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Abstract

Communication between embodied AI agents has re-
ceived increasing attention in recent years. Despite its use,
it is still unclear whether the learned communication is inter-
pretable and grounded in perception. To study the grounding
of emergent forms of communication, we first introduce the
collaborative multi-object navigation task ‘CoMON.’ In this
task, an ‘oracle agent’ has detailed environment information
in the form of a map. It communicates with a ‘navigator
agent’ that perceives the environment visually and is tasked
to find a sequence of goals. To succeed at the task, effective
communication is essential. CoMON hence serves as a basis
to study different communication mechanisms between het-
erogeneous agents, that is, agents with different capabilities
and roles. We study two common communication mecha-
nisms and analyze their communication patterns through
an egocentric and spatial lens. We show that the emergent
communication can be grounded to the agent observations
and the spatial structure of the 3D environment.

1. Introduction

Research in embodied AI agents that learn to perceive,
act, and communicate within 3D environments has become
popular in recent years [3, 6, 9]. Collaboration between
multiple agents has also received an increasing amount of
attention. Consequently, there has been renewed interest
in studying communication mechanisms that increase the
effectiveness of collaborative agents [42].

A key goal of communication is to transmit informa-
tion. Therefore, to analyze communication it is common to
study collaborative tasks where agents have heterogeneous
abilities or asymmetric access to information [10, 40]. A
heterogeneous agent setup also corresponds to real-world
scenarios such as guiding a delivery driver to our home
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Figure 1. We propose a collaborative multi-object navigation task
(CoMON) where an oracle agent AO communicates with a nav-
igator agent AN . The oracle AO possesses a global map and
the navigator AN needs to perceive and navigate a 3D environ-
ment to find a sequence of goal objects while avoiding collisions.
Through this task, we study the impact of structured and unstruc-
tured communication mechanisms on navigation performance, and
the emergence of messages grounded in egocentric perception.

over a phone call. However, prior work on emergent com-
munication has adopted simplified settings like reference
games [5, 43] or agents communicating within 2D environ-
ments [10]. Work involving communication in 3D envi-
ronments has focused on whether communication can lead
to improved performance through cooperation in solving
the task [32–34], rather than detailed interpretation of the
emergent communication patterns. Despite this rich litera-
ture studying emergent communication, there has been no
systematic analysis and interpretation of emergent commu-
nication in realistic 3D environments.

In this paper, we focus on interpreting emergent communi-
cation through an egocentric and spatially grounded analysis.
To do this, we define a collaborative multi-object navigation
task (CoMON), which extends the recently proposed multi-
object navigation (MultiON) task [64]. The CoMON task
requires a pair of agents—an oracle with privileged knowl-
edge of the environment in the form of a map, and a navigator
who can perceive and navigate the environment—to com-
municate with each other in order for the navigator to find
and reach a sequence of goal objects (see Figure 1). The
primary role of this task is to study the emergent communi-
cation between heterogeneous agents in visually realistic 3D
environments.
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We conduct a rigorous comparison and interpretation
of two families of communication mechanisms: unstruc-
tured and structured communication. The first is commonly
adopted in non-visual RL settings [25, 46] and corresponds
to the ‘continuous communication’ of DIAL by Foerster et al.
[25]. The latter introduces an inductive bias by imposing
a discrete message structure and has been adopted by the
Embodied AI community [33, 34].

We find that: 1) structured communication can achieve
higher navigation performance than unstructured commu-
nication; 2) agents using structured communication come
close to matching the success rate of ‘oracle’ communication
but are less efficient; 3) interpretable messages akin to ‘I am
looking for the red goal’ emerge in both communication
mechanisms; and 4) both communication mechanisms lead
to the emergence of egocentrically-grounded messages such
as ‘goal is close in front of you,’ and ‘goal is behind you.’

2. Related work
Our work is related to cooperation and coordination be-

tween multiple agents [14, 24, 27, 31, 41, 44, 45, 47, 51, 54,
55, 67]. We discuss relevant work in emergent communica-
tion, collaborative embodied AI, and embodied navigation
tasks.
Emergent communication. Work on understanding the
emergence of communication through simulations has a long
history. Batali [5] studied this by encoding simple phrases
into a series of characters that need to be decoded by another
agent. Steels [60] studied a similar experiment with robots
that had to generate a shared lexicon to perform well in a
guessing game. Foerster et al. [26] showed that RL agents
can learn successful communication protocols. Foerster et al.
[25] then showed that agents can learn communication proto-
cols in the form of messages that are sent to each other. When
the agents are allowed to communicate, interesting communi-
cation patterns emerge [11, 13, 29, 30, 37, 43, 49, 52, 53, 61].
More recently, Lazaridou et al. [43] show emergence of nat-
ural language in referential games. Das et al. [20] propose
a cooperative image guessing game between two static het-
erogeneous agents where the agents communicate through
natural language. Mordatch and Abbeel [53] investigate the
emergence of grounded compositional language in multi-
agent populations. For a survey of emergent communication
methods we refer the reader to Lazaridou and Baroni [42].

Our work is similar in spirit to Kottur et al. [40], in that
we study and analyze emergent communication patterns and
what information they communicate. Unlike that work and
other work in emergent communication, we are less inter-
ested in whether compositional language emerges when us-
ing discrete symbols, but rather on whether there is con-
sistent interpretation of messages between the two agents,
and whether they correspond to available visual informa-
tion. Kajić et al. [36] study how agents develop interpretable

communication mechanisms in grid-world navigation envi-
ronments and visualize agent policies conditioned on mes-
sages. We have a similar focus but we study continuous
communication in realistic 3D environments.
Collaborative embodied AI tasks. While single agent em-
bodied tasks have been studied in depth, there is less work on
collaborative embodied agents. Das et al. [21] develop a tar-
geted multi-agent communication architecture where agents
select which of the other agents to communicate with. Jain
et al. [33] introduce a furniture-lifting task where two agents
must navigate to a furniture item. These agents must coordi-
nate to satisfy spatial constraints for lifting the heavy furni-
ture. Followup work studies a furniture-moving task where
the agents relocate lifted furniture items [34, 35]. However,
the agents are homogeneous and no map representation is
studied in these prior works. Iqbal and Sha [32] study co-
ordinated exploration by introducing handcrafted intrinsic
rewards to incentivize agents to explore ‘novel’ states. Here,
agents do not explicitly communicate with each other. Our
work is focused on studying a spectrum of communication
mechanisms for heterogeneous agents in visually realistic
indoor 3D environments.
Navigation tasks in Embodied AI. Agents capable of navi-
gating in complex, visual, 3D environments [2, 4, 12, 15, 19,
22, 38, 39, 65, 68, 69] have been studied extensively. An-
derson et al. [3] divide embodied navigation tasks into point
goal navigation (PointNav), object goal navigation (Object-
Nav) and room goal navigation (RoomNav). Pertinent to
this work, ObjectNav agents are given goal cues such as an
object category label or an image of the goal object [7, 16–
18, 70, 71, 73]. Long-horizon navigation tasks are most rele-
vant to our work [8, 23, 63, 66, 72]. Map-based navigation
methods have been benchmarked on multi-object naviga-
tion (multiON) i.e. navigating to an ordered sequence of
goal objects [64]. Since we study communication involving
map-based memory, we extend multiON to a collaborative
setting.

3. Task

Here, we describe the collaborative multiON (CoMON)
task, the agent observation and action spaces, and discuss
alternatives to sharing information between the agents.
Background task (multiON). In an episode of mul-
tiON [64], an agent must navigate to an ordered sequence
of goal objects G placed within an environment. The agent
indicates discovery of a goal object by executing a FOUND
action within a threshold distance from the goal. The objects
in G are sampled from a set of k unique categories. An
episode is a failure if the agent calls FOUND while not in the
vicinity of the current goal, or if the allocated time budget
is exceeded. We use m-ON to denote an episode with m
sequential goals.
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CoMON task. In Collaborative MultiON (CoMON), an
episode involves two heterogeneous agents AO and AN .
AO is a disembodied oracle, which cannot navigate in the
environment. However, AO has access to oracle information
(detailed later) of the environment’s state. AN is an embod-
ied navigator, which navigates and interacts with the envi-
ronment. AN carries out a multiON [64] task. To optimize
the team’s (shared) rewards, both agents must collaborate.
For this, AO and AN perform the task collaboratively by
communicating via a limited-bandwidth channel.
Agent observations. AO has access to a fixed top-down
view of the scene along with AN ’s position and orientation.
The scene is discretized and represented as an oracle map
M , a 3D tensor. The first two dimensions correspond to the
horizontal and vertical axes of the top-down view, and the
third contains semantic information in each cell M [i, j]:

• Occupancy: whether location [i, j] is free space (i.e.,
navigable), occupied, or out of the scene bounds.

• Goal objects: categorical variable denoting which goal
object is located at [i, j] or a ‘no object’ indicator.

The observations of AN are consistent with multiON [64],
allowing architectures trained on the single-agent task to
be used in our collaborative setting. At time-step t, the
observations of AN include:

• RGBD: egocentric vision and depth frame ot.
• Object: categorical variable denoting the current goal

object as one-hot vector gt.
• Previous action: agent action at previous time step as

one-hot vector at−1.

Agent action space. At each time step, both AO and AN

send messages to each other. AN additionally takes an en-
vironment action following the communication round. The
action space consists of four actions: { FORWARD, TURN
LEFT, TURN RIGHT, and FOUND }. FORWARD takes the
agent forward by 0.25m and turns are 30◦ each.
Task design alternatives. We note that there are other
choices for how to distribute information between AO and
AN . For example, the goal sequence information could be
given to AO. This would correspond to the practical sce-
nario of a dispatch operator communicating with a taxi driver.
However, this would lead to most information being concen-
trated with AO and obviate the need for frequent two-way
communication between AO and AN . Yet another setting
would hide AN ’s position and orientation on the map from
AO. Our preliminary investigations included experiments
in this setting, with no information about AN ’s position on
the map being given to AO. We empirically observed that
this was a hard learning problem, with the agents failing
to acquire meaningful task performance or communication
strategies. We hypothesize that this may be partly due to a

strong coupling with the independently challenging localiza-
tion problem (i.e., determining AN ’s position and orientation
in the map through egocentric observations from AN ’s per-
spective). Since there is a rich literature for localization
based on egocentric visual data (e.g., see Fuentes-Pacheco
et al. [28] for a survey), we factor out this aspect allowing a
deeper focus on interpretation of emergent communication.

4. Agent models

We provide an overview of our agent models by describ-
ing the communication mechanisms, the agent network ar-
chitectures, the reward structure and implementation details.

4.1. Communication mechanisms

We study two types of communication mechanisms: un-
structured [25, 46] and structured [33, 34]. Their key differ-
ence is that the unstructured mechanism implements free-
form communication via a real-valued vector, whereas the
structured communication mechanism has an inductive bias
through the imposed message structure. Figure 2 illustrates
these two types of communication. Each round of commu-
nication involves the two agents synchronously sending a
message to each other. The receiving agent uses the message
to refine its internal representation (i.e., belief). The same
architecture is used for both agents and for each communica-
tion round.
Unstructured communication (U-Comm). The agent com-
municates a real-valued vector message. For sending the
message, the belief is passed through a linear layer to pro-
duce the sent message. On the receiving side, the received
message is concatenated with the belief and passed through
two fully connected layers and skip connected through the
belief to obtain the refined belief.
Structured communication (S-Comm). The agent has a
vocabulary of K words w1, . . . , wK , implemented as learn-
able embeddings. Note that the embeddings for the two
rounds, and the two agents differ and are separately learned.
The sent message is a set of probabilities p1, . . . , pK (where∑K

l=1 pl = 1) corresponding to the K words. These prob-
abilities are obtained by passing the belief through a linear
layer followed by a softmax layer. On the receiving side,
the agent decodes these incoming message probabilities by
linearly combining its word embeddings using the proba-
bilities as weights, i.e., it computes

∑K
l=1 plwl. Similar to

the previous mechanism, this decoded message is concate-
nated with the belief and passed through two fully connected
layers and skip connected to obtain the refined belief. In
early experiments, we tried using discrete tokens instead of
a weighted sum. To make the model differentiable, we used
the Gumbel-Softmax trick but found the agents could not
be trained successfully. We hypothesize this is due to the
high-dimensional input space and the numerical instability
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Figure 2. Architecture of the send and receive branches for the unstructured (U-Comm) and structured (S-Comm) communication
mechanisms. On the sending branch, the agent creates a message by passing through a linear layer for U-Comm and by passing through a
linear layer and a softmax layer for S-Comm. On the receiving branch for U-Comm, the message is concatenated with the belief and passed
through a linear layer and skip connected to obtain the refined belief. For S-Comm, the message is first decoded by linearly combining the
word embeddings wk while using the probabilities pk as weights (

∑K
k=1 pkwk). The embeddings are learned for each agent and round.

of Gumbel-Softmax [56].

4.2. Agent network architecture

Figure 3 illustrates the network architecture. We adapt the
TBONE architecture which has been shown to be successful
for multi-agent embodied tasks [33, 34]. For readability we
drop the subscript t denoting the time step. AO encodes the
map by storing two 16-dimensional learnable embeddings
for the occupancy and goal object category information at
each grid location. Since AO has access to AN ’s position
and orientation, it programmatically crops and rotates the
map M around AN ’s position and orientation to build an
egocentric map E. This implicitly encodes AN ’s position
and orientation into E which is then passed through a CNN
and a linear layer to obtain AO’s initial belief b̂O.

AN passes its RGBD observations o through a CNN and
a linear layer to obtain an observation embedding vo. It
also passes the object category g and previous action at−1

through separate embedding layers to obtain a real-valued
goal embedding vg and action embedding va respectively.
vo and vg are concatenated to obtain AN ’s initial belief b̂N .

Both AO and AN go through two rounds of communica-
tion (as detailed in Section 4.1) to obtain their final beliefs
bO and bN respectively. AN concatenates its final belief
bN with the previous action embedding va and passes it
through a GRU to obtain a state vector s. Following Jain
et al. [33, 34], we use an actor-critic architecture where the
state vector s is passed through: i) an actor head to estimate
the distribution over the action space; and ii) a critic head
that outputs a value estimating the utility of the state. bO is
left unused and hence it is discarded.

4.3. Reward structure

We model our multi-agent setup using the centralized
training and decentralized execution paradigm [24, 47, 50,
59, 62]. In this paradigm, a central critic estimates the value
function V (s) of all the agents. Execution during testing is
decentralized and each agent takes independent actions. The
agents are trained using the navigator (AN ) reward: rt =

1
[reached subgoal]
t rgoal+rcloser

t +rtime penalty where 1[reached subgoal]
t

is a binary indicator of finding a goal at time step t, rgoal

is the reward for finding a goal, rcloser
t is the decrease in

geodesic distance to the goal between the previous and the
current time step, and rtime penalty is the penalty per time step.

4.4. Implementation details

Following Wani et al. [64], we set rgoal to 3 and rtime penalty

to −0.01. We train with PPO [58], using 16 parallel threads
with 4 mini-batches and 2 epochs per PPO update. Agents
are trained until 50M steps accumulate across worker threads.
The map M is of dimension 300 × 300 and each cell cor-
responds to a 0.8m × 0.8m patch on the ground. See the
supplement for more details.

5. Experiments
Here, we describe the experimental setup we adopt to

study both communication mechanisms.

5.1. Agent models

All agent models share the base architecture explained
in Sec. 4. For ablations each model is adjusted as follows
(see supplement for details):
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Figure 3. Overall agent model architecture. AO and AN process their respective inputs to get initial beliefs b̂O and b̂N which encode the
agent’s belief about the current observation. These are refined by a communication channel into final beliefs bO and bN . The belief bN is
concatenated with the previous action, and passed through a GRU to actor and critic heads to obtain policy and value function estimates.

NoCom [64] is the model without agent AO. This represents
the case where navigator AN can’t receive help from an
oracle. It hence represents the ‘no communication’ scenario.

Rand U-Comm represents a model using unstructured com-
munication while the messages sent between the agents are
Gaussian random vectors. This provides a lower bound for
unstructured communication.

Rand S-Comm represents a model using structured com-
munication while the messages sent between the agents are
random multinomial probability vectors. This provides the
lower bound for structured communication.

U-Comm represents a model using unstructured communica-
tion as explained in Sec. 4.1.

S-Comm represents a model using structured communica-
tion as explained in Sec. 4.1.

OracleMap [64] combines both AO and AN into a single
agent. Effectively, this agent has access to the map and it has
to navigate in the environment without a need for communi-
cation. Hence, it sets an upper bound for performance.

5.2. Datasets

We use the multiON dataset [64] based on the AI Habitat
simulator [57]. This dataset contains episodes with agent
starting position, orientation, and goal locations. There
are eight goal objects with identical cylindrical shape but
different colors. The episodes are generated from Matter-
port3D [15] scenes. We follow the standard scene-based
Matterport3D train/val/test split with episodes established
by Wani et al. [64]. Each scene contains 50,000 episodes for
the train split and 12,500 episodes for the val and test splits.
We train models for 3-ON (3 sequential goals) and evaluate
on 1-ON, 2-ON, 3-ON, 4-ON and 5-ON.

PROGRESS (%) PPL (%)

1-ON 2-ON 3-ON 1-ON 2-ON 3-ON

NoCom 56 39 26 35 26 16

Rand U-Comm 59 40 28 36 28 18

Rand S-Comm 50 31 24 33 24 16

U-Comm 87 77 63 60 51 39

S-Comm 85 80 70 67 59 50

OracleMap 89 80 70 74 64 52

Table 1. Task performance metrics for different communica-
tion mechanisms evaluated on the 1-ON, 2-ON and 3-ON tasks.
Rand S-Comm and S-Comm have a vocabulary size of two. For a
fair comparison, both Rand U-Comm and U-Comm have the same
message length of two elements. The random baselines perform
poorly, and are close to the NoCom (i.e. ‘no communication’) base-
line. Both the U-Comm and S-Comm communication mechanisms
perform much better and approach OracleMap, with S-Comm be-
ing mostly more successful (higher PROGRESS) and more efficient
(higher PPL), especially as the task becomes more challenging.
Variance in PROGRESS for all models in 3-ON is less than 2%.

5.3. Quantitative evaluation

We adopt the four metrics used in Wani et al. [64]. SUC-
CESS: episode success rate; PROGRESS: fraction of goal
objects found in an episode; SPL: success weighted by path
length; PPL: progress weighted by path length.

We summarize our experimental findings in Table 1. We
report PROGRESS and PPL for 1,000 val episodes. As ex-
pected, OracleMap has the highest performance among all
the agent models, with significant gains over NoCom. Rand
U-Comm and Rand S-Comm perform close to NoCom
which shows that the learnt messages indeed contain useful
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Figure 4. Value of first and second element of m1
N→O message

plotted against goal object color in U-Comm. Goal object colors
are on the x-axis and the distribution of m1

N→O values is on the
y-axis. The box plots show 0th, 25th, 50th, 75th, and 100th quartiles
after removing outliers. Note that AN sends different messages for
differently colored objects. The ordering of the colors by average
message value appears to respect color hue similarity (e.g., red and
pink are close together and far from yellow and white).

information. We observe that S-Comm performs better than
U-Comm. The difference is more pronounced as the task
difficulty increases. PPL decreases by 10.44% for 1-ON,
13.5% for 2-ON, and 22% for 3-ON. This shows that the
imposed communication structure helps learn more efficient
communication strategies. NoCom and OracleMap are the
same as in Wani et al. [64] but we train for 50M steps instead
of 40M steps. To test generalization, we also evaluate on
4-ON (S-Comm PROGRESS is 63% vs. U-Comm 41%) and
5-ON (S-Comm PROGRESS is 52% vs. U-Comm 26%). This
indicates that S-Comm agents are better able to generalize
to harder tasks (see supplement for more details).

6. Communication analysis
Here, we interpret the emergent communication between

the agents. We use the notation mround
sender→receiver. Hence

m1
O→N denotes the message sent by AO to AN for round

one. At each step, four messages are sent between the
agents: m1

O→N , m1
N→O, m2

O→N , and m2
N→O. We inter-

pret m1
N→O and m2

O→N in the main paper, and discuss the
interpretation of m1

O→N in the supplement. We do not inter-
pret m2

N→O as it is used to refine belief b̃O to bO which is
not used anywhere. For U-Comm, we interpret messages of
length 2 and for S-Comm, we interpret vocabulary of size 2
and 3 (see supplement for vocabulary size 3).

6.1. U-Comm interpretation

What does AN tell AO in m1
N→O? This is the first message

that AN sends to AO. We hypothesize that it is used to
communicate the goal object color. This is intuitive as AO

needs to know the goal to which AN must navigate. This is
similar to a human asking “where is the green object goal
located?” Figure 4 shows the distribution of the two elements

of m1
N→O w.r.t. goal object category (x-axis). The data for

the plot is collected from each step across 1,000 validation
episodes. It appears that AN sends different messages for
different objects. To test this hypothesis, we quantify the
correlation between m1

N→O and the goal object. We fit linear
probes [1] on m1

N→O to classify goal objects. Linear probes
use linear classifiers to map input data to output and are
trained using a cross-entropy loss. We use the same data for
this analysis as for Figure 4. We split the data into train and
val with a ratio of 3:1 and train the probe to predict the goal
object category with m1

N→O as input. The probe achieves an
accuracy of 69.7% on the val split, supporting our hypothesis
that m1

N→O communicates the goal object color.
What does AO tell AN in m2

O→N? This is the second mes-
sage that AO send to AN . We hypothesize that AO uses it
to communicate the relative position of the goal w.r.t. AN .
This is akin to a human saying “the goal you asked for is
in front of you.” Figure 5 shows the distribution of the two
elements of m2

O→N against the current object goal in the
spatial reference frame defined by the position and orienta-
tion of AN (egocentric frame) at the environment step when
the message was sent. In the figure, the agent is facing up
and the field-of-view is marked by red lines. When the goal
is in front of AN , AO sends smaller values for the 1st ele-
ment and higher values for the 2nd element of m2

O→N . We
observe that the emergent communication exhibits an angu-
lar pattern. To quantify this observation, we again fit linear
probes. Given m2

O→N , we predict the angle of the goal ob-
ject w.r.t. AN ’s heading direction (+y axis). Since the plot
is mostly symmetric about the y-axis, we take the absolute
value of the angle from the heading direction and bin the
angles into 4 bins: [0◦, 45◦), [45◦, 90◦), [90◦, 135◦), [135◦,
180◦). Given m2

O→N , our probe has to predict the bin to
which the goal location would belong. We observe a clas-
sification accuracy of 58% (compared to chance accuracy
of 25%), providing support for our hypothesis that m2

O→N

conveys the egocentric relative position of the goal.
Since both AO and AN send messages that are statis-

tically dependent on their respective observations, we can
conclude that they exhibit positive signaling [48] (sending
messages related to their observations or actions).

6.2. S-Comm interpretation

In this communication mechanism, the messages ex-
changed between the agents consist of probabilities p1 and
p2 for words w1 and w2 respectively. In Figure 7 we plot
the distribution of p1 for messages m1

N→O and m2
O→N on

all val set episodes (note that p2 = 1− p1, which can hence
be inferred from the distribution of p1). We observe that
most probabilities for vocabulary of size 2 are close to 0
or 1. Based on this observation, for vocabulary size 2, we
bin the probabilities into three classes: ∆1 (p1 < 0.2), ∆2

(0.2 ≤ p1 ≤ 0.8), or ∆3 (p1 > 0.8). Here, we only inter-
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Figure 5. Egocentric visualization of U-Comm communication symbol m2
O→N . The two plots visualize the value of the first and second

element of the message plotted w.r.t. the relative coordinates of the goal object from AN . The navigator agent AN is facing the +y axis
and its field-of-view is marked with red lines. The plot on the left corresponds to the 1st dimension of the message, while the plot on the
right corresponds to the 2nd dimension. The value of each dimension is indicated by the color hue. We observe that higher values of the 1st

dimension correspond to ‘farther behind’, while higher values of the 2nd dimension are clustered ‘close and in front’ of the agent.

pret for vocabulary size 2 and defer the interpretation for
vocabulary size 3 to the supplement.

What does AN tell AO in m1
N→O? We again hypothesize

that AN uses m1
N→O to communicate which goal it has to

navigate to. Since there are eight goal categories, AN needs
to communicate which one is the current goal. We observe
that AN sends ∆1 when the goal object is a red, white or
black, and sends ∆2 otherwise. To quantify the correlation
between the communication symbol and the current goal,
we train a random forest classifier that predicts the commu-
nication symbol given the object category. Here, we use
random forest classifiers rather than linear probes to better
handle the non-linear decision boundaries that emerge in
the m2

O→N interpretation as seen in Figure 6. Note that to
interpret U-Comm, we predict properties like goal category
or goal direction using the messages. In contrast, to interpret
S-Comm, we predict communication symbols using proper-
ties. In both cases, we predict a discrete variable like object
category or goal direction in U-Comm and communication
symbol in S-Comm. The classifier used here is trained us-
ing data from all the validation episodes. The data is split
into train and test sets and our classifier attains almost 100%
accuracy on the test set (see supplement).

What does AO tell AN in m2
O→N? Similar to U-Comm,

AO utilizes m2
O→N to communicate the goal location. Fig-

ure 6 shows the symbols sent by AO against the relative
location of the current object goal in the egocentric frame
of AN when the message was sent (similar to Figure 5).
Points are accumulated across 1000 validation episodes of

1-ON. We observe that AO communicates ∆1, ∆2 or ∆3

depending on the position of the current target object with
respect to AN . To verify this observation, we train a random
forest classifier to predict the communication symbol from
the (x, y) coordinate of the current target goal in AN ’s ref-
erence frame. We observe an accuracy of about 89% with
high precision and recall for all three classes ∆1, ∆2 and
∆3 (details in supplement). With a larger vocabulary of size
3 AO can send even more fine-grained information about
the location of the current goal (see supplement). In both
cases, we observe that the majority of symbols are associated
with areas within the field of view of AN (delineated in red).
Thus, AO uses a higher proportion of the communication
bandwidth to communicate to AN the location of the current
goal if it is in AN ’s field of view. Possibly, it is more advan-
tageous for AN to have precise information about the goal
location when it is in front. If the goal is in the field of view,
AO sends a different symbol depending on the distance of
the current goal from AN . Here also, messages sent by AO

and AN are dependent on their observations. Hence, both of
them exhibit positive signaling.

Are AN ’s actions influenced by m2
O→N? Agents exhibit

positive listening [48] if the received messages influence
the agent policy. Table 2 reports the percentage of each
action taken for communication symbols in S-Comm (with
vocabulary size 2). We observe that AN never calls FOUND
when it receives ∆3. This is intuitive as ∆3 is communicated
when the goal is far ahead of AN . We also observe that
AN is more likely to move forward when it receives ∆3 as
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Figure 6. Egocentric visualization of S-Comm communication symbol m2
O→N . The plots show the relative coordinates of the current

goal object from AN ’s perspective when AO communicates the symbol through S-Comm with vocabulary size two. The navigator agent
(AN ) is facing the +y axis and its field-of-view is marked with red lines. Data points are accumulated across all validation episodes, and we
plot contour lines of the bivariate density distribution. Each data point is a message with (x, y) coordinates determined from the coordinates
of the current goal object in AN ’s egocentric reference frame when the message was sent. The first three plots are for each communication
symbol, and the right-most combines all symbols. Note how each symbol represents distinct regions that are egocentrically organized around
the agent: ∆1 captures ‘behind and not visible’, ∆2 corresponds mostly to ‘close, in front’, and ∆3 is ‘farther in front’.
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Figure 7. Distribution of probability weight p1 associated with
w1 in messages m1

N→O and m2
O→N for S-Comm. The vocabu-

lary consists of two words, w1 and w2. Since p1+p2 = 1, we only
plot p1 here. For m1

N→O , probabilities are concentrated at p1 = 0
and p1 = 1. For m1

N→O , distribution is comparatively uniform
with higher probabilities at p1 = 0 and p1 = 1.

FOUND FORWARD TURN LEFT TURN RIGHT

∆1 0.8 43.9 24.7 30.6
∆2 0.3 52.2 28.7 18.8
∆3 0.0 63.4 18.9 17.7

Table 2. Distribution over actions taken by AN upon receiving
each S-Comm communication symbol (vocabulary size 2). Val-
ues in each row report percentage out of all actions taken when
that symbol is received. Note that ∆3 leads to a high percentage of
FORWARD actions and no FOUND actions. This is intuitive in light
of the spatial distribution of goal positions relative to AN when ∆3

is communicated, as visualized in Figure 6.

compared to ∆1 or ∆2. This is also intuitive as AN is more
likely to move forward when the goal is far ahead.

What happens when the goal is in AN ’s view? The distri-

bution of the exchanged messages remains unchanged, but
how AN acts based on the received messages is different.
We performed two experiments at evaluation time to study
this case. 1) AO sends random messages when the goal
is visible to AN . We find this does not change the overall
performance of AN . 2) We insert an incorrect goal in the
scene while keeping AO’s map unchanged. PROGRESS and
PPL metrics drop to 29% and 7% respectively. We conclude
that when the goal is visible, AN ignores messages from AO

and relies on its perception to navigate.

7. Conclusion

We proposed the collaborative multi-object navigation
task (CoMON) for studying the grounding of learned com-
munication between heterogeneous agents. Using this task,
we investigated two families of communication mechanisms
(structured and unstructured communication) between het-
erogeneous agents. We analyzed the emergent communica-
tion patterns though an egocentric and spatially grounded
lens. We found the emergence of interpretable perception-
specific messages such as ‘I am looking for X’ and egocen-
tric instructions such as ‘look behind’ and ‘goal is close in
front.’ We believe the CoMON task, along with the interpre-
tation framework for communication between agents that we
presented will help to enable systematic study of grounded
communication for embodied AI navigation agents.
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[51] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-
Piat. Hysteretic q-learning: an algorithm for decentralized
reinforcement learning in cooperative multi-agent teams. In
IROS, 2007. 2

[52] Francisco S Melo, Matthijs TJ Spaan, and Stefan J Witwicki.
Querypomdp: Pomdp-based communication in multiagent
systems. In EUMAS, 2011. 2

[53] Igor Mordatch and Pieter Abbeel. Emergence of grounded
compositional language in multi-agent populations. In AAAI,
2018. 2

[54] Shayegan Omidshafiei, Jason Pazis, Christopher Amato,
Jonathan P How, and John Vian. Deep decentralized multi-
task multi-agent reinforcement learning under partial observ-
ability. In ICML, 2017. 2

[55] Liviu Panait and Sean Luke. Cooperative multi-agent learning:
The state of the art. AAMAS, 2005. 2

[56] Andres Potapczynski, Gabriel Loaiza-Ganem, and John P
Cunningham. Invertible gaussian reparameterization: Revisit-
ing the gumbel-softmax. NeurIPS, 2020. 4

[57] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied AI Research. In
ICCV, 2019. 5

[58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 4

[59] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl
Hostallero, and Yung Yi. Qtran: Learning to factorize with
transformation for cooperative multi-agent reinforcement
learning. ICML, 2019. 4

[60] Luc Steels. Evolving grounded communication for robots.
Trends in Cognitive Sciences, 2003. 2

[61] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learn-
ing multiagent communication with backpropagation. In
NeurIPS, 2016. 2

[62] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Mar-
ian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc
Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, and
Thore Graepel. Value-decomposition networks for coopera-
tive multi-agent learning. arXiv preprint arXiv:1706.05296,
2017. 4

[63] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. arXiv
preprint arXiv:2106.14405, 2021. 2

[64] Saim Wani, Shivansh Patel, Unnat Jain, Angel X. Chang, and
Manolis Savva. Multi-ON: Benchmarking Semantic Map
Memory using Multi-Object Navigation. In NeurIPS, 2020.
1, 2, 3, 4, 5, 6

[65] Luca Weihs, Jordi Salvador, Klemen Kotar, Unnat Jain, Kuo-
Hao Zeng, Roozbeh Mottaghi, and Aniruddha Kembhavi.
AllenAct: A framework for embodied AI research. arXiv
preprint arXiv:2008.12760, 2020. 2

15962



[66] Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and Roozbeh
Mottaghi. Visual room rearrangement. In CVPR, 2021. 2

[67] Luca Weihs, Aniruddha Kembhavi, Kiana Ehsani, Sarah M
Pratt, Winson Han, Alvaro Herrasti, Eric Kolve, Dustin
Schwenk, Roozbeh Mottaghi, and Ali Farhadi. Learning
generalizable visual representations via interactive gameplay.
In ICLR, 2021. 2

[68] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jiten-
dra Malik, and Silvio Savarese. Gibson env: Real-world
perception for embodied agents. In CVPR, 2018. 2

[69] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg,
Micael Tchapmi, Alexander Toshev, Roberto Martı́n-Martı́n,
and Silvio Savarese. Interactive gibson: A benchmark for
interactive navigation in cluttered environments. In ICRA,
2020. 2

[70] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi
Parikh. Visual curiosity: Learning to ask questions to learn
visual recognition. In CoRL, 2018. 2

[71] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Aux-
iliary tasks and exploration enable objectnav. arXiv preprint
arXiv:2104.04112, 2021. 2

[72] Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit Bansal,
Tamara L. Berg, and Dhruv Batra. Multi-target embodied
question answering. In CVPR, 2019. 2

[73] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. In ICRA, 2017. 2

15963


