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Abstract

In this work, for the first time, we address the prob-
lem of universal cross-domain retrieval, where the test data
can belong to classes or domains which are unseen during
training. Due to dynamically increasing number of cate-
gories and practical constraint of training on every possi-
ble domain, which requires large amounts of data, gener-
alizing to both unseen classes and domains is important.
Towards that goal, we propose SnMpNet (Semantic Neigh-
bourhood and Mixture Prediction Network), which incor-
porates two novel losses to account for the unseen classes
and domains encountered during testing. Specifically, we
introduce a novel Semantic Neighborhood loss to bridge the
knowledge gap between seen and unseen classes and en-
sure that the latent space embedding of the unseen classes
is semantically meaningful with respect to its neighboring
classes. We also introduce a mix-up based supervision at
image-level as well as semantic-level of the data for training
with the Mixture Prediction loss, which helps in efficient re-
trieval when the query belongs to an unseen domain. These
losses are incorporated on the SE-ResNet50 backbone to
obtain SnMpNet. Extensive experiments on two large-scale
datasets, Sketchy Extended and DomainNet, and thorough
comparisons with state-of-the-art justify the effectiveness of
the proposed model.

1. Introduction

Due to the availability of large amount of data in
different domains of multi-media, cross-domain retrieval
has gained significant attention. It addresses the chal-
lenging problem of retrieving relevant data from a do-
main (say, image), when the query belongs to a differ-
ent domain (e.g. sketch, painting etc.). As motiva-
tion for our work, we focus on the specific application
of sketch-based image retrieval (SBIR) [14][34], which
has wide range of applications in e-commerce, forensic
data matching, etc. Considering the dynamic real-world,

* Equal contribution.

where the search dataset is always being augmented with
new categories of data, recently, the focus has shifted to
zero-shot SBIR (ZS-SBIR) or generalized ZS-SBIR (GZS-
SBIR) [26][32][4][15][51[7], in which, the query and search
set samples belong to classes not seen during training.

The generic architecture for ZS-SBIR (or other cross-
domain retrieval applications) consists of two parallel
branches, each consisting of a feature extractor and a clas-
sifier, to learn the latent-space representations of the data
from individual domains (here, sketches and images). The
domain gap in this latent space is bridged by the semantic
descriptions [19][22] of the seen classes. During testing,
the query sketch and search set images are projected to this
space and compared directly for retrieval. But if the query
belongs to a different domain, say painting, then this net-
work needs to be re-trained, with painting and images as
the two domains. This not only requires the training to be
performed for every domain-pair with sufficient amount of
data, but also, the query domain needs to be known a-priori.

Here, we attempt a more realistic and significantly
more challenging cross-domain retrieval scenario, where
the query data can belong not only to unseen classes, but
also to unseen domains - which we term as universal cross-
domain retrieval (UCDR). It is a combination of two well-
studied, but separate problems in literature, namely, ZS-
SBIR, which accounts for test data from unseen classes
and domain generalization (DG) [28][10], which accounts
for test data from unseen domains in the classification. To
this end, we propose SnMpNet (Semantic Neighbourhood
and Mixture Prediction Network), which is a single-branch
network consisting of a feature extractor and classifier, for
learning a domain-independent embedding of input data,
that also generalizes to unseen category test data. For gener-
alizing to unseen classes, we propose Semantic Neighbour-
hood Loss, to represent the unseen classes in terms of their
relative positions with the seen classes. In addition, we
exploit the mix-up technique [33] to populate our training
set with samples created through both inter-class and inter-
domain mixing to prepare for unseen domains of query sam-
ples during testing. To better generalize across domains, we
propose a novel Mixture Prediction Loss. The contributions
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of this work are summarized below:

(1) We propose a novel framework SnMpNet, to address the
universal cross-domain retrieval scenario, where the query
data may belong to seen / unseen classes, along with seen /
unseen domains. To the best of our knowledge, this is the
first work in literature addressing this extremely challeng-
ing problem.

(2) We propose two novel losses, namely Semantic Neigh-
bourhood loss and Mixture Prediction loss, to account for
unseen classes and unseen domains during testing.

(3) Extensive experiments and analysis of the proposed
framework on Sketchy-Extended [24] and DomainNet [21]
datasets are reported along with other state-of-the-art ap-
proaches modified for this application.

2. Related Work

We first describe the recent advancements in ZS-SBIR
and DG, since UCDR can be considered as a combination of
these. We also discuss the recently proposed classification-
protocol for samples from unseen-class and domains and
explain its differences with UCDR.

Zero-shot Sketch-based Image Retrieval (ZS-SBIR):
ZS-SBIR protocol was first proposed in [26][32]. Later,
several algorithms [5][7][4][6][31] have been proposed
to address ZS-SBIR and its generalized version GZS-
SBIR. All these algorithms follow the standard architec-
ture with two parallel branches. In contrast, [15] pro-
poses a single branch of network for processing data from
both domains, along with a domain-indicator to embed
the domain-discriminating information. All these algo-
rithms use semantic-information [19][22] to account for the
knowledge-gap, an idea which is inspired from zero-shot
learning (ZSL) [29], which we will discuss later. UCDR
generalizes the task of ZS-SBIR to additionally handle un-
seen domains during retrieval.

Domain Generalization (DG): DG refers to the task
of classifying data from unseen domains, when the net-
work has been trained with data from several other do-
mains belonging to the same classes. This is usually ad-
dressed by learning a domain-invariant feature representa-
tion of the data, using techniques like self-supervision [2],
triplet loss [28], maximum mean discrepancy (MMD) [20]
loss, adversarial loss [11]. Recently, meta-learning [9] and
episodic training [10] have shown impressive performance
for the DG task. UCDR generalizes DG to additionally han-
dle unseen classes in a retrieval framework.

Zero-shot Domain Generalization (ZSDG): Our work
is also related to the well-researched Zero-shot Learn-
ing (ZSL) task, where the goal is to classify images from
unseen classes during testing. Several seminal works have
been proposed for this problem [23][1][35][25][30][29].
The knowledge gap between the seen and unseen classes
is bridged using their corresponding semantic information.

Recently, few works have addressed the more realistic
ZSDG task, which aims to classify unseen classes across
generalized domains [17][18]. A mix-up based network
is proposed in [17]. The work in [18] extends domain-
generalization methods, e.g. feature-critic network [13],
multi-task auto-encoder [8] to classify unseen-class samples
by incorporating the semantic-information into their exist-
ing architecture. Recently. [27] discusses a retrieval pro-
tocol from any source domain to any target domain, using
dedicated convnets for each of the training domains. UCDR
extends the ZSDG-protocol to a retrieval framework. In
contrast to ZSL or ZSDG protocol, no semantic information
of the unseen classes are exploited in UCDR. This makes the
UCDR protocol even more realistic and challenging, since
in real-world, we may not have apriori information as to
which classes will be encountered during testing.

3. Problem Definition

First, we define the task of universal cross-domain re-
trieval (UCDR), and the different notations used. We as-
sume that labeled data from M -different (M > 2) domains
(image, clip-art, painting, etc.) are available for training as,
Dirain = U {xf’d, c}f\;dl. Here, xf’d is the i*" sam-

de{1,...,D}

ple from d*"-domain, which belongs to ¢! class. Ny is the
number of examples in the d** domain. Clearly, M = 2
represents the training set for standard cross-domain re-
trieval. The class labels ¢ for all the domains belong to
seen class set Cypqin. The goal is to find a latent domain-
independent subspace, ® C R™, such that, samples from
the same class across all domains come closer and samples
from different classes are pushed away in this space. Thus,
for a query x, and a search set D, = {x,}"*,  we can re-
trieve the relevant search-set data using nearest neighbour
of the query sample, projected in this learned ®-space.

The proposed UCDR protocol is a combination of two
separate experimental frameworks, namely: 1) U°CDR -
where the query x, belongs to an unseen class, but seen do-
main d € {1, ..., D}. This implies that Ctrqin N Ctest = @,
where Cy.s; is the set of possible classes of x,; 2) UYCDR -
where the domain of x, is unseen, but the class is seen, i.e.,
d ¢ {1,...,D},but Crest = Cirain- The proposed combined
protocol, where both the classes and domains of x, can be
unseen is denoted as U>?CDR, or simply UCDR (to avoid
notational clutter). ZS-SBIR is a special case of U°CDR,
where sketch and real-images are the two domains. Also,
U?CDR is extension of DG protocol towards retrieval.

4. Proposed Approach

Here, we describe the proposed framework SnMpNet
in details for addressing the UCDR task. SnMpNet is a
single branch network consisting of a feature-extractor
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and a classifier. Our main contributions are the semantic
neighbourhood loss to account for unseen classes, and
mixture prediction loss to account for unseen domains,
integrated with a base network.

Proposed SnMpNet Framework - Overview: The
proposed architecture for SnMpNet is illustrated in Fig-
ure 1. For this work, we choose SE-ResNet50 [16] as the
backbone module for SnMpNet, motivated by its state-of-
the-art performance for ZS-SBIR task [15]. Additionally,
we incorporate an attention mechanism on top of this
backbone, as in [4]. The embedding obtained for the
input sample, xf’d from the base network is denoted as
g = B,(x%). This embedding is passed through the
linear Mixture Prediction layer 0yrp, which ensures that
gg"d is domain-invariant. Next, this domain-invariant fea-
ture is passed through the linear Semantic Neighbourhood
layer, 6g, to obtain the m-dimensional latent space rep-
resentation £°? = 0, (g%) € R™. This m-dimensional
space is the latent space, ®, where we obtain semantically
meaningful domain-independent representations of the data
and effectively perform retrieval during testing.

The learning of this ®-space is driven by two objec-
tives: 1) Unseen-class representation: We want to repre-
sent data from unseen classes (during testing) in a semanti-
cally meaningful manner in this space, taking into account
the neighbourhood information. This is handled by the Se-
mantic Neighborhood loss (Lgy,). 2) Domain-independent
representation: We want the ®-space representation to be
independent of the domain of the input data, so that SnMp-
Net can accommodate data from unseen domains. This is
addressed by the Mixture Prediction loss (Lyr,). We fur-
ther incorporate an inter-class and inter-domain mix-up, to
generate mixed samples X and maintain only the categorical
discrimination in ®-space by minimizing the Mixup Classi-
fication loss (L), Next, we describe the individual loss
components to address the above objectives.

4.1. Unseen-class representation

The main challenge in handling unseen classes is to ef-
fectively and meaningfully embed them in the latent fea-
ture space ®, without any prior knowledge of those classes.
Here, we propose to learn the ®-space embeddings of the
training samples, so that they are semantically meaningful
with respect to the other seen-classes, especially its neigh-
bour classes. Thus, during testing, the model learns to em-
bed the unseen class query samples according to their se-
mantic relevance into the ®-space. This is in contrast to
the cross-entropy loss used for classification, or the stan-
dard metric learning losses, like triplet loss used for re-
trieval, where the goal is to bring data from the same class
closer and move those from other classes far apart. Pre-
vious attempts to include the neighbourhood information in

the embedding space has been reported in Stochastic Neigh-
bourhood Embedding [3], Memory-based Neighbourhood
Embedding [12] etc. Here, we propose a novel Semantic
Neighbourhood loss for this task as described next.

We learn the feature f,f’d, such that its distance with re-
spect to the seen classes is same as the distance between its
class-semantics and the semantics of the other seen classes.
Additionally, we introduce a strict-to-relaxed penalty term
for enforcing this constraint, which depends on the seman-
tic distance of class-c to the other seen classes. Formally,
the Semantic Neighbourhood loss is given by

£Sn = Z

xi©%4€Dirain

w(e) O [[D(E) — Dyt () * (1)

where D(f>%) € RICeinl, such that, its j* element con-
tains the Euclidean distance between f; " and the semantic-
information of the j*" class, denoted by a’. Similarly,
the j* element of the corresponding ground-truth distance-
vector ( Dy, (£ 1)) is the Euclidean distance between a® and
a’. @ represents element-wise multiplication. The 5" entry
of the weight vector w(c) € RlCtrain| is

w(c); = exp "Dn@"a") 2)
AR D(a®,a?) .
where, D,,(a% a’) = W, D(.,.) represents

the Euclidean distance between two vectors. x is an experi-
mental hyper-parameter, set using validation set accuracy.
For a smaller D, (a‘ a’) (semantically similar classes),
w(c); is higher, which enforces greater emphasis to pre-
serve the relative distance for the similar classes as desired.
For distant classes, this constraint is less strictly enforced.

4.2. Domain-independent representation

Here, we propose to learn the data-representation by in-
corporating mix-up based supervision, such that SnMpNet
only learns the class-information of the mixed sample and
obtains a domain-invariant embedding.

Mixing up input data: Inspired by [17], we mix samples
from multiple classes, as well as from multiple domains to
form the set, Dypizup = {X}, such that

X = axf’d + (1 - a)[ﬂxﬁ’d + (1= B)x;."] 3)

where o« ~ Beta(A\) and 8 ~ Bernoulli(y,v), A
and v being hyper-parameters. Clearly, 5 = 1 results in
intra-domain and S = 0 results in cross-domain mix-up.
We use the samples in D,y 4., for training.

Mixture Prediction Loss: We aim to remove any
domain-related information from g = 6;,(X) by means of
such cross-domain mixture samples. For this, we propose a
novel Mixture Prediction loss, where the network is trained
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Figure 1: Depiction of the proposed SnMpNet: (a) illustrates the training methodology using mix-up and customized Mixture
Prediction layer and Semantic Neighbourhood layer on top of the Base Model; (b) illustrates the testing under proposed
UCDR protocol, where query samples during retrieval can come from unseen domain and unseen category.

to predict the exact proportion of the component categories
in a sample x, and forgets about its component domains.
We incorporate this constraint before learning the ®-space
representation, to ensure that the Semantic Neighbourhood
loss does not get hindered by any domain knowledge.

For this, we compute the logit-vectors of g, by passing
it through the mixture prediction layer. The softmax activa-
tion on the j* element of 07, (g) can be interpreted as the
probability that sample X belongs to class-j:

exp(Onp(8);)
D teCirain €P(O01p(8)¢)

Prob(x € Class — j) = 4)

where 0)7,(g); is the logit-score obtained at j index.
However, g contains characteristics from its component
classes, according to the mixing coefficients. We propose to
predict the mixing coefficients of those component classes
through a soft cross-entropy loss designed as:

‘Ctrain‘
Lyp = Z Z —1; log Prob(i € Class —t)
iEDmizup t=1

®)

where, 1, is t"-element of a |Ctrain |-dimensional vector 1,
with the mixing coefficients at their corresponding class-

indices and zero at other places, e.g, for X generated through
B =1in(3):

Q, ift=c
L=<¢(1—-a), ift=p
0, otherwise

Thus, the network only remembers the cross-category mix-
ing proportions and is independent of the input domains.

Mix-up Classification loss: Finally, we impose the
standard cross-entropy loss to ensure that the discriminabil-
ity of feature-space is preserved. For this, we classify the
latent ®-space representation (£ € R% of the mixed-up
sample x into its component classes as in [33][17]. Addi-
tionally, we also want to maintain a meaningful semantic
structure of the latent space, to make provision for unseen
classes. Here, we utilize the semantic information of
the seen classes to address both the stated requirements.
Towards this goal, we compute the logit-score for feature f
as s(f) € RICtrainl 5o that its j*" element can be expressed
as

W exp(cosine-similarity (f, a’)

s(f);

(6)

)
B D tcCornin exp(cosine-similarity (£, at))
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Similar to (4), s(f); also represents the probability that f
belongs to j*"-class. Now, if X came from a particular class,
classification can be done by minimizing the following

[Cirainl

> —y®)logs(f),

ieDwnﬂmup t=1
)

Lop(y(),s(f)) =

where, y(X); is the t*" element of the one-hot representa-
tion of X’s ground-truth class. Since the input X does not
belong to a single class, we cannot directly use such com-
putation. Instead, we extend equation (7) to accommodate
all the component classes of x as follows,

i =alop(y(x5?),s(f))
+(1—a)Lep([By (0 + (1 - By (x")],s(f))
(8)

4.3. Combined Loss Function

Finally, to account for both unseen classes and un-
seen domains during retrieval, we combine the advantages
of both the above representations seamlessly in the pro-
posed framework. To incorporate the effect of inter-class
and inter-domain mix-up in the Semantic Neighbourhood
loss, we compute D(f) and D (f) instead of ]D(ff’d) and
Dgt(ff’d) in (1). In addition, we evaluate the mixed-up se-
mantic information of x as the combination of its compo-
nent classes in appropriate ratio as,

a=aa‘+ (1—a)fa’ + (1 —p)a"] 9)

This modification reflects in evaluation of Dy (f) as its 5"
component becomes the Euclidean distance between a and
a’/. With this modification, the mix-up based supervision
is introduced not only at the image-level, but also in the
semantic information level. Combining all the loss compo-
nents, the final loss to train the model is

L=LEE + v Lyp +72Lsn (10)

where 7, and vy, are experimental hyper-parameters to bal-
ance the contribution of the different loss components.

4.4. Retrieval

During retrieval, for any query data x,, we extract the
latent space representation f; € R™ using the trained
model. Similarly, we also extract the latent representations
of the search set samples x5 € D, as f;. We use Euclidean
distance between f;, and f;,s = 1,...,|D;| to rank the
search set images in the final retrieval list.

Implementation Details: We use PyTorch 1.1.0 and

a single GeForce RTX 2080 Ti GPU for implementation.
Models are trained for a maximum of 100 epochs with
early stopping of 15 epochs based on the validation set per-
formance. We use SGD with nesterov momentum of 0.9,
and a batch size of 60 to solve the optimization problem,
with an initial learning rate of le-3, decayed exponentially
to le-6 in 20 epochs. 300-d GloVe [22]-embeddings and
L2-normalized word2vec embeddings (300-d) [17] are used
as the semantic information for Sketchy and DomainNet
respectively. The key hyperparameters of SnMpNet are &,
~1 and 72, which are set as k € {1,2}, 1 € {0.5,1}, and
~v2 = 1 for both the datasets.

5. Experiments

We now present the experimental evaluation for the pro-
posed SnMpNet. To the best of our knowledge, this is the
first work addressing UCDR, thus there are no established
baselines for direct comparison. First, we analyze SnMp-
Net for U°CDR protocol, where only the classes are unseen
during retrieval. We specifically consider the application of
ZS-SBIR, which is well-explored in literature, to directly
compare SnMpNet with current SOTA in ZS-SBIR. Then,
we extend our evaluation to the completely general UCDR
setting. We start with a brief introduction to the datasets.

Datasets Used: We use two datasets for the experi-
ments. Sketchy extended [24] contains 75,471 sketches
and 73,002 images from 125 categories and is used for
U°CDR. To obtain completely unseen test classes (if
pre-trained backbones are used), we follow the split in [32]
and consider 21-classes (not part of ImageNet-1K) to be
unseen. Among rest 104 seen classes, following [4], 93 and
11-classes are used for training and validation respectively.
DomainNet [21] has approximately 6,00,000 samples
from 345 categories, collected in six domains, namely,
Clip-art, Sketch, Real, Quickdraw, Infograph, and Painting
and is used for UCDR and UCDR experiments. Follow-
ing [17], the test set is formed with 45 unseen classes. Rest
245 and 55 classes are used for training and validation [17].
In addition, we leave one domain (randomly selected)
out while training, to create unseen-domain query. The
search-set is constructed with Real images from seen and/or
unseen classes.

5.1. U¢CDR Evaluation

We first analyze SnMpNet for U°CDR, specifically, ZS-
SBIR, where the query domain is sketch and the search set
contains images, both from a set of classes unseen to the
model. Here, we train SnMpNet with sketch and image
data, following the same training protocol as in [4][32].
Baseline Methods: First, we discuss the baseline methods
and their modifications used for fair comparison. Specifi-
cally, we develop variants with no access to domain-label
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Method Backbone network | outputdim. | mAP@200 | Prec@200
CVAE [32] (ECCYV, 2018) VGG-16 1024 0.225 0.333
Existing SOTA Doodle-to-Search [4] (CVPR, 2019) VGG-16 300 0.4606 0.3704
SAKE-512 [15] (ICCYV, 2019) SE-ResNet50 512 0.497 0.598
SAKE-512 (our evaluation) SE-ResNet50 512 0.6246 0.5518
Doodle-SingleNet VGG-16 300 0.3743 0.3308
Doodle-to-search Doodle-SingleNet-w/o Label* VGG-16 300 0.3726 0.3233
variants Doodle-SE-SingleNet SE-ResNet50 300 0.4022 0.3595
Doodle-SE-SingleNet-w/o Label* SE-ResNet50 300 0.3980 0.3508
SAKE-variants SAKE-512-w/o Label* SE-ResNet50 512 0.5484 0.4880
SAKE-300-w/o Label* SE-ResNet50 300 0.5192 0.4605
SnMpNet SE-ResNet50 300 0.5781 0.5155

Table 1: Comparison for ZS-SBIR on Sketchy extended [32]. Methods marked with **’ can potentially be used for UCDR.

Training Query Method Unseen-class Search Set | Seen+Unseen-class Search Set
Domains Domain mAP@200 | Prec@200 | mAP@200 Prec@200

Real, Quickdraw EISNet-retrieval 0.2611 0.2061 0.2286 0.1805
Infograph, Painting Sketch CuMix-retrieval 0.2736 0.2168 0.2428 0.1935
Clip-art SnMpNet 0.3007 0.2432 0.2624 0.2134
Real, Sketch EISNet-retrieval 0.1273 0.1016 0.1101 0.0870
Infograph, Painting Quickdraw | CuMix-retrieval 0.1304 0.1006 0.1118 0.0852
Clip-art SnMpNet 0.1736 0.1284 0.1512 0.1111
Real, Sketch EISNet-retrieval 0.3599 0.2913 0.3280 0.2653
Infograph, Quickdraw Painting CuMix-retrieval 0.3710 0.3001 0.3400 0.2751
Clip-art SnMpNet 0.4031 0.3332 0.3635 0.3019
Real, Sketch EISNet-retrieval 0.1878 0.1512 0.1658 0.1323
Painting, Quickdraw Infograph CuMix-retrieval 0.1931 0.1543 0.1711 0.1361
Clip-art SnMpNet 0.2079 0.1717 0.1800 0.1496
Real, Sketch EISNet-retrieval 0.3585 0.2792 0.3251 0.2496
Painting, Quickdraw Clip-art CuMix-retrieval 0.3764 0.2911 0.3428 0.2627
Infograph SnMpNet 0.4198 0.3323 0.3765 0.2959
EISNet-retrieval 0.2589 0.2059 0.2315 0.1829
Average CuMix-retrieval 0.2689 0.2126 0.2417 0.1905
SnMpNet 0.3010 0.2418 0.2667 0.2144

Table 2: UCDR evaluation results on DomainNet for two different scenarios, when the search set contains (1) only unseen-
class image samples, and (2) both seen and unseen class samples.

Training Query Method Unseen-class Search Set | Seen+Unseen-class Search Set
Domains Domain mAP@200 | Prec@200 | mAP@200 Prec@200

Real, Quickdraw EISNet-retrieval 0.2475 0.1906 0.2118 0.1627
Infograph, Painting | QuickDraw | CuMix-retrieval 0.2546 0.1967 0.2177 0.1699
Clip-art SnMpNet 0.2888 0.2314 0.2366 0.1918
Real, Sketch EISNet-retrieval 0.3719 0.3136 0.3355 0.2822
Infograph, Painting Sketch CuMix-retrieval 0.3689 0.3069 0.3300 0.2714
Clip-art SnMpNet 0.4221 0.3496 0.3767 0.3109

Table 3: U°CDR-evaluation results on DomainNet for two different scenarios, when the search set contains (1) only unseen-
class image samples, and (2) both seen and unseen class samples.

of data, so that they can handle unseen domain query data. so that it can be applied to any unseen domain data.

— For fair comparison, we replace the VGG-16
backbone in both these variants with SE-ResNet50
and develop Doodle-SE-SingleNet and Doodle-SE-

SingleNet-w/o Label respectively.

1. Doodle-to-Search [4] trains two parallel VGG-16 net-
works with a triplet loss to generate the final embed-
ding for retrieval. We develop the following variants
of this network as:

—Doodle-SingleNet. We replace the architecture in [4]
with a single branch of VGG-16, which can take data
from any domain as input.

— Doodle-SingleNet-w/o Label. We further mod-
ify Doodle-SingleNet and remove the domain-
discriminator loss function from the training process,
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SAKE [15] has a single branch of network, with SE-
ResNet50 as backbone. It processes both sketch and
image data, augmented with a binary domain-label,
and knowledge transfer from a pre-trained Teacher
network. For comparing with SnMpNet, we develop
the following variant of SAKE:



— SAKE-w/o Label. In this variant, we remove the
binary domain-indicator from the training process.

— As in SAKE [15], we perform experiments of this
variant with embeddings of different dimensions.

Apart from Doodle-to-search [4] and SAKE [15], we have
also compared SnMpNet with CVAE [32]. We summa-
rize the comparisons in terms of mAP@200 and Prec @200
in Table 1. We observe the best performance is obtained
through the SAKE-model with the domain indicator (our
evaluation)'. Note that this model cannot be used for un-
seen query domains in UCDR protocol, because of the do-
main indicator. We also observe that the performance of
both the state-of-the-art approaches, Doodle-to-Search [4]
and SAKE [15] degrade drastically when either the domain-
specific two-branch architecture or the domain-indicator is
removed. SnMpNet outperforms these variants, CVAE and
Doodle-to-Search, which justifies its effectiveness.

5.2. UCDR Evaluation

We now extend our evaluation for the fully generalized

UCDR protocol on DomainNet [21]. Since there is no exist-
ing baseline for this, we develop two variants of very closely
related works present in literature. We start with a brief de-
scription of these variants.
Baseline Methods: We consider two state-of-the-art ap-
proaches developed for related applications, namely 1) EIS-
Net [28], which is the SOTA for DG and 2) CuMix [17],
the first work to address ZSDG. Since these have been de-
veloped for classification, we make minimal changes in the
networks, to address the retrieval task in UCDR.

1) EISNet-Retrieval: We incorporate a 300-d linear-
layer in the classification branch in [28], whose output is
used as the domain-invariant feature for UCDR.

2) CuMix-Retrieval: For fair comparison, we use SE-

ResNet50 as backbone with a 300-d linear layer on top
in [17] and incorporate the image and feature-level mixing
method, as proposed in CuMix. We discuss the details of
these modifications in Supplementary.
For UCDR, we train with seen-class samples from 5-
domains, leaving one domain out. The unseen class samples
from this unseen-domain are used as query for evaluation.
We evaluate for two configurations of search set, where it
contains images from: (a) only unseen-classes, and (b) both
seen and unseen classes. Clearly, (b) is more challenging
than (a), because of the scope of greater confusion. We re-
port the individual results on all 5-domains (except Real) as
query, as well as the average retrieval accuracy in Table 2.
We observe that for all the approaches, the performance de-
grades significantly when both seen and unseen classes are
present in the search set. However, SnMpNet outperforms
the other baselines by a considerable margin.

'SAKE-model trained using the split and evaluation in [4]

6. Analysis

We analyze the contribution of different components of
SnMpNet, and its performance in other retrieval scenarios.

U°CDR-Evaluation on DomainNet: We now present the
evaluation of SnMpNet for U°CDR on DomainNet. Here
the query domain Sketch or QuickDraw is seen, but the
query samples belong to unseen classes. We perform exper-
iments for two configurations of search set as in UCDR.
From Table 3, we observe that SnMpNet outperforms the
other approaches.

U?CDR-Evaluation on DomainNet: Here, for complete-
ness, we evaluate SnMpNet for U?CDR, where the query
belongs to a seen class, but from an unseen domain. To
construct the query set, we randomly select 25% samples
from each of the seen classes from Sketch domain. The
search set contains images from seen-classes. From Table 4,
we observe that SnMpNet significantly outperforms the two
strong baselines. This setup can be considered as a modi-
fication of domain generalization problem for the retrieval
task. Here, the knowledge gap between the training and test
classes is not present. The main challenge for the retrieval
model is to address the domain gap because of the unseen
query domain.

Method mAP@200 | Prec@200
EISNet-retrieval 0.2210 0.1094
CuMix-retrieval 0.2703 0.1224

SnMpNet 0.3529 0.1657

Table 4: UYCDR-evaluation on DomainNet for unseen
sketch query domain. The search set contains only seen
class real images. The models are trained on 5-domains
Real, QuickDraw, Infograph, Painting and Clip-art.

Ablation Study: Now, we analyze the effectiveness of dif-
ferent components of SnMpNet on Sketchy-extended for
ZS-SBIR. We first consider the simplest form of our net-
work (Base N/W), which is SE-ResNet50, trained with
the cross-entropy loss evaluated as the cosine-similarity
of model output with seen-classes’ semantic informa-
tion [22] (equation (7)). The performance of Base N/W,
and as each loss component is appended to the base module
is summarized in Table 5. We observe that each component
contributes positively to the overall performance.

Proposed Network Variants | mAP@200 | Prec@200
Base N/'W 0.5218 0.4497
Base N'W + Lg,, (k = 0) 0.5593 0.5002
Base N'W + Lg, (k = 2) 0.5613 0.5030
Base N/W + E’C’}}EZ 0.5252 0.4530
Base N'W + LB + Ly 0.5665 0.4989
SnMpNet 0.5781 0.5155

Table 5: Ablation study of the proposed SnMpNet frame-
work for ZS-SBIR on Sketchy extended dataset [32].
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Figure 2: Top-8 retrieved Images for UCDR and UCDR protocols on DomainNet with QuickDraw being the unseen query
domain. Same query is considered for both the search set configurations. Green and Red borders indicate correct and incorrect

retrievals respectively. (best viewed in color)
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Figure 3: t-SNE [3] plot for few randomly selected
seen (van, laptop, cow, hand, bat, shark) and unseen-
classes (ambulance, elbow, parrot, dolphin) in the feature-
space using proposed SnMpNet. Here, Sketch is unseen to
the model, while real is seen. (best viewed in color)

6.1. Qualitative Results

Figure 2 shows top-8 retrieved images for few queries
for UCDR and U“CDR, with QuickDraw as unseen domain.
As expected, the results degrade when both seen and unseen
classes are present in the search set. We also observe that
some of the incorrect retrievals are because of shape simi-

larities between classes, like helicopter and windmill, while
some others are due to co-occurrence of different classes in
the same image (sweater and elbow for skateboard).

The t-SNE [3] plot of the feature-space for some
randomly selected classes from seen (image) and un-
seen (sketch) domains is shown in Figure 3. We observe
that the unseen-classes - namely, ambulance, dolphin, par-
rot, and elbow from the unseen-domain sketch are placed in
the neighbourhood of the related seen-classes - van, shark,
bat, and hand respectively from seen-domain, image, fur-
ther justifying the effectiveness of the proposed framework.

7. Conclusion

In this work, we proposed a novel framework, SnMp-
Net for the Universal Cross-domain Retrieval task. To the
best of our knowledge, this is the first work which can han-
dle query data from unseen classes and unseen domains for
retrieval. In addition to defining the experimental proto-
col, we also proposed a novel framework, SnMpNet, which
introduces two novel losses, Semantic Neighbourhood loss
and Mixture Prediction loss for the UCDR task. Extensive
experiments and comparisons on two large-scale datasets,
corroborate effectiveness of the proposed SnMpNet.
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