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Abstract

Adversarial learning strategy has demonstrated remark-
able performance in dealing with single-source Domain
Adaptation (DA) problems, and it has recently been applied
to Multi-source DA (MDA) problems. Although most exist-
ing MDA strategies rely on a multiple domain discriminator
setting, its effect on the latent space representations has been
poorly understood. Here we adopt an information-theoretic
approach to identify and resolve the potential adverse effect
of the multiple domain discriminators on MDA: disintegra-
tion of domain-discriminative information, limited compu-
tational scalability, and a large variance in the gradient of
the loss during training. We examine the above issues by
situating adversarial DA in the context of information regu-
larization. This also provides a theoretical justification for
using a single and unified domain discriminator. Based on
this idea, we implement a novel neural architecture called a
Multi-source Information-regularized Adaptation Networks
(MIAN). Large-scale experiments demonstrate that MIAN,
despite its structural simplicity, reliably and significantly
outperforms other state-of-the-art methods.

1. Introduction

Although a large number of studies have demonstrated
the ability of deep learning to solve challenging tasks, the
problems are mostly confined to a similar type or a single
domain. One remaining challenge is the problem known
as domain shift [15], where a direct transfer of informa-
tion gleaned from a single source domain to unseen target
domains may lead to significant performance impairment.
Domain adaptation (DA) approaches aim to mitigate this
problem by learning to map data of both domains onto a
common feature space. Whereas several theoretical results
[3, 45] and algorithms for DA [23, 25, 11] have focused
on the case in which only a single-source domain dataset
is given, we consider a more challenging and generalized
problem of knowledge transfer, referred to as Multi-source
unsupervised DA (MDA). Following a seminal theoretical
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result on MDA [2], many deep MDA approaches have been
proposed, mainly depend on the adversarial framework.

Most of existing adversarial MDA works [44, 46, 21, 48,

, 43] have focused on approximating all combinations
of pairwise domain discrepancy between each source and
the target, which inevitably necessitates training of multiple
binary domain discriminators. While substantial technical
advances have been made in this regard, the pitfalls of using
multiple domain discriminators have not been fully stud-
ied. This paper focuses on the potential adverse effects of
using multiple domain discriminators on MDA in terms of
both quantity and quality. First, the domain-discriminative
information is inevitably distributed across multiple discrim-
inators. For example, such discriminators primarily focus
on domain shift between each source and the target, while
the discrepancies between the source domains are neglected.
Moreover, the multiple source-target discriminator setting
often makes it difficult to approximate the combined -
divergence between mixture of sources and the target domain
because each discriminator is deemed to utilize the samples
only from the corresponding source and target domain as
inputs. Compared to a bound using combined divergence,
a bound based on pairwise divergence is not sufficiently
flexible to accommodate domain structures [2]. Second, the
computational load of the multiple domain discriminator
setting rapidly increases with the number of source domains
(O(N)), which significantly limits scalability. Third, it could
undermine the stability of training, as earlier works solve
multiple adversarial min-max problems.

To overcome such limitations, instead of relying on mul-
tiple pairwise domain discrepancy, we constrain the mutual
information between latent representations and domain la-
bels. The contribution of this study is summarized as fol-
lows. First, we show that such mutual information regular-
ization is closely related to the explicit optimization of the
‘H-divergence between the source and target domains. This
affords the theoretical insight that the conventional adversar-
ial DA can be translated into an information-theoretic regu-
larization problem. Second, from these theoretical findings
we derive a new optimization problem for MDA: minimiz-



ing adversarial loss over multiple domains with a single do-
main discriminator. The algorithmic solution to this problem
is called Multi-source Information regularized Adaptation
Networks (MIAN). Third, we show that our single domain
discriminator setting serves to penalize every pairwise com-
bined domain discrepancy between the given domain and
the mixture of the others. Moreover, by analyzing exist-
ing studies in terms of information regularization, we found
another negative effect of the multiple discriminators set-
ting: significant increase in the variance of the stochastic
gradients.

Despite its structural simplicity, we demonstrated that
MIAN works efficiently across a wide variety of MDA sce-
narios, including the DIGITS-Five [30], Office-31 [32], and
Office-Home datasets [41]. Intriguingly, MIAN reliably and
significantly outperformed several state-of-the-art methods,
including ones that employ a domain discriminator sepa-
rately for each source domain [44] and that align the mo-
ments of deep feature distribution for every pairwise domain

[30].
2. Related works

Several DA methods have been used in attempt to learn
domain-invariant representations. Along with the increasing
use of deep neural networks, contemporary work focuses
on matching deep latent representations from the source
domain with those from the target domain. Several mea-
sures have been introduced to handle domain shift, such
as maximum mean discrepancy (MMD) [24, 23], correla-
tion distance [30, 37], and Wasserstein distance [7]. Re-
cently, adversarial DA methods [11, 40, 19, 34, 33] have
become mainstream approaches owing to the development
of generative adversarial networks [ 14]. However, the above-
mentioned single-source DA approaches inevitably sacrifice
performance for the sake of multi-source DA.

Some MDA studies [3, 2, 28, 18] have provided the theo-
retical background for algorithm-level solutions. [3, 2] ex-
plore the extended upper bound of true risk on unlabeled sam-
ples from the target domain with respect to a weighted com-
bination of multiple source domains. Following these theo-
retical studies, MDA studies with shallow models [9, &, 5]
as well as with deep neural networks [27, 30, 21] have been
proposed. Recently, some adversarial MDA methods have
also been proposed. [44] implemented a k-way domain dis-
criminator and classifier to battle both domain and category
shifts. [46] also used multiple discriminators to optimize
the average case generalization bounds. [48] chose relevant
source training samples for the DA by minimizing the em-
pirical Wasserstein distance between the source and target
domains. Instead of using separate encoders, domain dis-
criminators or classifiers for each source domain as in earlier
works, our approach uses unified networks, thereby improv-
ing reliability, resource-efficiency and scalability. To the best
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of our knowledge, this is the first study to bridge the gap
between MDA and information regularization, and show that
a single domain-discriminator is sufficient for the adaptation.
Moreover, compared to the proposed methods without ro-
bust theoretical justifications [21, 46, 30], our analysis does
not require any assumption or estimation for the domain
coefficients. In our framework, the representations are dis-
tilled to be independent of the domain, thereby rendering
the performance relatively insensitive to explicit weighting
strategies.

3. Theoretical insights

We first introduce the notations for the MDA problem in
classification. A set of source domains and the target domain
are denoted by {Dg, }f\il and Dy, respectively. Let Xg, =

(s s ot

and Yy, = be a set of m i.i.d. samples
=1 1

Jj=

from Dg,. Let X1 = {XJT} ~ (D)™ be the set of m
j=1

i.i.d. samples generated from the marginal distribution D7f .
The domain label and its probability distribution are denoted
by V and Py (v), where v € V and V is the set of domain
labels. In line with prior works [17, 12, 27, 13], domain
label can be generally treated as a stochastic latent random
variable in our framework. However, for simplicity, we take
the empirical version of the true distributions with given
samples assuming that the domain labels for all samples
are known. The latent representation of the sample is given
by Z, and the encoder is defined as F' : X — Z, with X
and Z representing data space and latent space, respectively.
Accordingly, Zg, and Zr refer to the outputs of the encoder
F(Xg,) and F(X7r), respectively. For notational simplicity,
we will omit the index 7 from Dg,, Xg, and Zs, when
N = 1. A classifier is defined as C' : Z — ) where ) is the
class label space.

3.1. Problem formulation

For comparison with our formulation, we recast single-
source DA as a constrained optimization problem. The true
risk er(h) on unlabeled samples from the target domain is
bounded above the sum of three terms [2]: (1) true risk eg (k)
of hypothesis h on the source domain; (2) H-divergence
dy (Dg, Dr) between a source and a target domain distribu-
tion; and (3) the optimal joint risk A*.

Theorem 1 ([2]). Let hypothesis class H be a set of binary
classifiers h : X — {0,1}. Then for the given domain
distributions Dg and D,

VhGH,GT(h) < Es(h)+dH(D5,DT)+>\*, (D)
where dy (Dg, D) = 2sup| E [I(h(x) =1)] —
he#!x~D¥
E [I(h(x) = 1)]‘ and 1(a) is an indicator function
meq)f



whose value is 1 if a is true, and 0 otherwise.

The empirical H-divergence d(Xs, X7) can be com-
puted as follows [2]:

Lemma 1.
dy(Xs, Xr1) = 2(1 - min [% 3 Ih(x) = )+
X xeXsg (2)
— 3 1) = 1]})
xeX

Following Lemma 1, a domain classifier h : Z — )V can
be used to compute the empirical H-divergence. Suppose
the optimal joint risk A\* is sufficiently small as assumed in
most adversarial DA studies [33, 6]. Thus, one can obtain
the ideal encoder and classifier minimizing the upper bound
of er(h) by solving the following min-max problem:

F*,C* = argmin L(F,C) + fdy(Zs, Zr)

= arg min max L(F, C)+
heH

)

where L(F,C) is the loss function on samples from the
source domain, /3 is a Lagrangian multiplier, V = {0, 1}
such that each source instance and target instance are labeled
as 1 and 0, respectively, and h is the binary domain classifier.

3.2. Information-regularized min-max problem for
MDA

Intuitively, it is not highly desirable to adapt the learned
representation in the given domain to the other domains,
particularly when the representation itself is not sufficiently
domain-independent. This motivates us to explore ways to
learn representations independent of domains. Inspired by
a contemporary fair model training study [3 1], the mutual
information between the latent representation and the domain
label I(Z; V') can be expressed as follows:

Theorem 2. Let Pz (z) be the distribution of Z where z € Z.
Let h be a domain classifier h : Z — V, where Z is the
feature space and V is the set of domain labels. Let h.,(z)
be a conditional probability of V where v € V given Z = 1z,
defined by h. Then the following holds:

1(Z;V)

= max
hv(z):zvev hy(z)=1Vz

> Py(V)Esnp,, [loghy(2)] + H(V)
vey

“4)
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The detailed proof is provided in the [31] and Supple-
mentary Material. We can derive the empirical version of
Theorem 2 as follows:

I(Z;V) = max
hV(Z):ZVEV hy(z)=1,Vz

503 toahy, () + HV),

veEV iiv; =V

®)

where M is the number of total representation samples, ¢
is the sample index, and v; is the corresponding domain
label of the ith sample. Using this equation, we combine our
information-constrained objective function and the results
of Lemma 1. For binary classification ¥V = {0,1} with
Zg and Zr of equal size M /2, we propose the following
information-regularized minimax problem:

F*,C* = argmin L(F,C) + BI(Z;V)

= argminmax L(F,C)+
F.C heH

%[ > logh(z)+ > log(l— h(z)))],

1:2,€Z3 jz; €21

(6)

where 3 is a Lagrangian multiplier, h(z;) £ hy,—1(2;)
and 1 — h(z;) £ hy,—o(z;), with h(z;) representing the
probability that z; belongs to the source domain. This setting
automatically dismisses the condition )\, hy(z) = 1,Vz.
Note that we have accommodated a simple situation in which
the entropy H (V') remains constant.

3.3. Advantages over other MDA methods

Integration of domain-discriminative information.
The relationship between (3) and (6) provides us a theoretical
insights that the problem of minimizing mutual information
between the latent representation and the domain label is
closely related to minimizing the H-divergence using the
adversarial learning scheme. This relationship clearly under-
lines the significance of information regularization for MDA.
Compared to the existing MDA approaches [44, 46], which
inevitably distribute domain-discriminative knowledge over
N different domain classifiers, the above objective function
(6) enables us to seamlessly integrate such information with
the single-domain classifier h. It will be further discussed in
Section 4.

Variance of the gradient. Using a single domain dis-
criminator also helps reduce the variance of gradient. Large
variances in the stochastic gradients slow down the conver-
gence, which leads to poor performance [20]. Herein, we
analyze the variances of the stochastic gradients of existing
optimization constraints. By excluding the weighted source
combination strategy, we can approximately express the op-
timization constraint of existing adversarial MDA methods



as sum of the information constraints:

N N N
S H(ZkiUp) =) I+ Y H(Uk), (7)
k=1 k=1 k=1

where

= max
hE(2):3" hey hE(2)=1,Yz ®
Z PUk (u)EszPZk\u [IOg hﬁ(zk)}a
ueld
Uy is the kth domain label with &4/ = {0,1},

Pz, ju=0(-) = Pz|y=n+1(-) corresponding to the target do-
main, Py, ju—1(-) = Pzv—(-) corresponding to the kth
source domain, and h¥ (z;,) being the conditional probability
of u € U given z;, defined by the kth discriminator indicat-
ing that the sample is generated from the kth source domain.
Again, we treat the entropy H (Uy) as a constant.

Given M = m(N + 1) samples with m representing the
number of samples per domain, an empirical version of (7)

is:
N
> 12k Ux) = ZlkJrZH Us), 9

k=1

Z Z log h¥ (z}).

ucl i:ut=u

h (z)z cu u(z) 1,Vz (10)

For the sake of simplicity, we make simplifying assump-
tions that all Viar[lj;] are approximately the same for all k
and so are C'ov[I}, I;] for all pairs. Then the variance of (9)
is given by:

Var{zji: Zk,Uk}
(i Ik +QZZCOka, )

M2
k=1 k=1j=k
1, N N(N-1) ., . .
= W( N+l VCLT[I ] WOOU{I}C’IJ])'

(1)

As earlier works solve N adversarial minimax problems,
the covariance term is additionally included and its contri-
bution to the variance does not decrease with increasing V.
In other words, the covariance term may dominate the vari-
ance of the gradients as the number of domain increases.
In contrast, the variance of our constraint (5) is inversely
proportional to (N + 1)2. Let I,,, be a shorthand for the
maximization term except ﬁ in (5). Then the variance of
(5) is given by:

Var[ (Z: V)} (12)

7m2(]\71+ 2 (Var[[m]).
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It implies that our framework can significantly improve the
stability of stochastic gradient optimization compared to
existing approaches, especially when the model is deemed
to learn from many domains.

3.4. Situating domain adaptation in context of in-
formation bottleneck theory

In this Section, we bridge the gap between the existing
adversarial DA method and the information bottleneck (IB)
theory [ ]. [38] examined the problem of learning an
encoding Z such that it is maximally informative about the
class Y while being minimally informative about the sample
X:

) s

min BI(Z; X) —

Penc(z|x)

I(Z;Y), (13)
where [ is a Lagrangian multiplier. Indeed, the role of the
bottleneck term I(Z; X) matches our mutual information
I(Z; V) between the latent representation and the domain
label. We foster close collaboration between two information
bottleneck terms by incorporating those into I(Z; X, V).

Theorem 3. Let Py (2z) be a conditional probabilistic
distribution of Z where z € Z, defined by the encoder F,
given a sample x € X and the domain label v € V. Let
Rz(z) denotes a prior marginal distribution of Z. Then the
following inequality holds:

I(Z7X,V) < EXVNPXV [DKL[PZ‘XV H RZ]] +H(V)
P2y [IOg hV(Z)]

(14)

+ Py (
hy (Z)Zvevh (z) 1sz V

The proof of Theorem 3 wuses the chain rule:
I(Z;X,V)=I1(Z;V)+ I(Z; X | V). The detailed proof
is provided in the Supplementary Material. Whereas the
role of I(Z; X | V) is to purify the latent representation
generated from the given domain, /(Z; V') serves as a proxy
for regularization that aligns the purified representations
across different domains. Thus, the existing DA approaches
[ ] using variational information bottleneck [ 1] can be
reviewed as special cases for Theorem 3 with a single-source
domain.

s

4. Multi-source Information-regularized Adap-
tation Networks (MIAN)

In this Section, we provide the details of our proposed
architecture, referred to as a multi-source information-
regularized adaptation network (MIAN). MIAN addresses
the information-constrained min—-max problem for MDA
(Section 3.2) using the three subcomponents depicted in Fig-
ure 1: information regularization, source classification, and
Decaying Batch Spectral Penalization (DBSP).

Information regularization. To estimate the empirical
mutual information [ (Z; V) in (5), the domain classifier i
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Figure 1: Proposed neural architecture for multi-source domain adaptation: Multi-source Information-regularized Adaptation
Network (MIAN). Multi-source and target domain input data are fed into the encoder. We denote arbitrary source domains as
S; and S;. The domain discriminator outputs a logit vector, where each dimension corresponds to each domain.

should be trained to minimize softmax cross enropy. Let
Y ={1,2,..., N + 1} and denote h(z) as N+1 dimensional
vector of the conditional probability for each domain given
the sample z. Let 1 be a NV + 1 dimensional vector of all
ones, and 1j;—,) be a N + 1 dimensional vector whose vth
value is 1 and 0 otherwise. Given M = m(N + 1) samples,
the objective is:

mln—— Z Z

VEV 1V, =V

1f—ylogh(z)]. (15

In this study, we slightly modify the softmax cross en-
tropy (15) into multiple binary cross entropy. Specifically,
we explicitly minimize the conditional probability of the re-
maining domains excepting the true vth domain. Let 1[5y
be the flipped version of 1,—). Then the modified objective
function for the domain discriminator is:

m}jn—% Z Z []l

VvEV v =V

+ Ty log(1 — h(z))],

where the objective function for encoder training is to maxi-
mize (16). Our objective function is also closely related to
that of GAN [14], and we experimentally found that using
the variant objective function of GAN [29] works slightly
better.

Herein, we show that the objective (16) is closely related
to optimizing (1) an average of pairwise combined domain
discrepancy between the given domain and the mixture of
the others d3;()), and (2) an average of every pairwise H-
divergence between each domain. Let each D, and Dy
represent the vth domain and the mixture of the remaining
N domains with the same mixture weight %, respectively.
Then we can define H-divergence as dz;(Dsy, Dy ), and an

[7,;:‘”] log h(z;)
(16)
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average of such H-divergence for every v as dy (V). Assume
that the samples of size m, Z, and Z,., are generated from
each D, and D, where Z,. = Uv,gév Zy with | Zy:| =
m/N for all v/ € V. Thus the domain label v; # v for
every jth sample in Z,.. Then the empirical 7{-divergence
dy; (V) is defined as follows:

du(V) = N+1 > du(Zy. Zve)
vey

_ ﬁ ; 2(1 - min [ mzzvﬂ[hxzz) = 0]
£ TGy = 1)),
Jivi#EY

A7)

where I[hy(z) = 1] corresponds to the vth value of N + 1
dimensional one-hot classification vector I[h(z)], unlike the
conditional probability vector h(z) in (16). Given the unified
domain discriminator h in the inner minimization, we train
h to approximate dy, (V) as follows:

. 1
h _argrglea?){(ﬁ Z < Z [y (z)

vey “Nivi=v

+ > I _0]>
jiviAv (18)
=arspin—7 30 3 (twtiten)

veY i:iv;=v

+ U (1 - H[h(zi)])),

where the latter equality is obtained by rearranging the sum-
mation terms in the first equality.



Based on the close relationship between (16) and (18), we
can make the link between information regularization and
‘H-divergence optimization given multi-source domain; min-
imizing JH(V) is closely related to implicit regularization
of the mutual information between latent representations
and domain labels. Because the output classification vector
I[h(z)] often comes from the argmax operation, the objective
in (18) is not differentiable w.r.t. z. However, our framework
has a differentiable objective for the discriminator as in (16).

There are two additional benefits of minimizing dz (V).
First, it includes H-divergence between the target and a
mixture of sources (v = N + 1 in (17)). Note that it di-
rectly affects the upper bound of the empirical risk on target
samples (Theorem 5 in [2]). Moreover, the synergistic pe-
nalization of other divergences (v # N + 1 in (17)) which
implicitly include the domain discrepancy between the target
and other sources accelerates the adaptation. Second, dy (V)
lower-bounds the average of every pairwise #-divergence
between each domain:

Lemma 2. Let dy (V) = 57 Yoyey dn(Dy, Dye). Let H
be a hypothesis class. Then,

1

dH (V) S m

> du(Dy, Dy).

v,ucy

19)

The detailed proof is provided in the appendix. It im-
plies that not only the domain shift between each source and
the target domain, but also the domain shift between each
source domain can be indirectly penalized. Note that this
characteristic is known to be beneficial to MDA [ ].
Unlike our single domain classifier setting, existing methods
[21] require a number of about O(N?) domain classifiers
to approximate all pairwise combinations of domain dis-
crepancy. In this regard, there is no comparison between
the proposed method using a single domain classifier and
existing approaches in terms of resource efficiency.

Source classification. Along with learning domain-
independent latent representations illustrated in the above,
we train the classifier with the labeled source domain
datasets. To minimize the empirical risk on source domain,
we use a generic softmax cross-entropy loss function with
labeled source domain samples as L(F, C').

Decaying batch spectral penalization. Applying above
information-theoretic insights, we further describe a poten-
tial side effect of existing adversarial DA methods. Informa-
tion regularization may lead to overriding implicit entropy
minimization, particularly in the early stages of the train-
ing, impairing the richness of latent feature representations.
To prevent such a pathological phenomenon, we introduce
a new technique called Decaying Batch Spectral Penaliza-
tion (DBSP), which is intended to control the SVD entropy
of the feature space. Our version improves training effi-
ciency compared to original Batch Spectral Penalization [6].

E}
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We refer to this version of our model as MIAN-v. Since
vanilla MIAN is sufficient to outperform other state-of-the-
art methods (Section 5), MIAN-~ is further discussed in the
Supplementary Material.

5. Experiments

To assess the performance of MIAN, we ran a large-scale
simulation using the following benchmark datasets: Digits-
Five, Office-31 and Office-Home. For a fair comparison,
we reproduced all the other baseline results using the same
backbone architecture and optimizer settings as the proposed
method. For the source-only and single-source DA standards,
we introduce two MDA approaches [44, 30]: (1) source-
combined, i.e., all source-domains are incorporated into a
single source domain; (2) single-best, i.e., the best adaptation
performance on the target domain is reported. Owing to
limited space, details about simulation settings, used baseline
models and datasets are presented in the Supplementary
Material.

5.1. Simulation results

The classification accuracy for Digits-Five, Office-31,
and Office-Home are summarized in Tables 1, 2, and 3, re-
spectively. We found that MIAN outperforms most of other
state-of-the-art single-source and multi-source DA methods
by a large margin. Note that our method demonstrated a
significant improvement in difficult task transfer with high
domain shift, such as MNIST-M, Amazon or Clipart, which
is the key performance indicator of MDA.

5.2. Ablation study and Quantitative analyses

Design of domain discriminator. To quantify the extent
to which performance improvement is achieved by unifying
the domain discriminators, we compared the performances of
the three different versions of MIAN (Figure 2a, 2b). No LS
uses the objective function as in (16), and unlike [29]. Multi
D employs as many discriminators as the number of source
domains which is analogous to the existing approaches. For
a fair comparison, all the other experimental settings are
fixed. The results illustrate that all the versions with the
unified discriminator reliably outperform Multi D in terms of
both accuracy and reliability. This suggests that unification
of the domain discriminators can substantially improves the
task performance.

Variance of stochastic gradients. With respect to the
above analysis, we compared the variance of the stochastic
gradients computed with different available domain discrim-
inators. We trained MIAN and Multi D using mini-batches
of samples. After the early stages of training, we computed
the gradients for the weights and biases of both the top and
bottom layers of the encoder on the full training set. Fig-
ures 2¢, 2d show that MIAN with the unified discriminator



Table 1: Accuracy (%) on Digits-Five dataset. SYNTH denotes Synthetic Digits [

dataset were taken from [30].

]. The baseline results for the Digits-Five

Standards Models MNIST-M  MNIST USPS SVHN SYNTH Avg
Source- Source Only [16] 63.70 9230 90.71 71.51 83.44  80.33
combined DAN [23] 67.87 97.50 9349  67.80 86.93 82.72
DANN [11] 70.81 9790 9347  68.50 87.37 83.61
Source Only [16] 63.37 90.50 88.71 63.54 8244  71.71
DAN [23] 63.78 96.31 94.24 6245 85.43 80.44
Sinele-best DANN [11] 71.30 97.60 9233 6348 85.34  82.01
& JAN [25] 65.88 97.21 9542  75.27 86.55 84.07
ADDA [40] 71.57 97.89 9283 7548 86.45 84.84
MEDA [42] 71.31 96.47 97.01 7845 84.62  85.60
MCD [34] 72.50 96.21 95.33  78.89 87.47 86.10
DCTN [44] 70.53 96.23 9281 77.61 86.77 84.79
Multi- M?3SDA [30] 69.76 98.58 9523  78.56 87.56 86.13
source M3SDA-j [30] 72.82 9843  96.14 81.32 89.58 87.65
MIAN 84.36 97.91 96.49  88.18 93.23  92.03
Table 2: Accuracy (%) on Office-31 dataset.
Standards Models Amazon DSLR Webcam Avg
Source Only [ 55.23£0.72  95.594+1.37 87.06£1.50 79.29
Single-best DAN [23] 64.19£0.56  100.00+£0.00 97.45+0.44 87.21
JAN [25] 69.57+0.27  99.80+0.00  97.4+0.26 88.92
Source Only [ 60.80+2.00 92.684+0.31 86.91+2.37 80.13
DSBN [4] 66.82+0.35 97.454+0.22 94.00+0.38 86.09
Source- JAN [25] 70.15£0.19  95.204+0.36  95.15+£0.23 86.83
combined DANN [11] 68.15+0.42  97.59+0.60 96.77+0.26 87.50
! DAN [23] 65.77+0.74  99.26+0.23 97.51+0.41 87.51
DANN+BSP [6]  71.13£0.44  96.65+£0.30  98.32+0.26 88.70
MCD [34] 68.57£1.06 99.494+0.25 99.30+0.38 89.12
DCTN [44] 62.74£0.50  99.444+0.25 97.92+0.29 86.70
Multi- M?3SDA [30] 67.19+0.22  99.344+0.19 98.04+0.21 88.19
source M3SDA-3 [ 69.41+0.82  99.64+0.19  99.30+0.31 89.45
MIAN 74.65+0.48 99.48+0.35 98.494+0.59 90.87
MIAN-~ 76.17+£0.24 99.224+0.35 98.39+0.76 91.26

yields exponentially lower variance of the gradients com-
pared to Multi D. Thus it is more feasible to use the unified
discriminator when a large number of domains are given.

Proxy .A-distance. To analyze the performance improve-
ment in depth, we measured Proxy .A-Distance (PAD) as an
empirical approximation of domain discrepancy [ 1]. Given
the generalization error € on discriminating between the tar-
get and source samples, PAD is defined as d 4 = 2(1 — 2¢).
Figure 3a shows that MIAN yields lower PAD between the
source and target domain on average, potentially associated
with the modified objective of discriminator. To test this

conjecture, we conducted an ablation study on the objective
of domain discriminator (Figure 3b, 3c). All the other exper-
imental settings were fixed except for using the objective of
the unified domain discriminator as (15), or (16). While both
cases help the adaptation, using (16) yields lower CZH (V) and
higher test accuracy.

Estimation of mutual information. We measure the em-
pirical mutual information I(Z; V') with the assumption of
H(V) as a constant. Figure 3d shows that MIAN yields
the lowest 1 (Z;V), ensuring that the obtained representa-
tion achieves low-level domain dependence. It empirically
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Table 3: Accuracy (%) on Office-Home dataset.

Standards Models Art Clipart Product Realworld Avg
Source Only [16]  64.584+0.68 52.32+0.63 77.63£0.23 80.70+0.81 68.81
Source- DANN [11] 64.26+0.59 58.01£1.55 76.44+0.47 78.80+£0.49 69.38
combined DANN+BSP [6]  66.10+0.27 61.03+0.39 78.13+0.31 79.92+0.13 71.29
DAN [23] 68.28+0.45 57.92+0.65 78.45+0.05 81.93+0.35 71.64
MCD [34] 67.84+0.38 59.91+0.55 79.21+0.61 80.93+0.18 71.97
M3SDA [30] 66.224+0.52 58.55+0.62 79.45+£0.52 81.35+0.19 71.39
Multi- DCTN [44] 66.92+0.60 61.82+0.46 79.20+£0.58 77.78+£0.59 71.43
soErce MIAN 69.39+0.50 63.05+0.61 79.62+0.16 80.44+0.24 73.12
MIAN-y 69.88+0.35 64.20+£0.68 80.87+£0.37 81.49+£0.24 74.11
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Figure 2: (a)~(b): Test accuracies for (a) MNIST-M and (b)
SVHN as target domains. (¢)~(d): Variance of stochastic
gradients after 1000 steps for (¢) MNIST-M and (d) SVHN
as target domains in log scale. Less is better.

supports the established bridge between adversarial DA and
Information Bottleneck theory in section 3.4.

6. Conclusion

In this paper, we have presented a unified information-
regularization framework for MDA. The proposed frame-
work allows us to examine the existing adversarial DA meth-
ods and motivated us to implement a novel neural architec-
ture for MDA. Specifically, we provided both theoretical
arguments and empirical evidence to justify potential pitfalls
of using multiple discriminators: disintegration of domain-
discriminative knowledge, limited computational efficiency
and high variance in the objective. The proposed model does
not require complicated settings such as image generation,
pretraining, or multiple networks, which are often adopted
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in the existing MDA methods [47, 48, 44, 46, 22].
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