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Abstract

A few-shot font generation (FFG) method has to sat-
isfy two objectives: the generated images should preserve
the underlying global structure of the target character and
present the diverse local reference style. Existing FFG
methods aim to disentangle content and style either by ex-
tracting a universal representation style or extracting mul-
tiple component-wise style representations. However, pre-
vious methods either fail to capture diverse local styles or
cannot be generalized to a character with unseen compo-
nents, e.g., unseen language systems. To mitigate the is-
sues, we propose a novel FFG method, named Multiple Lo-
calized Experts Few-shot Font Generation Network (MX-
Font). MX-Font extracts multiple style features not explic-
itly conditioned on component labels, but automatically by
multiple experts to represent different local concepts, e.g.,
left-side sub-glyph. Owing to the multiple experts, MX-Font
can capture diverse local concepts and show the general-
izability to unseen languages. During training, we utilize
component labels as weak supervision to guide each ex-
pert to be specialized for different local concepts. We for-
mulate the component assign problem to each expert as
the graph matching problem, and solve it by the Hungar-
ian algorithm. We also employ the independence loss and
the content-style adversarial loss to impose the content-
style disentanglement. In our experiments, MX-Font outper-
forms previous state-of-the-art FFG methods in the Chinese
generation and cross-lingual, e.g., Chinese to Korean, gen-
eration. Source code is available at https://github.
com/clovaai/mxfont.

1. Introduction
A few-shot font generation task (FFG) [35, 45, 9, 34, 4,

5, 31] aims to generate a new font library using only a few
reference glyphs, e.g., less than 10 glyph images, without
additional model fine-tuning at the test time. FFG is espe-
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Figure 1. Cross-lingual few-shot font generation results by MX-
Font. With only four references, the proposed method, MX-Font,
can generate a high quality font library. Furthermore, we first show
the effectiveness of the proposed method on the zero-shot cross-
lingual few-shot generation task, i.e., generating unseen Korean
glyphs using the Chinese font generation model.

cially a desirable task when designing a new font library
for glyph-rich scripts, e.g., Chinese (> 50K glyphs), Ko-
rean (≈ 11K glyphs), or Thai (≈ 11K glyphs). It is because
the traditional font design process is very labor-intensive
due to the complex characteristics of the font domain. An-
other real-world scenario of FFG is to extend an existing
font design to different language systems. For example, an
international multi-media content, such as a video game or
movie designed with a creative font, is required to re-design
coherent style fonts for different languages.

A high-quality font design is obliged to satisfy two ob-
jectives. First, the generated glyph should maintain all the
detailed structure of the target character, particularly impor-
tant for glyph-rich scripts with highly complex structure.
For example, even very small damages on a local compo-
nent of a Chinese glyph can hurt the meaning of the target
character. As another objective, a generated glyph should
have a diverse local style of the reference glyphs, e.g., serif-
ness, strokes, thickness, or size. To achieve both objectives,
existing methods formulate FFG by disentangling the con-
tent information and the style information from the given
glyphs [35, 45, 9, 4, 31]. They combine the content features
from the source glyph and the style features from the refer-
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Figure 2. Comparison of FFG methods. Three different groups of FFG are shown. All methods combine style representation fs from a
few reference glyphs (Refs) by a style encoder (Es) and content representation fc from a source glyph (Source) by a content encoder (Ec).
(a) Universal style representation methods extract only a single style feature for each font. (b) Component-conditioned methods extract
component conditioned style features to capture diverse local styles (c) Multiple localized experts method (ours) generates multiple local
features without an explicit condition, but attends different local information of the complex input glyph. The generated images in (a), (b)
and (c) are synthesized by AGIS-Net [9], LF-Font [31] and MX-Font, respectively.

ence glyphs to generate a glyph with the reference style.
Due to the complex nature of the font domain, the ma-
jor challenge of FFG is to correctly disentangle the global
content structure and the diverse local styles. However, as
shown in our experiments, we observe that existing methods
are insufficient to capture diverse local styles or to preserve
the global structures of unseen language systems.

We categorize existing FFG methods into universal
style representation methods (USR) [35, 45, 28, 9] and
component-conditioned methods (CC) [4, 31]. USR meth-
ods extract only a single style representation for each style –
see Figure 2 (a). As glyph images are highly complex, these
methods often fail to capture diverse local styles. To ad-
dress the issue, CC methods utilize compositionality; a char-
acter can be decomposed into a number of sub-characters,
or components – see Figure 2 (b). They explicitly extract
component-conditioned features, beneficial to preserve the
local component information. Despite their promising per-
formances, their encoder is tightly coupled with specific
component labels of the target language domain, which hin-
ders processing the glyphs with unseen components or con-
ducting a cross-lingual font generation.

In this paper, we propose a novel few-shot font gen-
eration method, named Multiple Localized eXperts Few-
shot Font Generation Network (MX-Font), capturing mul-
tiple local styles, but not limited to a specific language sys-
tem. MX-Font has a multi-headed encoder, named multi-
ple localized experts. Each localized expert is specialized
for different local sub-concepts from the given complex
glyph image. Unlike component-conditioned methods, our
experts are not explicitly mapped to a specific component,
but each expert implicitly learns different local concepts by
weak supervision i.e. component and style classifiers. To
prevent that different experts learn the same local compo-
nent, we formulate the component label allocation problem
as a matching problem, optimally solved by the Hungar-
ian algorithm [23] (Figure 4). We also employ the inde-
pendence loss and the content-style adversarial loss to en-
force the content-style disentanglement by each localized

expert. Interestingly, with only weak component-wise su-
pervision (i.e. image-level not pixel-level labels), we ob-
serve that each localized expert is specialized for differ-
ent local areas, e.g., attending the left-side of the image
(Figure 7). While we inherit the advantage of component-
conditioned methods [4, 31] by introducing the multiple lo-
cal features, our method is not limited to a specific language
by removing the explicit component dependency in extract-
ing features. Consequently, MX-Font outperforms the state-
of-the-art FFG in two scenarios: in-domain transfer sce-
nario, training and tested on the same language, and zero-
shot cross-lingual transfer scenario, training and tested on
different languages. Our ablation and model analysis sup-
port that the proposed modules and optimization objectives
are important to capture multiple diverse local concepts.

2. Related Works
Style transfer and image-to-image translation. FFG can
be viewed as a task that transfers reference font style to
target glyph. However, style transfer methods [11, 16, 25,
29, 26, 39] regard the texture as a style while in FFG, a
style is often defined by a local shape, e.g., stroke, size, or
serif-ness. On the other hand, image-to-image translation
(I2I) methods [18, 48, 6, 27, 40, 7] learn the mapping be-
tween domains from the data instead of defining the style.
For example, FUNIT [28] aims to translate an image to the
given reference style while preserving the content. Many
FFG methods, thus, are based on I2I framework.
Many-shot font generation methods. Early font genera-
tion methods, such as zi2zi [36], aim to train the mapping
between different font styles. A number of font genera-
tion methods [19, 10, 17, 37] first learn the mapping func-
tion, and fine-tune the mapping function for many refer-
ence glyphs, e.g. 775 [19]. Despite their remarkable per-
formances, their scenario is not practical because collecting
hundreds of glyphs with a coherent style is too expensive. In
this paper, we aim to generate an unseen font library with-
out any expensive fine-tuning and collecting a large number
of reference glyphs for a new style.
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Figure 3. Overview of MX-Font. The multiple localized experts (green box) consist of k experts. Ei (i-th expert) encodes the input image
to the local feature fi. The style and content features fs,i, fc,i are computed from fi. The yellow box shows how the generator G generates
the target image. When k style features representing the target style s̃ and k content features representing the target style c̃ are given, the
target glyph having style s̃ and character c̃ is generated by passing the element-wisely concatenated style and content features to the G.

Few-shot font generation methods. Existing FFG meth-
ods aims to disentangle font-specific style and content in-
formation from the given glyphs [45, 34, 1, 9, 35, 24]. We
categorize existing FFG methods into two different groups.
The universal style representation (USR) methods, such as
EMD [45], AGIS-Net [9], synthesize a glyph by combin-
ing the style vector extracted from the reference set, and the
content vector extracted from the source glyph. MX-Font
employs multiple styles, not relying on the font specific loss
design, e.g., the local texture refinement loss by AGIS-Net.
USR methods show limited performances in capturing lo-
calized styles and content structures. To address the issue,
component-conditioned methods such as DM-Font [4], LF-
Font [31], remarkably improve the stylization performance
by employing localized style representation, where the font
style is described multiple localized styles instead of a sin-
gle universal style. However, these methods require explicit
component labels for the target character even at the test
time. This property limits practical usages such as cross-
lingual font generation. Our method inherits the advantages
from component-guided multiple style representations, but
does not require the explicit labels at the test time.

3. Method
We introduce a novel few-shot font generation method,

named Multiple Localized Experts Few-shot Font Gener-
ation Network (MX-Font). MX-Font has a multi-headed
encoder (multiple localized experts), where i-th head (or
expert Ei) encodes a glyph image x into a local feature
fi = Ei(x) (§3.1). We induce each expert Ei to attend dif-
ferent local concepts, guided by a set of component labels
Uc for the given character c (§3.2). From fi, we compute
local content and style features fc,i, fs,i (§3.3). We gener-
ate a glyph x̃ with a character label c̃ and a style label s̃
by combining expert-wise features fc̃,i and fs̃,i, from the
source glyph and the reference glyph, respectively. (§3.5).

3.1. Model architecture

Our method consists of three modules; 1) k-headed en-
coder, or localized experts Ei, 2) a generator G, and 3) style

and component feature classifiers Clss and Clsu. We illus-
trate the overview of our method in Figure 3 and Figure 5.
We provide the details of the building blocks in Appendix.

The green box in Figure 3 shows how the multiple lo-
calized experts works. The localized expert Ei encodes a
glyph image x into a local feature fi = Ei(x) ∈ Rd×w×h,
where d is a feature dimension, and {w, h} are spatial di-
mensions. By multiplying two linear weights Wi,c,Wi,s ∈
Rd×d to fi, a local content feature fc,i = W⊤

i,cfi and a lo-
cal style feature fs,i = W⊤

i,sfi are computed. Here, our lo-
calized experts are not supervised by component labels to
obtain k local features f1, . . . , fk; our local features are not
component-specific features. We set the number of the lo-
calized experts, k, to 6 in our experiments if not specified.

We employ two feature classifiers, Clss and Clsu to
supervise fs,i and fc,i, which serve as weak supervision for
fi. The classifiers are trained to predict the style (or com-
ponent) labels, thereby Ei receives the feedback from the
Clss and Clsu that fs,i and fc,i should preserve label in-
formation. These classifiers are only used during training
but independent to the model inference itself. Following the
previous methods [4, 31], we use font library labels for style
labels ys, and the component labels Uc for content labels
yc. The example of component labels is illustrated in Fig-
ure 4. The same decomposition rule used by LF-Font [31]
is adopted. While previous methods only use the style (or
content) classifier to train style (or content), we addition-
ally utilize them for the content and style disentanglement
by introducing the content-style adversarial loss.

The generator G synthesizes a glyph image x̃ by
combining content and style features: x̃ = G((fs,1 ◦
fc,1), . . . , (fs,k ◦ fc,k)), where ◦ denotes a concatenation.

3.2. Learning multiple localized experts with weak
local component supervision

Our intuition is that extracting different localized fea-
tures can help each local feature to represent the detailed
local structure and fine-grained local style in a complex
glyph image. We utilize the compositionality of the font do-
main to inherit the advantages of component-conditioned
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Figure 4. An example of localized experts. The number of ex-
perts k is three (E1, E2, E3), and the number of target component
labels m is four (u1, . . . , u4). An edge between an expert Ei and a
component uj means the prediction probability of uj by Ei using
the component classifier Clsu. Our goal is to find a set of edges
that maximizes the sum of predictions, where the number of the
selected edges are upper bounded by max(k,m) = 4 in this ex-
ample. The red edges illustrate the optimal solution.

methods [4, 31]. Meanwhile, we intentionally remove the
explicit component dependency of the feature extractor for
achieving generalizability, which is the weakness of previ-
ous methods. Here, we employ a multi-headed feature ex-
tractor, named multiple localized experts, where each expert
can be specialized for different local concepts. A naı̈ve so-
lution is to utilize explicit local supervision, i.e., the pixel-
level annotation for each sub-glyph, unable to obtain due
to expensive annotation cost. As an alternative, a strong
machine annotator can be utilized to obtain local super-
vision [41], but training a strong model, such as the self-
trained EfficientNet L2 with 300M images [38], for the font
domain is another challenge that is out of our scope.

Utilizing the compositionality, we have the weak
component-level labels for the given glyph image, i.e.,
what components the image has but without the knowledge
where they are, similar to the multiple instance learning sce-
nario [30, 47]. Then, we let each expert attend on different
local concepts by guiding each expert with the component
and style classifiers. Ideally, when the number of compo-
nents m is same as the number of experts, k, we expect the
k predictions by experts are same as the component labels,
and the summation of their prediction confidences is max-
imized. When k < m, we expect the predictions by each
expert are “plausible” by considering top-k predictions.

To visualize the role of each expert, we illustrate an
example in Figure 4. Presuming three multiple experts,
they can learn different local concepts such as the left-side
(blue), the right-bottom-side (green), and the right-upper-
side (yellow), respectively. Given a glyph composed of four
components, the feature from each expert can predict one
(E1, E2) or two (E3) labels as shown in the figure. Because
we do not want that an expert is explicitly assigned to a
component label, e.g., strictly mapping “人” component to
E1, we solve an automatic allocation algorithm, finding the
optimal expert-component matching as shown in Figure 4.

Specifically, we formulate the component allocation prob-
lem as the Weighted Bipartite B-Matching problem, which
can be optimally solved by the Hungarian algorithm [23].

From a given glyph image x, each expert Ei extracts the
content feature fc,i. Then, the component feature classifier
Clsu takes fc,i as input and produces the prediction prob-
ability pi = Clsu(fc,i), where pi = [pi0, . . . , pim] and
pij is the confidence scalar value of the component j. Let
Uc = {uc

1, . . . , u
c
m} be a set of component labels of the

given character c, and m be the number of the components.
We introduce an allocation variable wij , where wij = 1 if
the component j is assigned to Ei, and wij = 0 otherwise.
We optimize the binary variables wij to maximize the sum-
mation over the selected prediction probability such that the
number of total allocations is max(k,m). Now, we formu-
late the component allocation problem as:

max
wij∈{0,1}|i=1...k,j∈Uc

k∑
i=1

∑
j∈Uc

wijpij ,

s.t.
k∑

i=1

wij ≥ 1 for ∀j,
∑
j∈Uc

wij ≥ 1 for ∀i,

k∑
i=1

∑
j∈Uc

wij = max(k,m),

(1)

where (1) can be reformulated to the Weighted Bipartite B-
Matching (WBM) problem, and can be solved by the Hun-
garian algorithm in a polynomial time O((m + k)3). We
describe the connection between (1) and WBM in the Ap-
pendix. Now, using the estimated variables wij in (1), we
optimize auxiliary component classification loss Lcls,c with
the cross entropy loss (CE) as follows:

Lcls,c,i(fc,i, Uc) =
∑
j∈Uc

wijCE(Clsu(fc,i), j). (2)

Here, we expect that each localized expert is specialized
for a specific local concept so that it facilitates the content-
style disentanglement. Because the feedback from (2) en-
courages the local features to be better separated into the
style and content features, we expect that each expert au-
tomatically attends local concepts. We empirically observe
that each expert is involved to different local areas without
explicit pixel-level supervision (Figure 7).

We additionally formulate the independence between
each expert by the Hilbert-Schmidt Independence Crite-
rion [13] which has been used in practice for statistical
testing [13, 14], feature similarity measurement [22], and
model regularization [32, 42, 2]. HSIC is zero if and only
if two inputs are independent of each other. Since HSIC is
non-negative, the independence criterion can be achieved
by minimizing HSIC. Under this regime, we use HSIC and
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Figure 5. Feature classifiers. Two feature classifiers, Clss and
Clsu are used during the training. Clss classifies the style features
to their style label ys while Clsu predicts the uniform probability
from them. Similarly, Clsu classifies the content features to their
allocated component labels yu while Clss is fooled by them. The
details are described in § 3.2 and § 3.3.

lead the local feature fi extracted by Ei independent to the
other local features fi′ as follows:

Lindp exp,i =

k∑
i′=1,i′ ̸=i

HSIC(fi, fi′). (3)

We leave the detailed HSIC formulation is in Appendix.

3.3. Content and style disentanglement

To achieve perfect content and style disentanglement, the
style (or content) features should include the style (or con-
tent) domain information but exclude the content (or style)
domain information. We employ two objective functions for
this: content-style adversarial loss and independent loss.

The content-style adversarial loss, motivated by the do-
main adversarial network [8], enforces the extracted fea-
tures for style (or content) to be useless to classify content
(or style). Thus, a style feature fs,i is trained to satisfy (1)
correctly classify a style label ys by the style classifier Clss
with the cross entropy loss (CE) and (2) fooling the content
labels predicted by the component classifier Clsu. Specifi-
cally, we maximize the entropy (H) of the predicted proba-
bility to enforce the uniform prediction. Formally, we define
our objective function for a style feature fs,i as follows:

Ls,i(fs,i, ys) = CE(Clss(fs,i), ys)−H(Clsu(fs,i)). (4)

We define the loss for a content feature fc,i (Lc,i) by
Lcls,c,i (2) instead of CE of yc as follows:

Lc,i(fc,i, Uc) = Lcls,c,i(fc,i, Uc)−H(Clss(fc,i)). (5)

We also employ HSIC between content and style local
features, fc,i and fs,i for disentangling content and style:

Lindp,i = HSIC(fs,i, fc,i). (6)

3.4. Training

We train our model to synthesize a glyph image from
the given content and style labels using the Chinese font
dataset (details in §4.2). More specifically, we construct a

mini-batch, where n glyphs share the same content label yc
(from random styles), and n glyphs share the same style la-
bel ys (from random contents). Then, we let the model gen-
erate a glyph with the content label yc and the style label ys.
In our experiments, we set n = 3 and synthesize 8 different
glyphs in parallel, i.e., the mini-batch size is 24.

We employ a discriminator module D and the genera-
tive adversarial loss [12] to achieve high-quality visual sam-
ples. In particular, we use the hinge generative adversarial
loss Ladv [43], feature matching loss Lfm, and pixel-level
reconstruction loss Lrecon by following the previous high
fidelity GANs, e.g., BigGAN [3], and state-of-the-art font
generation methods, e.g., DM-Font [4] or LF-Font [31]. The
details of each objective function are in Appendix.

Now we describe our full objective function. The entire
model is trained in an end-to-end manner with the weighted
sum of all losses, including (3), (4), (5), and (6).

LD = LD
adv, LG = LG

adv + λreconLrecon + Lfm

Lexp =

k∑
i=1

[Ls,i + Lc,i + Lindp,i + Lindp exp,i]
(7)

As conventional GAN training, we alternatively update LD,
LG, and Lexp. The control parameter λrecon is set to 0.1 in
our experiments. We use Adam optimizer [21], and run the
optimizer for 650k iterations. We additionally provide the
detailed training settings in the Appendix.

3.5. Few-shot generation

When the source and a few reference glyphs are
given, MX-Font extract the content features from the
source glyphs and the style features from the reference
glyphs. Assume we have nr number of reference glyphs
xr
1, . . . , x

r
nr

with a coherent style ysr . First, our multi-
ple experts {E1, . . . , Ek} extract localized style feature
[f1

sr,i, . . . , f
nr

sr,i] for i = 1 . . . k from the reference glyphs.
Then, we take an average over the localized features to rep-
resent a style representation, i.e., fsr,i = 1

nr

∑nr

j=1 f
j
sr,i for

i = 1 . . . k. Finally, the style representation is combined
with the content representation extracted from the known
source glyph to generate unseen style glyph.

4. Experiments
In this section, we describe the evaluation protocols, and

experimental settings. We extend previous FFG benchmarks
to unseen language domain to measure the generalizabil-
ity of a model. MX-Font is compared with four FFG meth-
ods on the proposed extended FFG benchmark via both the
qualitative and quantitative evaluations. Experimental re-
sults demonstrate that MX-Font outperforms existing meth-
ods in the most of evaluation metrics. The ablation and anal-
ysis study helps understand the role and effects of our mul-
tiple experts and objective functions.
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4.1. Comparison methods

Universial style representation methods. EMD [45]
adopts content and style encoders that extract universal con-
tent and style features from a few reference glyphs. AGIS-
Net [9] proposes the local texture refinement loss to han-
dle unbalance between the number of positive and negative
samples. FUNIT [28] is not directly proposed for FFG task,
but we employ the modified version of FUNIT as our com-
parison method following previous works [4, 31].
Component-conditioned methods. DM-Font [4] learns
two embedding codebooks (or the dual-memory) condi-
tioned by explicit component labels. When the target char-
acter contains a component either unseen during training or
not in the reference set, DM-Font is unable to generate a
glyph. As these drawbacks are impossible to be fixed with
only minor modifications, we do not compare DM-Font to
MX-Font. LF-Font [31] relaxes the restriction of DM-Font
by estimating missing component features via factorization
module. Although LF-Font is still not applicable to gener-
ate a character with unseen components, we slightly mod-
ify LF-Font (as described in the Appendix) and compare the
modified version with other methods.

4.2. Evaluation protocols

To show the generalizability to the unseen language sys-
tems, we propose an extended FFG scenario; training a FFG
model on a language system and evaluating the model on
the other language system. In this paper, we first train FFG
models on the Chinese font dataset, and evaluate them on
both Chinese generation (in-domain transfer scenario) and
Korean generation (zero-shot cross-lingual scenario).
Dataset. We use the same Chinese font dataset collected
by Park et al. [31] for training. The dataset contains 3.1M
Chinese glyph images with 467 different styles, and 19,514
characters are covered. We also use the same decomposition
rule as Park et al. [31] to extract component labels. We ex-
clude 28 fonts, and 214 Chinese characters from the training
set, and use them to evaluation. For the Korean FFG evalua-
tion, we use the same test characters with Cha et al. [4], 245
characters. To sum up, we evaluate the methods by using 28
font styles with 214 Chinese and 245 Korean characters.
Evaluation metrics. Due to the style of the font domain
is defined by a local fine-grained shape, e.g., stroke, size,
or serif-ness, measuring the visual quality with a unified
metric is a challenging problem. A typical challenge is the
multiplicity of the font styles; because the font style is de-
fined locally, there could be multiple plausible glyphs sat-
isfying our objectives. However, we only have one “ground
truth” glyphs in the test dataset. Furthermore, for the Ko-
rean generation task with Chinese references, we even do
not have “ground truth” Korean glyphs with the reference
styles. Thus, we need to employ evaluation metrics that does
not require ground truth, and can evaluate plausibility of the

given samples. We therefore use four different evaluation
metrics to measure the visual quality in various viewpoints.

Following previous works [4, 31], we train evaluation
classifiers for character labels (content-aware) and font la-
bels (style-aware). Note that these classifiers are only used
for evaluation, and trained separately to the FFG models.
We train three classifiers, the style classifier and the content
classifier on the Chinese test fonts, and the content classifier
on the Korean test characters. The details of the evaluation
classifiers are in Appendix. We measure the classification
accuracies for style and content labels. We also report the
accuracy when both classifiers are correctly predicted.

We conduct a user study for quantifying the subjective
quality. The participants are asked to pick the three best re-
sults, considering the style, the content, and the most pre-
ferred considering both the style and the content. All 28 test
styles with 10 characters are shown to the participants. For
each test style, we show Chinese and Korean samples sepa-
rately to the users. I.e., a participant picks 28×3×2 = 168
results. We collect the responses from 57 native Korean
speakers, highly educated with the Chinese script. User
study samples are in the Appendix.

We also report LPIPS [44] to measure the dissimilar-
ity between the generated images and their corresponding
ground truth images. Frechét inception distance (FID) [15]
between the generated images and real images are com-
puted by the style and content classifiers and their harmonic
mean is reported (FID(H)). The details are in Appendix.

4.3. Experimental results

Quantitative evaluation. Table 1 shows the FFG perfor-
mances by MX-Font and competitors. The reported values
are the average of 50 different experiments, where four ref-
erence images per style are used for font generation in each
experiment. In the table, we observe that MX-Font outper-
forms other methods in the both in-domain transfer scenario
and zero-shot cross-lingual generation scenario with the
most of evaluation metrics. Especially, MX-Font remark-
ably outperforms other methods in the cross-lingual task. In
the in-domain transfer scenario, ours exceeds others in the
classification accuracies and the user study. We observe that
MX-Font perform worse than others in the Chinese FID,
where FID is known to sensitive to noisy or blur images, re-
gardless of the image quality itself [33]. Our method shows
the remarkably better performances in more reliable evalu-
ation, user study in all criterions.
Qualitative evaluation. We illustrated the generated sam-
ples in Figure 6. We show four reference images to extract
each style in the top row, and the source images in the sec-
ond row where each source image is used to extract the con-
tent. In the green box in Figure 6, we observe that AGIS-Net
often fails to reflect the reference style precisely and gener-
ate local details. FUNIT generally shows similar trends with
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Acc (S) % Acc (C) % Acc (B) % User (S) % User (C) % User (B) % LPIPS ↓ FID (H) ↓

C
N
−→

C
N

EMD (CVPR’18) 6.6 51.3 4.6 0.7 0.1 0.3 0.212 79.7
AGIS-Net (TOG’19) 25.5 99.5 25.4 22.4 34.2 26.8 0.124 19.2
FUNIT (ICCV’19) 34.0 94.6 31.8 22.9 21.6 22.2 0.147 19.2
LF-Font (AAAI’21) 58.7 96.9 57.0 19.5 12.3 15.6 0.119 14.8
MX-Font (proposed) 78.9 99.5 78.7 34.5 31.8 35.2 0.120 21.8

C
N
−→

K
R

EMD (CVPR’18) 4.6 15.4 0.8 0.8 0.1 0.1 - 150.1
AGIS-Net (TOG’19) 13.3 32.1 3.1 1.8 0.6 0.6 - 146.5
FUNIT (ICCV’19) 11.3 66.4 6.6 12.0 17.3 9.1 - 176.0
LF-Font (AAAI’21) 47.6 28.7 12.8 10.6 0.7 1.0 - 148.7
MX-Font (proposed) 66.3 75.9 50.0 74.6 81.3 89.2 - 84.1

Table 1. Performance comparison on few-shot font generation scenario. The performances of five few-shot font generation methods
with four reference images are compared. We report accuracy measured by style-aware (Acc (S)) and content-aware (Acc (C)) classifiers
and accuracy considering both the style and content labels (Acc (B)). The summarized results of the user study are also reported. The User
preference on considering style (User (S)), content (User (C)), both of them (User (B)) are shown. LPIPS shows a perceptual dissimilarity
between the ground truth and the generated glyphs. The harmonic mean (H) of style-aware and content-aware FID is also reported. Note
that the FIDs are computed differently in two FFG scenarios. All numbers are average of 50 runs with different reference glyphs.

Reference

Source

EMD

AGIS-Net

FUNIT

LF-Font

Ours

GT

Figure 6. Generated Samples. The generated images by five different models are shown. We also provide the reference and the source
images used for the generation in the top two rows. The available ground truth images (GT) are shown in the bottom row. We highlight the
samples that reveal the drawback of each model with colored boxes; green for AGIS-Net, red for FUNIT, and yellow for LF-Font.

AGIS-Net, while FUNIT often produces shattered glyphs
when the target glyph and the source glyph have signifi-
cantly different structures (red box). At a glance, LF-Font
seems to capture the detailed local styles well. However, it
often misses important detailed local component such as dot
and stroke, as shown in the yellow box. Comparing to other
methods, MX-Font synthesizes the better detailed structures
both in content and style, owing to the strong representa-
tion power of locally specialized experts. The advantage of
MX-Font is highlighted in the cross-lingual FFG. All ex-
isting models often generate unrecognizable characters un-
der the cross-lingual scenario. Nevertheless, MX-Font pre-
serves both the detailed local style and content and gen-
erates the plausible and recognizable images consistently.
Such a noticeable gap in visual quality explains the large
performance leap of MX-Font in the user study.

Figure 7. Each localized expert attends different local areas.
The variance of Class Activation Maps (CAMs) for each expert
are shown. The brighter regions indicate the larger values.

k Acc (S) ↑ Acc (C) ↑ Acc (B) ↑ LPIPS ↓

1 72.2 98.7 71.4 0.133
2 79.0 99.3 78.5 0.128
4 78.3 99.5 78.0 0.125
6 78.9 99.5 78.7 0.120
8 75.5 99.5 75.2 0.123

Table 2. Impact of the number of experts k. The models with dif-
ferent number of heads are compared on in-domain Chinese trans-
fer benchmark. We used k = 6 for all experiments.
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Source

Ours (k=1)

Ours (k=6)

GT

Figure 8. Generated samples of the models having different
number of heads (k). The samples generated with four reference
glyphs by the single-headed model and multi-headed model are
shown. We highlight the defects in red dotted circles that appeared
in the images generated by the single-expert model.

4.4. Analyses

Learned local concepts by different experts. We show
the local concepts learned by each expert by visualizing
where each expert attends on. We extract the Class Acti-
vation Maps (CAMs) [46] of the training samples using the
component classifier Clsu on each local feature. Then, we
visualize the variance of CAMs in Figure 7. In Figure 7, the
region with bright intensity than the surrounding indicates
the region where each expert pays more attention. Interest-
ingly, without any explicit pixel-level annotation, our local-
ized experts attend different local areas of the images. These
maps support that each expert of MX-Font tends to cover
different local areas of the input image. Summarizing, these
experimental studies demonstrate that multiple localized ex-
perts capture different local areas of the input image as we
intend, and employing multiple localized experts helps us to
enhance the quality of generated images by preserving the
local details during the style-content disentanglement.
Multiple experts vs. single expert. We compare the perfor-
mances of the single expert model (k = 1) with our multiple
experts model (k = 6) on benchmark in-domain transfer
scenario. The results are shown in Table 2 and Fig 8. We
observe that the multi-headed model performs better than a
single-headed one. We also observe that the generated im-
ages by the single-headed model fails to preserve the lo-
cal structures delicately, e.g. important strokes are missing,
while the multi-headed model captures local details well.
More analyses on different k are in the Appendix.
Character vs. Components. We replace the component su-
pervision (multiple image-level sub-concepts) to the char-
acter supervision (single image-level label). Table 3 shows
that utilizing character supervision incurs a mode collapse.
We speculate that two reasons caused the collapse, (1) the
number of characters (≈ 19k) is too large to learn, while
the number of components is reasonably small (371), and
(2) our best allocation problem prevents the experts from
collapsing into the same values, while the character super-
vised model has no restriction to learn different concepts.

Acc (S) ↑ Acc (C) ↑ Acc (B) ↑ LPIPS ↓

Ours (Clsu) 78.9 99.5 78.7 0.120
Ours (Clsc) 94.8 0.04 0.04 0.214

Table 3. Comparing the component classifier and the character
classifier as weak supervision. We compare two auxiliary classi-
fiers as content supervision. Ours (Clsu) denotes MX-Font using
the component classifier and Ours (Clsc) denotes the model re-
placed the component classifier to the character classifier.

Lindp,i Hc,s Lc,s Acc (S) Acc (C) Acc (B)

✔ ✔ ✔ 59.0 95.9 56.8
✘ ✔ ✔ 52.0 95.8 50.0
✘ ✘ ✔ 51.6 95.5 49.4
✘ ✘ ✘ 27.8 89.1 24.7

LF-Font [31] 38.5 95.2 36.5

Table 4. Impact of loss functions. We compare models by ablat-
ing the proposed object functions trained and tested on Korean-
handwriting dataset. The results show that the content-style adver-
sarial loss Lc,s and the maximizing entropy term Hc,s and inde-
pendent loss Lindp,i are all important components.

Loss ablations. In Table 4, We investigate the effect of our
loss function design by the models trained and tested on
Korean handwritten dataset (details in Appendix). The ta-
ble shows that all the proposed loss functions for the style-
content disentanglement are effective to the performances.

5. Conclusion
We propose a novel few-shot font generation method,

namely MX-Font. Our goal is to achieve both the rich rep-
resentation for the local details and the generalizability to
the unseen component and language. To this end, MX-Font
employ multi-headed encoder, trained by weak local com-
ponent supervision, i.e. style and content feature classifiers.
Based on interactions between these feature classifiers and
localized experts, MX-Font learns to disentangle the style
and content successfully by developing localized features.
Finally, the proposed model generates the plausible font im-
ages, which preserve both local detailed style of the refer-
ence images and precise characters of the source images.
Experimental results show that MX-Font outperforms ex-
isting methods in in-domain transfer scenario and zero-
shot cross-lingual transfer scenario; especially large perfor-
mance leap in the cross-lingual scenario.
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