shots are these two retrieved snippets.

Our proxy task resembles the actual editing process,
where the editor needs to pick a place to cut based on what
they want to show in the next shot. However, it is not exactly
the same, since we do not have the part of the shots that are
cut out during the editing process. Obtaining such data is
challenging as it requires video editing expertise to select
the appropriate cuts, and at the same time, it is hard to find
large-scale footage without edits. Although not all possible
clips are available during training, we argue (and show with
experiments) that our proxy task, paired with a vast number
of edited videos, provide enough supervisory signals to learn
the audio-visual cues and patterns that trigger the cuts.

We can address the proxy task in several ways; however,
there is one that best fits the task editors solve in continu-
ity editing [58]: maximize the smoothness of the transition
or minimize the discontinuity in the semantics of the scene
across a cut. Furthermore, given the task’s artistic nature,
there is not necessarily a single correct answer. There might
be more than one place in the videos where a cut can be
placed and several pairs that would make semantic sense.

Considering the previous observations, we decide to model
this task as a ranking problem. We also build a small tem-
poral window near the actual shot boundaries, and consider
all clips within this window as appropriate cutting points.
As a result we don’t aim at retrieving only the clips at the
very end/beginning of adjacent shots, but we also consider
as valid some highly similar clips with significant temporal
overlap. We approach this task by using Contrastive Learn-
ing. In fact, we aim to find a space, where the representations
of clip pairs that belong together are close to each other and
far from all others.
Technical description. Given a ground-truth cut formed
by a pair of shots (SL, SR), we aim to find the best pair of
snippets to stitch together. We define SL as the set {ai|i ∈
N, 0 ≤ i ≤ tL}, and SR as {bj |j ∈ N, 0 ≤ j ≤ tR}, with tL
and tR being the number of snippets contained in the shots,
respectively. Our proxy task consists of ranking the set of
all pairs of snippets {(ai, bj)|i, j ∈ N, 0 ≤ i ≤ tL, 0 ≤ j ≤
tR}. We know that the pair that should appear on top of
the ranking is the one formed by the temporally adjacent
snippets (atL , b0). The rest of the pairs are negative samples
that we want to avoid retrieving.
Potential short cuts. One may think that this artificial task
can be easily solved by any machine learning model by
learning shortcuts and apparent biases, for instance, always
ranking first the pair composed by the last clip of the left-
hand-side shot and the first of the right-hand-side shot. Ad-
ditionally, if we include the clip in which the actual shot
transition occur in our training data, we would end up learn-
ing a shot detector. We avoid these two degenerate cases
by not including any information of the temporal position
of a clip within the shot and also ignoring all the clips that
contain the transition from one shot to another.

3.3. Learning to Cut Model

Our cut ranking model consists of three main modules:
a Feature Extraction step, a Contrastive Learning module,
and an Auxiliary Task module. We first extract audio-visual
features from candidate snippets. Then, the Contrastive
Learning Module refines these features such that pairs of
clips forming good cuts yield higher similarity score than
others. The last module consists of an auxiliary task that
guides the model by predicting whether individual snippets
are good places to cut or not. Our pipeline is illustrated in
Figure 3. Below, we describe each module in detail.

3.3.1 Feature Extraction

This task is inherently multimodal, since editors use fine-
grained visual and audio signals from the shots to determine
the cuts. Hence, we use both audio and visual backbones.
It has been shown that effective visual features for video
analysis come from short-term spatio-temporal architec-
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Figure 3: Learning to Cut Model. Our model takes as
input the audio-visual streams of a pair of shots. It computes
their snippet pair-wise similarity and backpropagates it using
the NCE-loss. Finally, it predicts a score per snippet that
indicates whether or not it is a good place to cut. In the
figure the non-blurred frames represent positive pairs. The
NCE-loss only positive sample is represented with red on
the grid, which corresponds to the neighbour friends of the
left and right shots.

tures [12, 18, 37, 62, 64, 68]. Similarly, effective audio archi-
tectures represent each time instance with a temporal window
of fixed size and its corresponding spectogram [13, 31, 61].
We extract features for each snippet of T frames with tempo-
ral stride of ∆. We input each one of the shots S{LR} with
N{LR} frames to extract t{LR} = Floor(

N{LR}−T

∆ ) + 1
snippets, and extract shot-level features F{L,R} by concate-
nating each of its snippet-level feature maps of dimension H .
Formally FL = [α1; ...;αtL ] and FR = [β1; ...;βtR ] where
α, β ∈ R1×H .

3.3.2 Contrastive Learning Module

This module consists of a Multi-Layer Perceptron (MLP)
with l1 layers interleaved with a ReLU activation. It receives
the shot-level features F{LR}. Each layer reduces the size
of the previous layer by c, similar to the projection head
used in [14]. It produces a feature F ′

{LR} where each of

its elements belongs to R1× H
cm1 . We compute each of the

possible snippet pairs between F ′
L and F ′

R, and we produce
the annotations as follows: the positive sample is the pair
(αtL , β0), while the negative samples are the set N(α, β) =
{(αi′ , βj′)|i′, j′ ∈ N, 0 ≤ i′ ≤ tL − 1, 1 ≤ j′ ≤ tR}. We

aim at bringing the features into a different space, in which
snippet pairs that are good to stitch together are close to
each other and far from the rest. To enable this, we use a
Noise-Contrastive-Estimation (NCE) loss [26] defined as:

NCE(S) = − log

 eα
⊤
t β0

eα
⊤
tL

β0 +
∑

N(α,β)

eα
⊤
i′βj′

 (1)

This loss encourages that the positive pair (numerator)
attains the highest correlation score among all pairs (denom-
inator). We expect it to align well with the ranking task we
are interested in. By maximizing the similarity between the
two adjacent snippets from each pair of shots, we expect
the model to learn smooth transitions between shots, thus
mimicking what editors do in continuity editing [58].

3.3.3 Auxiliary Task Module

It consists of an MLP with l2 FC-layers to produce a single
value per snippet, which is then passed through a sigmoid
function. This module receives the feature map F ′

{LR} and
produces a vector v{LR} ∈ R(tL+tR)×1, one score per snip-
pet. The higher the score, the higher the probability pyi

for a
snippet to be a good place to cut. Remember that our auxil-
iary task aims to answer whether or not each snippet is a good
place to cut. We believe that this is a reasonable task to guide
the learning process, since there are some pre-established
rules in video editing that drive the cutting process [7, 10].
And so, we hypothesize that individual snippets can contain
some information about these cues and can guide the model
to cut more precisely. We propose to learn this auxiliary
task by classifying each of the snippets as a good place to
cut or not. In this case, the only positive snippet is αtL .
We iterate over each snippet in SL to calculate the Binary
Cross-Entropy (BCE) Loss per shot:

BCE(S) = −1

t

t∑
i

yi log(pyi) + (1− yi) log(1− pyi) (2)

Therefore, our model optimizes for both two tasks jointly
and the losses are combined as follows:

Loss(S) = λ1 ·NCE(S) + λ2 ·BCE(S) (3)

4. Experiments
This section describes the experimental pipeline that we

follow to validate our approach’s effectiveness in learning
to rank cuts. We detail our performance metrics, imple-
mentation details of our model, and introduce baseline ap-
proaches. Then, we then study our method’s performance on
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our dataset 3.1 by comparing to the baselines and ablating
each of its components. Finally, we use our model to rank
cuts in an unedited set of video footage and assess the quality
of the top ranked results via human studies.

4.1. Experimental Setup

Metrics. We aim to define metrics that measure the quality
of automatically ranked video cuts. One desirable property
of automatic cut generation method is the ability to rank the
good cuts with higher confidence across a test subset. To
capture this property, we measure Recall at (ηK), (R@ηK),
where η ∈ {1, 5, 10} is a value that controls the number
of retrieved results and K is fixed to the number of ground
truth cuts in the entire inference set. In our experiments,
K ≈ 80000, which corresponds to the number of shot pairs
or cuts in the validation subset. To account for the ambigu-
ity of cuts, we measure R@(ηK) using different temporal
precision ranges when counting the true positive cuts. Our
intuition is that cuts near the ground-truth might be equally
good and still useful for many practical scenarios. Therefore,
we introduce a distance to cut d, which augments the num-
ber of positives with all clip pairs that are within d seconds
from the ground-truth cut. In practice, d is the number of
clips away from the ground truth cut. We report R@(ηK)
for three distance values d ∈ {1, 2, 3}. These metrics al-
low us to study the performance of methods under different
use cases. For instance, if someone plans to evaluate per-
formance for automatic retrieval, R@1K would be the best
fit; however, if there will be a human-in-the-loop, R@10K
seems a more appealing metric to optimize, as a human could
select the best cut from a small list of candidates. Conversely,
measuring performance at d = 1 and d = 3 resemble cases
where an application requires high-precision (e.g. editing for
professional film) and low-precision cuts (e.g. editing for
social media), respectively.
Implementation Details. We first extract frames for each
scene video at 24 fps. In terms of backbones, we use
ResNexT-101-3D [30] pre-trained on Kinetics [39] for the
visual stream and ResNet-18 pre-trained on VGGSound [13]
for the audio stream. We freeze each of them and extract fea-
tures from each of the last convolutional layers after Global
Average Pooling. We extract snippet features in a sliding win-
dow strategy with window size of T = 16 frames and stride
of ∆ = 8. The feature dimensions are 2048 for the visual
backbone and 512 for the audio backbone. We concatenate
these features into a 2560-dimensional feature vector. The
final output is the feature map Fn ∈ Rtn×2560. We jointly
train the contrastive learning module (CLM) and the aux-
iliary task module (ATM) with an initial learning rate of
0.003 using Adam optimizer. We use l1 = 2 layers with a
reduction factor of c = 2 for the CLM, and l2 = 1 layers for
the ATM. We reduce the learning rate by a factor of 0.9 if the
validation loss does not decrease after an epoch. We choose

λ1 = 1 and λ2 = 0.2 as trade off coefficients in Equation
(3), such that both losses are of the same scale. While we
train both tasks together, we perform inference through a
two-stage prediction by first choosing the top M = 30%
scoring snippets from the ATM and then having CLM rank
these retrieved pairs.
Baselines. Our main task is to rank each of the pairs ac-
cording to their similarity score. Ideally, the pairs that first
appear in the ranked list are the ones that are a better fit to
form the cut, i.e. the right places to cut. Below, we define all
the methods that will be compared on this task.
Random Baseline: We assign a uniform random score for
each pair of clips in the validation subset.
Audio-visual baseline: Since the ranking is given by a simi-
larity score, we can use the raw backbone features directly
(i.e. without passing them through CLM and ATM) to mea-
sure their correlations as the ranking score. In our com-
parisons, we study three alternatives: (i) using only visual
features (visual), (ii) using only audio features (audio), and
(iii) concatenating audio-visual features (Audio-visual).
Learning to Cut (Single-stage): We use the CLM scores for
all the pairs to perform the ranking, i.e. ATM is not used
here. We refer to this baseline as Ours (w/o multi-stage).
Learning to Cut (Full): As explained earlier, we first use the
individual clip scores from ATM to choose the top M scoring
clips, which are then ranked using CLM similarity scores.
Inference time. At run time, features are pre-computed and
cached and the feature similarity (cut ranking) runs on the
fly. Extracting features takes about 6 seconds per minute
of video (240 fps). Computing similarity can be done effi-
ciently via dot product, which computation time is negligible
compared to the forward pass.

4.2. Ranking Results

Comparison with baselines We compare our Learning to
Cut method against the different baselines in Table 1. We
report Recall R@αK with α ∈ {1, 5, 10} and under dis-
tances d ∈ {1, 2, 3} clips (or d ∈ {0.33, 0.67, 1} seconds)
from the ground truth cut. We observe how challenging the
task is by looking at the Random baseline performance. In
the most strict setting (R@1K and d = 1), this method can
only retrieve 0.6% of the positive pairs. Even in the loosest
setting (R@10K and d = 3), it only retrieves ∼ 34% of
the positive pairs. Since sharp visual changes often occur
between shots in continual editing, the similarity score of
cross-shot clips is very low [44], even at the ground truth
cuts. Thus, the raw visual features perform poorly as well.

When combining both raw audio-visual features, we ob-
serve a different trend. Even though the results are low,
they are better than random chance. We attribute this perfor-
mance discrepancy (visual vs. audio-visual raw features) to
the fact that most audios are continuous across the given shot
pairs; making the audio features to spot temporal disconti-
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d = 1 d = 2 d = 3

Model R@1K R@5K R@10K R@1K R@5K R@10K R@1K R@5K R@10K

Random 0.60 3.25 6.56 1.69 9.44 18.45 3.55 17.62 33.75

Visual Raw Features 1.11 2.78 5.17 2.03 5.35 10.26 2.74 7.46 14.73
Audio-visual Raw Features 1.17 6.37 11.73 2.51 13.15 24.25 3.73 19.33 34.97

Learning to Cut (Single-stage) 2.89 9.82 16.15 5.37 18.24 30.01 7.10 24.18 40.21
Learning to Cut (Full) 8.18 24.44 30.40 15.30 48.26 59.50 19.18 64.30 79.42

Table 1: Comparison with baselines. We show the different baselines compare to our method, with and without two-stage
inference. We observe that our method beats all of the baselines by large margins in all the metrics. Also, the two-stage
inference significantly improves upon its one-stage counterpart. We report R@{1, 5, 10} with d ∈ {1, 2, 3}.

d = 1 d = 2 d = 3

Model R@1K R@5K R@10K R@1K R@5K R@10K R@1K R@5K R@10K

Learning to Cut (Full) 8.18 24.44 30.40 15.30 48.26 59.50 19.18 64.30 79.42

w/o audio 6.30 22.65 31.88 12.61 44.56 61.85 16.54 59.37 82.13
w/o auxiliary 4.91 20.64 23.23 10.08 43.95 48.85 13.78 61.29 67.95

Table 2: Ablation study. We evaluate our method against its variants: without the visual stream, without the audio stream,
and without the auxiliary task. We observe that our design choices for modeling audiovisual information and jointly training
learning to cut with a single-sided cut probability provides the edge to achieve better ranking results.

nuities. However, that is not enough. Overall, we observe
that raw visual features are not appropriate enough to of-
fer a good margin in ranking performance with respect to
random chance. In contrast, both variants of our models
outperform random chance (and the baselines) by large mar-
gins across all metrics. Indeed, the most important finding is
the effectiveness of the two-stage inference, which improves
the performance of the single-stage model by two or even
three times in each of the metrics. This finding shows the
importance of combining CLM and ATM, which mimics
the process of first finding individual cut moments and then
finding pairs that make a smooth transition across shots. We
find that there is no significant difference when evaluating
only on scenes from movies that were not seen at training.

Ablation Study. To validate the design choices in our Learn-
ing to Cut model, we remove each of its main components,
evaluate the resulting variant model, and report all ablation
results in Table 2. We observe that modeling both Audio and
Visual information jointly provides and edge in performance.
This trend is particularly evidenced for the stricter ranking
metrics (e.g. R@1K). We attribute these results to the fact
that a good cut is made of both: visual compositions and
sound; and having a single modality is not enough to do a
good ranking. Finally, we observe that one key component
of our model is the auxiliary task. When it is not used to fa-
cilitate the learning process (i.e. when λ2 = 0), the model’s
performance drops several points in each metric. We validate
the auxiliary task is an essential component of our model.
This task aligns with the editing process, whereby the editor

picks a place where to cut, and only then, they pick the best
match to glue together [7, 10]. More detailed ablations can
be found in the supplementary material.

4.3. Human Studies

We use our method for ranking cut plausibility on raw
video footage licensed from Editstock.com. We licensed
five different projects including more than eight hours of
raw/unedited footage. Unlike previous experiments, we now
address the cut ranking problem in the same setting an editor
would encounter it. In this case, the method takes as input
two untrimmed unedited videos. The task is to produce
potential cut locations in each of these videos. While we
have shown that our method offers good ranking results in
our proxy task, does it work for practical scenarios, where
videos are unedited and untrimmed?

To answer this question, we conduct a human study with
ten professional video editors. Although we could have
invited general audience to our study, we decide not to do so;
it has been shown [59] that the general population is unable
to perceive the fine-grained details of good cuts. We design
a study that asks participants to select the best cut among
two options, which can be either taken from the professional
editors’ cuts 2 generated by the random method, generated
by the audio-visual baseline, or generated by our proposed
approach. We conduct the user study in a one vs. one manner:
i.e. we mixed all possible combination of choices for the

2We invited professional editors to create video cuts from five Editstock
projects. From about eighth hours of footage, the editors curated 120 cuts.
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Figure 4: Qualitative Results. We show the pair-wise feature similarity across two consecutive shots before and after learning
to cut. The lighter the color the higher the correlation. Sharper regions around the center of the matrices corresponds to cases
where Learning to Cut is able to retrieve the correct ground truth (green box). We observe that Learning to Cut is able to make
the cross-shot similarity spike in short temporal regions. In contrary, raw features’ cross-shot similarity activates sparsely.
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Figure 5: Human study. We show the absolute percentages
per cut source 5a, and the chosen percentage of each of them
relative to professional cuts 5b. These results provide further
evidence that our approach offers better rankings than the
Audio-visual and random baselines.

participants, and all the options were faced against each
other. Thus, every alternative appeared the same number of
times. We report the results in Figure 5. Interestingly, our
method’s cuts are chosen by the participants more often than

those from the baselines. However, the editors can clearly
identify the professionally curated cuts. Despite the progress
made by this work, there is still a long way to generate cuts
with professional quality. We do believe, though, that our
approach and baselines are first steps towards this direction.
Qualitative Results We show a pair-wise feature correlation
between a pair of adjacent shot in figure 4. Each entry of the
matrix is the similarity between a snippet of the left and right
shot of the cut. The axes are center around the cut, such that
the center of the matrix has the similarities of the positive
pairs. We observe how our method transforms the features
and make them spike around the cut’s region.

5. Conclusion
We introduced the task of cut plausibility ranking for

computational video editing. We proposed a proxy task that
aligns with the actual video editing process by leveraging
knowledge from already edited scenes. Additionally, we col-
lected more than 260K edited video clips. Using this edited
footage, we created the first method capable of ranking cuts
automatically, which learns in a data-driven fashion. We
benchmarked our method with a set of proposed metrics that
reflect the model’s level of precision at retrieval and exper-
tise at providing tighter cuts. Finally, we used our method
in a real-case scenario, where our model ranked cuts from
non-edited videos. We conducted a user study in which edi-
tors picked our model’s cuts more often compared to those
made by the baselines. Yet, there is still a long way to match
editors’ expertise in selecting the most smooth cuts. This
work aims at opening the door for data-driven computational
video editing to the research community. Future directions
include the use of fine-grained features to learn more subtle
patterns that approximate better the fine-grained process of
cutting video. Additionally, other modalities such as speech
and language could bring benefits for ranking video cuts.
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