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Abstract

While multi-step adversarial training is widely popular
as an effective defense method against strong adversarial
attacks, its computational cost is notoriously expensive, com-
pared to standard training. Several single-step adversarial
training methods have been proposed to mitigate the above-
mentioned overhead cost; however, their performance is not
sufficiently reliable depending on the optimization setting.
To overcome such limitations, we deviate from the existing
input-space-based adversarial training regime and propose
a single-step latent adversarial training method (SLAT),
which leverages the gradients of latent representation as the
latent adversarial perturbation. We demonstrate that the ℓ1
norm of feature gradients is implicitly regularized through
the adopted latent perturbation, thereby recovering local
linearity and ensuring reliable performance, compared to
the existing single-step adversarial training methods. Be-
cause latent perturbation is based on the gradients of the
latent representations which can be obtained for free in the
process of input gradients computation, the proposed method
costs roughly the same time as the fast gradient sign method.
Experiment results demonstrate that the proposed method,
despite its structural simplicity, outperforms state-of-the-art
accelerated adversarial training methods.

1. Introduction
Although several studies have suggested the use of deep

learning methods to solve challenging tasks, adversarial vul-
nerability [30] is one of the remaining major challenges
while employing deep learning to safety-critical applications.
Adversarial training (AT) approaches aim to mitigate the
problem by training the model on generated adversarial ex-
amples, i.e. the sample corrupted with human-imperceptible
noise which can fool the state-of-the-art deep neural net-
works. Although PGD AT [16] is one of the most effective
training methods, it consumes a considerable training time
because it relies on multiple projected gradient descent steps
to generate the adversaries. The AT based on Fast Gradient

Sign Method (FGSM; [10]) reduces the training time; how-
ever, recent works [16, 32, 31] have identified the FGSM’s
vulnerability to the sophisticated adversaries.

The trade-off between adversarial robustness and compu-
tational cost has facilitated the development of accelerated
and trustworthy AT methods. Shafahi et al. [25] significantly
reduced the computational burden by presenting a free AT
method that updates both model parameters and adversarial
perturbation through a single shared backward propagation.
Wong et al. [38] proposed a fast adversarial training based
on the discovery that a slight modification in the FGSM train-
ing method such as random initialization allows it to achieve
an adversarial robustness on par with PGD AT. They also
discovered the catastrophic overfitting problem of FGSM
AT, wherein the model suddenly loses its robustness during
training within an epoch.

Although substantial technical advances have been made
with regard to the above-mentioned methods, recent works
have reported that such approaches are not sufficiently re-
liable. Andriushchenko et al. [2] demonstrated that fast
adversarial training still suffers from the catastrophic over-
fitting, owing to the deteriorated local linearity of neural
networks. Kim et al. [14] found that the fast adversarial
training suddenly loses its robustness and eventually col-
lapses when a simple multi-step learning rate schedule is
used. Li et al. [15] reported that although fast adversar-
ial training may recover quickly, it still temporally exhibits
catastrophic overfitting.

This remaining problem in AT motivates us to explore
novel ways to improve the reliability of single-step AT, with-
out bearing a considerable training time. In this study, we
demonstrate that the single-step latent adversarial training
(SLAT) with the latent adversarial perturbation operates
more effectively and reliably compared to the other single-
step adversarial training variants. While many of existing
adversarial training methods require multiple gradient com-
putations which is inevitably time-consuming, we exploit
the gradients of latent representations from multiple layers
in parallel for the synergistic generation of adversary. Note
that the gradients of latent representations can be obtained
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(a) Existing approaches (b) SLAT

Figure 1: Visual illustration of the conceptual difference between existing and proposed approach. (a) FGSM may fail to
generate the appropriate adversary because it approximates the solution of inner maximization problem with a single gradient
step. While PGD-based AT may generate relatively more desirable adversary, it takes multiple iterations per sample to solve
the inner maximization which is computationally expensive. Uniform random initialization [38] contributes to improving the
performance of FGSM; however, the success of such initialization is not fundamentally justified. (b) Our proposed method
mitigates the suggested problems by introducing latent adversarial perturbations in parallel.

for free in the process of computation of input gradients.
To the best of our knowledge, our work is the first to

reduce the computational cost of AT by deviating from the
input-space based frameworks and injecting latent adversar-
ial perturbations. The contribution of this study is summa-
rized as follows. First, we propose that the local linearity of
neural networks can be regularized without demanding cost
of training time by adopting latent adversarial perturbation,
unlike the gradient alignment (GA) regularization [2], which
is three times slower compared to FGSM training. In partic-
ular, we demonstrates that the ℓ1 norm of feature gradients
is implicitly regularized by introducing latent adversarial
perturbation, which closes the gap between the loss function
of neural networks and its first-order approximation. As
the latent adversarial perturbation is adopted across multi-
ple latent layers, the synergistic regularization effect can be
expected. Second, we demonstrate that SLAT outperforms
the state-of-the-art accelerated adversarial training methods,
while achieving performance comparable to PGD AT.

2. Related works
Adversarial training has been improved with the help

of adversarial attack algorithms. Goodfellow et al. [10]
proposed FGSM to enable rapid generation of adversarial
examples through a single-step gradient update. Based on
these developments, madry et al. [16] generated a stronger
adversary through projected gradient descent (PGD). PGD-
based AT has been recognized as a more effective defense
method than others, such as provable defenses [37, 42, 6],

label smoothing [24], mix-up [43], and Jacobian regulariza-
tion [13]. However, the complexity overhead of generating
the adversary significantly limits the scalability of the PGD-
based AT method.

As introduced in Section 1, several methods [25, 38] have
been proposed to improve the efficiency of AT. Zhang et
al. [41] analyzed AT from the perspective of a differential
game and merged the inner loop of the PGD attack and the
gradient update of model parameters. Vivek et al. [34] ex-
perimentally found that the adversarial robustness of FGSM
AT is improved via application of dropouts to all non-linear
layers. Kim et al. [14] demonstrated that the characteristic
of FGSM AT, which uses only adversary with the maximum
perturbation, leads to the decision boundary distortion and
therefore proposed an ad-hoc method to determine an appro-
priate step size. While most of the proposed methods heavily
rely on the input perturbation, we explore the possibility for
efficient AT using latent adversarial perturbations.

Although several remarkable works [39, 36] spark interest
regarding the importance of latent representations in adver-
sarial robustness, only a few works have directly leveraged
the latent adversarial perturbations for AT. Sankaranarayanan
et al. [23] used the gradients of latent representations com-
puted from the preceding mini-batch to approximate the solu-
tion of inner-maximization. Although the proposed method
has yielded modest improvements in terms of the adversarial
robustness with respect to FGSM-based AT, they do not nec-
essarily mean that a latent adversarial perturbation from a
gradient of the preceding mini-batch is optimal. While [27]
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suggested latent adversarial training for further fine-tuning
of the adversarially trained model, it is contingent on perfor-
mance of multi-step PGD AT. On the contrary, our approach
focusses on the reduction of computational costs of AT via
latent adversarial perturbations.

3. Latent adversarial perturbation
We begin with formulating the generalized min-max ad-

versarial training objective in terms of latent adversarial
perturbation. Let (x ∈ X , y ∈ Y) ∼ D be the pair of
sample and label instance generated from the distribution
D, given sample space X and label space Y . We represent
fl(·) as the function defined by the l-th layer, and hl(x)
as the latent-representation vector given sample x, where
h0(x) ≜ x. Precisely, hl(x) = fl(fl−1(. . . (f1(x)))) =
fl(hl−1(x)), where fl(hl−1(x)) = ϕ(Wlhl−1(x) + bl),
given the l-th weight matrix Wl, bias vector bl, and the
activation function ϕ(·). Note that the latent adversar-
ial perturbation is not considered yet. We denote the L-
layer neural networks as a function fθθθ : X → Y , pa-
rameterized by θθθ = {W1, . . . ,WL, b1, . . . , bL}: fθθθ(x) =
fL(fL−1(. . . (f1(x)))). For simplicity, let fm:n(x) =
fn(fn−1(. . . (fm(hm−1(x))))), for any 1 ≤ m < n ≤ L.

In this study, we investigate the benefits of latent adver-
sarial perturbation, which is built based on the gradients of
latent representations. Let K ⊆ {0, . . . , L− 1} be the sub-
set of layer indexes injected with adversarial perturbation,
where the 0th layer represents the input layer. We denote the
adversarial perturbation given x for the k-th layer as δk(x),
where k ∈ K, and the set of adversarial perturbations is
δδδ = {δk(x)}∀k∈K .

To examine the marginalized effect of latent adversarial
perturbations, we define the accumulated perturbation in
layer L− 1 as δ̂ℓ−1(x), where δ̂ℓ−1(x) originates from the
forward propagation of δδδ. Note that we virtually introduced
the accumulated perturbation for the sake of the analysis.
In practice, each latent adversarial perturbation is applied
layer-wise. Thus, hl+1(x) = fl(hl(x) + δl(x)),∀l ∈ K.

The optimal set of parameters θθθ∗ and adversarial perturba-
tions δδδ∗ can be obtained by solving the following min-max
problem:

θ∗θ∗θ∗, δ∗δ∗δ∗ =

argmin
θθθ

E(x,y)∼D max
δδδ

[
L
(
fL

(
hL−1(x) + δ̂ℓ−1(x)

)
, y
)]

.

(1)

While it is difficult to obtain the accumulated perturbation
δ̂ℓ−1(x) in a closed form given highly nonlinear function
fθθθ(·), we can approximate it by making a reasonable assump-
tion that δk(x) is sufficiently small. The approximation is
based on [4] which examined the effect of Gaussian Noise
Injection (GNI) into multiple latent layers. The adversarial

perturbation accumulated on the layer L−1 can be expressed
as follows:

Proposition 1. Consider an L layer neural network, with
the latent adversarial perturbations δk(x) being applied at
each layer k ∈ K. Assuming the Hessians, of the form
∇2hl(x)|hm(x) where l,m are the index over layers, are
finite. Then the perturbation accumulated at the layer L− 1,
δ̂ℓ−1(x), is approximated by:

δ̂ℓ−1(x) =
∑
k∈K

Jk(x)δk(x) +O(γ), (2)

where Jk(x) ∈ RNL−1×Nk represents each layer’s Jaco-
bian; Jk(x)i,j = ∂hL−1(x)i

∂hk(x)j
, given the number of neurons

in layer L − 1 and k as NL−1 and Nk, respectively. O(γ)
represents higher order terms in δδδ that tend to zero in the
limit of small perturbation.

The detailed proof is provided in the supplementary
material. Based on the framework (1) and Proposition
1, we provide the details of the proposed latent adversar-
ial perturbation. By neglecting the higher order terms in
Proposition 1, the linear approximation of the loss function
L
(
fL

(
hL−1(x) + δ̂ℓ−1(x)

)
, y
)

is as follows:

L
(
fL

(
hL−1(x) + δ̂ℓ−1(x)

)
, y
)

≈ L
(
fL

(
hL−1(x), y

))
+

∇hL−1(x)L
(
fL

(
hL−1(x)

)
, y
)T

δ̂ℓ−1(x)

= L
(
fL

(
hL−1(x), y

))
+

∇hL−1(x)L
(
fL

(
hL−1(x)

)
, y
)T ∑

k∈K

Jk(x)δk(x).

(3)

Then, we approximate the solution of the inner maximiza-
tion problem in (1), as similarly done in FGSM:

δk(x) = ηk · sign
(
Jk(x)

T∇hL−1(x)L
(
fL(hL(x)), y

))
= ηk · sign

(
∇hk(x)L

(
fθθθ(x), y

))
,∀k ∈ K,

(4)

where ηk is the step size for the k-th layer. Then, the explicit
regularizer of latent adversarial perturbation in (3) is derived
as follows:

Llatent =
∑
k∈K

ηk · sign
(
∇hk(x)L(fθθθ(x), y)

)
◦ ∇hk(x)L(fθθθ(x), y)

=
∑
k∈K

ηk · ||∇hk(x)L(fθθθ(x), y)||1,

(5)
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where ◦ represents dot product.
It affords us the theoretical insights that the latent adver-

sarial perturbation leads to the implicit regularization of ℓ1
norm of the feature gradients. Although the uses of input
gradient regularization in adversarial defense [21] or explain-
able machine learning [22, 28] have been widely recognized,
the effects of feature gradient regularization on adversarial
robustness have been poorly understood. To address this, we
establish a connection between the feature gradient regular-
ization and local linearity. For a better linear approximation,
the linear approximation error Rk(x) should be constrained:

∣∣∣L(fk:L(hk−1(x) + ϵ
)
, y
)
− L

(
fk:L

(
hk−1(x)

)
, y
)

−
〈
∇hk−1(x)L

(
fk:L

(
hk−1(x)

)
, y
)
, ϵ
〉∣∣∣, (6)

where ϵ is an arbitrary perturbation with sufficiently
small size, and Rk(x) is defined with the function
fk:L(·) for an arbitrary k ∈ K. Note that Rk(x) in-
cludes the second-order term

〈
ϵ,Hk(x)ϵ

〉
where Hk(x) =

∇2
hk−1(x)

L
(
fk:L(hk−1(x)), y

)
. Let ∇k−1 be a shorthand

for∇hk−1(x)L
(
fk:L(hk−1(x)), y

)
. By the low-rank approx-

imation of the Hessian matrix [17], let Hk(x) ≈ ∇k−1∇T
k−1.

Then, the upper bound of the second-order term is as follows:

⟨ϵ,Hk(x)ϵ
〉
≈ |⟨ϵ,∇k−1⟩|2

≤ ||ϵ||22||∇k−1||22
≤ ||ϵ||22||∇k−1||21,

(7)

since ||x||p ≥ ||x||q for 0 < p < q,∀x ∈ Rn. Thus the
regularization of ℓ1 norm of feature gradients may result
in a better linear approximation of the loss function. This
eventually contributes to improving the reliability of FGSM
which relies heavily on linear approximation of the loss
function.

We further foster a close collaboration between feature
gradient regularization and the minimization of adversarial
loss. Inspired from [26], the small variation in the loss△Lk

caused by the latent adversarial perturbation δk(x) is as
follows:

△Lk

= max
||δk(x)||≤ηk

∣∣∣L(fk+1:L

(
hk(x) + δk(x)

)
, y
)

− L
(
fk+1:L

(
hk(x)

)
, y
)∣∣∣

≈ max
||δk(x)||≤ηk

∣∣∣〈∇hk(x)L
(
fk+1:L

(
hk(x)

)
, y
)
, δk(x)

〉∣∣∣
= ηk

∣∣∣∣∣∣∇hk(x)L
(
fk+1:L

(
hk(x)

)
, y
)∣∣∣∣∣∣

∗
,

(8)

where ηk is the allowed step size for the perturbation δk(x).
The last equality comes from the definition of the dual norm
|| · ||∗ of || · ||. Thus the regularization of ℓ1 norm of feature
gradients is closely related to minimizing the adversarial loss
stems from δk(x) with limited ℓ∞ norm.

Advantages over other local linearity regularization
methods. Existing works have been proposed to theoret-
ically investigate the underlying principles of adversarial
training with respect to local linearity. Moosavi et al. [18]
demonstrated that adversarial training increases adversar-
ial robustness by decreasing curvature and proposed a new
curvature regularizer based on the finite difference approxi-
mation of Hessian. While the proposed regularizer improves
the adversarial robustness with affordable computational
costs, it requires pretrained networks for fine-tuning. More-
over, the reported standard and adversarial accuracy was
lower than that of our proposed method given the same base
network architecture (Section 4).

A few follow-up studies have attempted to regularize lin-
ear approximation errors in an optimal manner. Qin et al.
[20] explores the worst-case perturbation that maximizes
the linear approximation error of the loss function via mul-
tiple steps of PGD in order to regularize local linearity and
penalize gradient obfuscation [3]. Tsiligkaridis et al. [33]
proposed a novel adversarial training method based on the
Frank-Wolfe algorithm [12] to decrease the directional vari-
ation of loss gradients. Compared to existing works that
inevitably rely on the multi-step gradient updates for regular-
izing local linearity, the above latent adversarial perturbation
(4) enables us to seamlessly regularize the local linearity
of sub-networks in parallel with affordable computational
costs.

4. Experiments

4.1. Experiments on Toy Dataset

To conceptually clarify the effects of latent adversarial
perturbation, we observed the behavior of the classifier on
a simple binary classification problem. We generate sam-
ples (x, y) from 2D gaussian distributions, N1(µ,Σ), and
N2(−µ,Σ). Ilyas et al. [11] proposed that the adversarial
samples stem from useful but non-robust features which are
informative for classification in standard setting but vulnera-
ble to adversarial attacks. Inspired by [11], we intentionally
compose the input features as robust (on X-axis) and non-
robust feature (on Y-axis, Figure 2) in order to investigate
whether the latent adversarial perturbation helps filtering out
the non-robust feature.

A simple neural network (L = 2) is implemented where
the adversarial perturbation is injected to each input layer
and latent layer, i.e., K = {0, 1}. Then we compare the
decision boundary of binary classifiers obtained through
standard training, FGSM AT, and SLAT (η0 = 0.1 for both
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Algorithm 1: Single-step Latent Adversarial Train-
ing method (SLAT)

Input: Training iteration T , Number of samples N ,
Number of layers L, Training set D = {(xi, yi)}Ni=1,
Subset of layer indexes K, Layer-wise step size ηk
Output: Adversarially robust network fθθθ
for t← 1 to T do

for i← 1 to N do
for k ∈ K do

// Compute latent adversarial
perturbations

δk(xi) =

ηk · sign
(
∇hk(xi)L

(
fθθθ(xi), yi

))
for l ∈ {0, . . . , L− 2} do

if l ∈ K then
// Propagate adversarial perturbations

forward
hl+1(xi) = fl+1(hl(xi) + δl(xi))

else
hl+1(xi) = fl+1(hl(xi))

Optimize θθθ by the objective
L(fL(hL−1(xi)), yi) using gradient
descent.

FGSM AT and SLAT). Under the limited adversarial bud-
gets, while FGSM AT still heavily relies on the predictive
but non-robust feature (Figure 2b), SLAT learns to select a
more robust feature (Figure 2c). It implies that the latent ad-
versarial perturbation collaborates with the input adversarial
perturbation, so that the effect of adversarial training can be
amplified.

(a) Standard (b) FGSM-AT (c) SLAT

Figure 2: Decision boundary of binary classifiers. Best
viewed in color.

4.2. Comparison of robustness

Datasets. To further investigate the effect of latent adver-
sarial perturbation on adversarial robustness, we compare
the adversarial robustness of several models on CIFAR-10,
CIFAR-100 and Tiny ImageNet. For CIFAR-10 and CIFAR-
100, all the images are randomly cropped into 32× 32 with

padding size 4 following [38, 2]. Images in Tiny ImageNet
are similarly cropped into 64× 64.

Experimental setup. For an adversarial example, ℓ∞-
perturbation is used with radius η0 = 8/255. For a fair
comparison, we reproduced all the other baseline results
using the same back-bone architecture and the optimization
settings. Specifically, we validate several AT methods using
Wide ResNet 28-10 [40], and cyclic learning rates [29] with
the SGD optimizer following the setup of [2].

The latent adversarial perturbation is injected into three
layers (K), including input layer and last layers in each
group conv1, conv2 [40]. We use ηk = 8/255 for every
k ∈ K. We evaluate the adversarial robustness of several
models using PGD-50-10 attack [16], i.e., with 50 iterations
and 10 restarts, and AutoAttack [8] which is the ensemble of
two extended PGD attacks, a white-box FAB-attack [7], and
the black-box Square Attack [1], for verifying the absence
of gradient masking [3]. Every experiments are run on a
single GeForce Titan X. The details regarding the simulation
settings are presented in the supplementary material.

Baselines. We compare our method with the following
state-of-the-art (fast) adversarial training methods: PGD
AT [16], FGSM-GA (FGSM AT with gradient alignment,
[2]), YOPO [41], Free-AT [25], FGSM AT [10], FGSM-
RS (FGSM AT with random step, [38]), and FGSM-CKPT
(FGSM AT with checkpoints, [14]). Every model is trained
based on the reported hyperparameter configurations of
original papers except FGSM-GA which experiences catas-
trophic overfitting with the reported gradient alignment pa-
rameter λ = 0.2. We therefore tested with the parameter
λ ∈ {0.2, 0.3, 0.5, 1.0, 2.0} where λ = 1.0 is selected.

Results. The clean and robust accuracy for the CIFAR-
10, CIFAR-100 and Tiny ImageNet datasets are summarized
in Table 1. We found that SLAT reliably outperforms most
of the accelerated adversarial training methods, including
YOPO [41], Free-AT [25], FGSM-RS, and FGSM-CKPT
[14], with respect to robust accuracy against PGD attack
and AutoAttack [8], on every experiments. Note that most
of the FGSM-based accelerated AT methods experienced
a catastrophic overfitting during the training process on
specific datasets, e.g., FGSM on CIFAR-10, CIFAR-100;
FGSM-CKPT on CIFAR-100, Tiny ImageNet; FGSM-RS
on CIFAR-10, CIFAR-100. Although FGSM-GA [2] and
PGD-7 tend to exhibit better performance than SLAT, both
methods are much slower than the other adversarial train-
ing methods. Moreover, SLAT achieves a higher standard
accuracy than both methods on CIFAR-10.

4.3. Quantitative and Qualitative analysis

Visualizing loss landscape. To fully justify the associa-
tion between latent hidden perturbation and local linearity,
we visualize the loss landscape of several models. Figure 3d
shows that the loss of SLAT in ℓ∞ ball is almost perfectly in
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Table 1: Standard and robust accuracies (%) on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets.

Method Standard PGD-50-10 AutoAttack Training time (min)
C

IF
A

R
-1

0
PGD-7 84.86±0.16 51.63±0.13 48.65±0.08 383.2

FGSM-GA 82.88±0.01 48.90±0.37 46.22±0.30 297.9

YOPO-5-3 82.35±1.78 34.23±3.61 32.79±3.65 62.5
Free-AT (m = 8) 76.57±0.19 44.15±0.30 41.02±0.20 119.4

FGSM 87.42±1.08 0.01±0.01 0.00±0.00 100.5
FGSM-RS 90.76±6.36 3.90±4.06 0.44±0.50 99.7

FGSM-CKPT (c = 3) 89.32±0.10 40.83±0.36 39.38±0.24 121.4
SLAT 85.91±0.31 47.06±0.03 44.62±0.11 104.6

C
IF

A
R

-1
00

PGD-7 59.59±0.17 29.58±0.24 26.00±0.20 392.1
FGSM-GA 58.63±0.17 27.53±0.10 24.07±0.15 240.5

YOPO-5-3 51.45±7.33 15.23±2.01 13.94±1.82 65.0
Free-AT (m = 8) 48.02±0.29 22.40±0.19 18.67±0.03 117.1

FGSM 61.96±2.17 0.00±0.00 0.00±0.00 99.9
FGSM-RS 50.96±4.57 0.00±0.00 0.00±0.00 100.9

FGSM-CKPT (c = 3) 73.53±0.65 0.66±0.60 0.09±0.09 101.5
SLAT 59.56±0.50 26.26±0.47 23.02±0.14 101.7

Ti
ny

Im
ag

eN
et

PGD-7 48.92±0.43 23.05±0.35 18.78±0.14 3098.3
FGSM-GA 48.73±0.14 22.62±0.11 18.34±0.07 2032.2

YOPO-5-3 51.45±6.01 15.08±1.78 13.94±1.61 511.5
Free-AT (m = 8) 22.40±0.17 9.05±0.08 6.06±0.18 911.6

FGSM 36.47±11.75 8.68±12.27 6.63±9.38 779.8
FGSM-RS 42.13±14.98 10.32±11.93 8.41±9.73 787.5

FGSM-CKPT (c = 3) 61.64±2.24 5.91±6.68 5.26±5.98 753.0
SLAT 48.77±0.25 20.21±0.16 16.38±0.16 785.5

linear with the adversarial direction, thus qualitatively prov-
ing that the local linearity is recovered by adopting latent
perturbation. Furthermore, Figure 3a, 3b shows that the loss
landscape of FGSM and FGSM-RS are highly non-linear in
the vicinity of training examples. Note that the adversarial
loss of FGSM-RS given adversary with maximum step size
is relatively lower than the other well-trained methods (Fig-
ure 3c, 3d). Due to the catastrophic overfitting problem, both
methods are still vulnerable to other smaller perturbations.
Although FGSM-CKPT [14] performs better than FGSM-
RS, the obtained loss landscape is not perfectly linear as
SLAT in adversarial direction.

Evaluating adversarial robustness with different ℓ∞
radius. To investigate the contribution of latent adversarial
perturbation on reliability, we compare the robustness of
FGSM-based adversarial training methods with different
ℓ∞-radius (Figure 4a). The results illustrate that the latent
adversarial perturbation prevents the model from losing its
robustness quickly when the ℓ∞-radius increases. Note that
the FGSM-based single-step adversarial training methods
(FGSM, FGSM-RS, FGSM-CKPT) are relatively sensitive
to the ℓ∞-radius, potentially due to the lack of regularization

for a better linear approximation.
Measuring local linearity. To specify the connection

between catastrophic over-fitting and local linearity, we mea-
sure the adversarial robustness and gradient alignment as
done in [1] (Figure 4b, 4c, 4d). Gradient alignment is mea-
sured as the cosine similarity between input gradients com-
puted with original and randomly perturbed sample. We
figured out that the gradient alignment suddenly drops as
the model loses its adversarial robustness. While FGSM or
FGSM-RS may rely on the early-stopping technique [38] to
empirically prevent catastrophic overfitting, it is not suffi-
cient to outperform SLAT (Figure 4b).

Measuring ℓ1 norm of feature gradients. With respect
to the analysis in the section 3, we compared the ℓ1 norm
of the stochastic gradients computed with different methods.
After training, we computed the ℓ1 norm of gradients for
every representation hl(x) for all l ∈ K. Figure 5 shows
that SLAT yields lower norm of the gradients compared to
the other methods on layers injected with latent perturbation
(Input, Conv1, Conv2). It is potentially due to the synergistic
regularization by latent adversarial perturbation.

Ablation study on latent adversarial perturbation. To
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(a) FGSM (b) FGSM-RS

(c) FGSM-CKPT (d) SLAT

Figure 3: Visualization of loss landscape on CIFAR-10 for
various models. We plot the softmax cross entropy loss
projected on adversarial direction and random (Rademacher)
direction with η0 = 8/255 radius.

(a) Reliability (b) Robust accuracy

(c) Adversarial loss (d) Gradient alignment

Figure 4: (a) Robust accuracy (%) of various AT methods
with different ℓ∞ radius on CIFAR-10. The results are aver-
aged on 4 different random seeds. (b)∼(d) Demonstrating
the relationship between catastrophic overfitting and local
linearity on CIFAR-10. Gray dotted line indicates the epoch
at maximum learning rate.

quantify the extent of performance improvement achieved by
the latent adversarial perturbation, we compared the standard
and robust accuracy of the different versions of SLAT (Ta-

ble 2). When the latent adversarial perturbation is excluded,
the proposed method reduces to the conventional FGSM AT.
To consider the effect of step size reduction [2], we also
measured the performance of the version of FGSM AT with
a reduced step size. Table 2 shows that the vanilla FGSM
AT is not sufficient to prevent the catastrophic overfitting
problem regardless of step size. Moreover, we found that
latent adversarial perturbations prevent the catastrophic over-
fitting of FGSM-RS [38]. This result indicates that the latent
adversarial perturbation plays a important role in enhancing
the reliability of adversarial training. Although the latent
adversarial perturbations improve the adversarial robustness
of FGSM-RS to some extent, it does not outperform SLAT.
It is because the latent adversarial perturbation was derived
from the original sample rather than the randomly perturbed
sample as in (4).

Table 2: Ablation study on latent adversarial perturbation
with η0 = 8/255 (CIFAR-10).

Method Standard PGD-50-10

FGSM
(step size= 8/255) 87.42 0.01

FGSM
(step size= 0.9 ∗ 8/255) 90.87 3.09

FGSM-RS
(w/ latent perturbation) 82.87 44.95

SLAT 85.91 47.06

Moreover, to understand the effect of layer depth on latent
adversarial training, we compared the performance of SLAT
with different subsets of layer indexes K. Following [40],
latent adversarial perturbation was added to the last layer of
some selected blocks among conv1, conv2, conv3, conv4 of
Wide ResNet 28-10. The input layer was included equally in
K for all experiments. We experimentally found that the ro-
bustness and standard accuracy decreased significantly when
the latent adversarial perturbations were injected into deeper
layers (Table 3). This implies that simply injecting latent
adversarial perturbation to arbitrarily many hidden layers
is not necessarily be effective and may over-regularize the
networks. These findings provide us an interesting conjec-
ture that the recovery of local linearity should be primarily
confined to early sub-networks that recursively include other
deeper sub-networks. The theoretical analysis is left for
future research.

We additionally conducted the analysis on hyperparam-
eter sensitivity with the adversarial step size ηk (Figure
6a). Standard and adversarial accuracy are measured on
CIFAR-10, where the step size ηk varies from 0.6 ∗ 8/255 to
1.0 ∗ 8/255. The robust accuracy is high when ηk = 8/255.
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Figure 5: ℓ1 norm of gradients on CIFAR-10 after training. The results are averaged on 4 different random seeds.

Table 3: Analysis of adversarial robustness and standard
accuracy based on layer depth change (CIFAR-10).

Layers Standard PGD-50-10 AutoAttack

conv1, conv2
(SLAT) 85.91 47.06 44.62

conv3, conv4 84.60 0.00 0.00

conv1, conv2,
conv3, conv4 81.41 47.3 43.58

(a) Hyperparameter analysis (b) ℓ2-distance

Figure 6: (a) Impact of ηk on robustness. (b) Average ℓ2 dis-
tance between logits of FGSM and R+FGSM [31] adversary
(CIFAR-10).

Thus, we fix ηk as 8/255 for every dataset and layer k ∈ K.
It may work better to fine-tune ηk differently depending on k.
From our preliminary analyses, the unified ηk for the latent
representations worked sufficiently well that we did not feel
the need to fine-tune ηk for every layer. Moreover, while the
trade-off between robustness and accuracy is observed, the
standard accuracy for ηk = 8/255 is still superior than that
of FGSM-GA or PGD-7 (Table 1).

Verifying absence of gradient masking. Although
many certified adversarial defense methods have reported
substantial advances in adversarial robustness, recent works
[19, 9, 3] report that the gradient masking may present a false
sense of security, i.e., making it difficult to generate adver-
sary using gradient methods by obfuscating gradients, while
the adversary still potentially exists. Besides the quantitative
(Autoattack in Table 1) and qualitative (Figure 3, [20, 25])
evidences, we additionally measure the ℓ2 distance between

logits of FGSM and R+FGSM [31] adversary to confirm the
absence of gradient masking following [5, 35, 31]. If the
model exhibits gradient masking, the distance between logits
of FGSM and R+FGSM increases due to the sharp curvature
of loss landscape in vicinity of training examples. Figure
6b shows that the distance of proposed method is relatively
low compared to FGSM AT during the training process, thus
proving that the proposed method does not rely on gradient
masking.

5. Conclusion

In this study, we demonstrate that the latent adversar-
ial perturbation may provide a novel breakthrough for the
efficient AT. The proposed framework allows us to compen-
sate for the local linearity without sacrificing training time.
Further, we establish a bridge between latent adversarial per-
turbation and adversarial loss minimization. It enables us to
learn adversarially robust model in a more reliable manner,
compared to the recent fast adversarial training method [38]
which lacks any form of regularization. By running simula-
tions on various benchmark datasets, we illustrate that our
model significantly outperforms state-of-the-art accelerated
adversarial training methods. The proposed method is fully-
architecture agnostic, has only a few free parameters to tune,
and is potentially compatible with many other AT methods.
We believe that expanding the proposed framework beyond
single-step AT will be an interesting future work.

Acknowledgments

This work was supported by Institute for Information &
Communications Technology Promotion (IITP) grant funded
by the Korea government (No. 2017-0-00451) (No.2019-
0-01371, Development of brain-inspired AI with human-
like intelligence), National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (NRF-
2019M3E5D2A01066267), and Samsung Research Funding
Center of Samsung Electronics under Project Number SRFC-
TC1603-06.

7765



References
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-

marion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In European
Conference on Computer Vision, pages 484–501. Springer,
2020. 5, 6

[2] Maksym Andriushchenko and Nicolas Flammarion. Under-
standing and improving fast adversarial training. Advances in
Neural Information Processing Systems, 33, 2020. 1, 2, 5, 7

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Conference
on Machine Learning, pages 274–283. PMLR, 2018. 4, 5, 8

[4] Alexander Camuto, Matthew Willetts, Umut Şimşekli,
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