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Figure 1. Left: we focus on GANs, where our generator outputs a triangle mesh and a UV-mapped texture. Middle: our method learns
to synthesize textured 3D meshes given a real-world collection of 2D images. Top-right: we showcase a setting where we train a single
model to generate all classes. This model successfully disentangles some factors of the 3D environment (e.g. lighting/shadows) without
explicit supervision. Bottom-right: we also demonstrate a conditional model that generates meshes from 3D semantic layouts.

Abstract

Recent advances in differentiable rendering have
sparked an interest in learning generative models of tex-
tured 3D meshes from image collections. These models
natively disentangle pose and appearance, enable down-
stream applications in computer graphics, and improve the
ability of generative models to understand the concept of
image formation. Although there has been prior work on
learning such models from collections of 2D images, these
approaches require a delicate pose estimation step that ex-
ploits annotated keypoints, thereby restricting their appli-
cability to a few specific datasets. In this work, we propose
a GAN framework for generating textured triangle meshes
without relying on such annotations. We show that the per-
formance of our approach is on par with prior work that
relies on ground-truth keypoints, and more importantly, we
demonstrate the generality of our method by setting new
baselines on a larger set of categories from ImageNet —
for which keypoints are not available — without any class-
specific hyperparameter tuning. We release our code at
https://github.com/dariopavllo/textured-3d-gan

1. Introduction

Most of the recent literature in the field of generative
models focuses on 2D image generation [36, 54, 22, 3, 23],
which largely ignores the fact that real-world images depict
2D projections of 3D objects. Constructing 3D generative
models presents multiple advantages, including a fully dis-
entangled control over shape, appearance, pose, as well as
an explicit representation of spatial phenomena such as oc-
clusions. While the controllability aspect of 2D generative
models can be improved to some extent by disentangling
factors of variation during the generation process [53, 40,

, 22], the assumptions made by these approaches have
been shown to be unrealistic without an inductive bias [33].
It is thus unclear whether 2D architectures can reach the
same degree of controllability as a native 3D representation.

As aresult, a growing line of research investigates learn-
ing textured 3D mesh generators in both GAN [39, 4] and
variational settings [15]. These approaches are trained with
2D supervision from a collection of 2D images, but require
camera poses to be known in advance as learning a joint dis-
tribution over shapes, textures, and cameras is particularly
difficult. Usually, the required camera poses are estimated
from keypoint annotations using a factorization algorithm
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such as structure-from-motion (SfM) [35]. These keypoint
annotations are, however, very expensive to obtain and are
usually only available on a few datasets.

In this work, we propose a new approach for learning
generative models of textured triangle meshes with min-
imal data assumptions. Most notably, we do not require
keypoint annotations, which are often not available in real-
world datasets. Instead, we solely rely on: (i) a single mesh
template (optionally, a set of templates) for each image cat-
egory, which is used to bootstrap the pose estimation pro-
cess, and (ii) a pretrained semi-supervised object detector,
which we modify to infer semantic part segmentations on
2D images. These, in turn, are used to augment the initial
mesh templates with a 3D semantic layout that allows us to
refine pose estimates and resolve potential ambiguities.

First, we evaluate our approach on benchmark datasets
for this task (Pascal3D+ [31] and CUB [45]), for which key-
points are available, and show that our approach is quantita-
tively on par with the state-of-the-art [39] as demonstrated
by FID metrics [16], even though we do not use keypoints.
Secondly, we train a 3D generative model on a larger set
of categories from ImageNet [6], where we set new base-
lines without any class-specific hyperparameter tuning. To
our knowledge, no prior works have so far succeeded in
training textured mesh generators on real-world datasets,
as they focus either on synthetic data or on simple datasets
where poses/keypoints are available. We also show that we
can learn a single generator for all classes (as opposed to
different models for each class, as done in previous work
[39, 4, 15]) and notice the emergence of interesting disen-
tanglement properties (e.g. color, lighting, style), similar to
what is observed on large-scale 2D image generators [3].

Finally, we quantitatively evaluate the pose estimation
performance of our method under varying assumptions (one
or more mesh templates; with or without semantic informa-
tion), and showcase a proof-of-concept where 3D meshes
are generated from sketches of semantic maps (seman-
tic mesh generation), following the paradigm of image-to-
image translation. In summary, our main contributions are
as follows:

* We introduce a new approach to 3D mesh generation that
does not require keypoint annotations, enabling its use on
a wider range of datasets as well as new image categories.

* We showcase 3D generative models in novel settings, in-
cluding learning a single 3D generator for all categories,
and conditional generation from semantic mesh layouts.
In addition, we provide a preliminary analysis of the dis-
entanglement properties learned by these models.

* We propose a comprehensive 3D pose estimation frame-
work that combines the merits of template-based ap-
proaches and semantic-based approaches. We further ex-
tend this framework by explicitly resolving pose ambigu-
ities and by adding support to multiple templates.

2. Related work

Differentiable 3D representations. Recent work in 3D
deep learning has focused on a variety of 3D representa-
tions. Among reconstruction approaches, where the goal
is to reconstruct 3D meshes from various input representa-
tions, [37] predict signed distance fields from point clouds,
[5,12,51,9,56,47,42] predict 3D meshes from images us-
ing a voxel representation, and [ 7] predict point clouds from
images. These approaches require some form of 3D super-
vision, which is only achievable through synthetic datasets.
More recent efforts have therefore focused on reconstruct-
ing meshes using 2D supervision from multiple views, e.g.
[50, 11, 44,46, 43, 52] in the voxel setting, and [19] using
point clouds. However, the multiple-viewpoint assumption
is unrealistic on real-world collections of natural images,
which has motivated a new class of methods that aim to
reconstruct 3D meshes from single-view images. Among
recent works, [24, 32, 20, 4, 10, 29] are all based on this
setting and adopt a triangle mesh representation. Our work
also focuses on triangle meshes due to their convenient
properties: (i) their widespread use in computer graphics,
movies, video games; (ii) their support for UV texture map-
ping, which decouples shape and color; (iii) the ability of
efficiently manipulating and transforming vertices via lin-
ear algebra. The use of triangle meshes in deep learning was
recently enabled by differentiable renderers [34, 24, 32, 4],
i.e. renderers that provide gradients w.r.t. scene parameters.
Motivated by its support for UV maps, we use DIB-R [4] as
our renderer of choice throughout this work.

Keypoint-free pose estimation. The use of keypoints for
pose estimation is limiting due to the lack of publicly avail-
able data and an expensive annotation process. Thus, a
growing line of research focuses on inferring poses via
semi-supervised objectives. To our knowledge, no approach
has so far focused on generation, but there have been some
successful attempts in the reconstruction literature. The ini-
tial pose estimation step of our framework is most closely
related to [10, 29], which both propose approaches for 3D
mesh reconstruction without keypoints. In terms of as-
sumptions, [10] require a canonical mesh template for each
category. Object poses are estimated by fitting the mesh
template to the silhouette of the object and by concurrently
optimizing multiple camera hypotheses (which helps to deal
with the large amount of bad local minima). [29] do not re-
quire a mesh template, but instead use object part segmen-
tations from a self-supervised model (SCOPS [18]) to infer
a 3D semantic template that is matched to the reference seg-
mented image. Based on early experiments, we were unable
to individually generalize these methods to generation (our
goal), which we found to have a lower tolerance to errors
due to the intrinsic difficulty in training GANSs. Instead, we
here successfully combine both ideas (mesh templates and
semantics) and extend the overall framework with (i) the
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optional support for multiple mesh templates, (ii) a princi-
pled ambiguity resolution step that leverages part semantics
to resolve conflicts among camera hypotheses with simi-
lar reprojection errors. We additionally adopt a more gen-
eral object-part segmentation framework. Namely, we use
a pre-trained semi-supervised object detector [ 7] modified
to produce fine-grained semantic templates (Fig. 2), as op-
posed to SCOPS (used in [29]), which we found to require
class-specific hyperparameter tuning.

Mesh generation. In the generation literature there has
been work on voxel representations [48, 9, 41, 49, 55, 2]
and point clouds [, 8]. These approaches require 3D super-
vision from synthetic data and are thus subject to the same
limitations mentioned earlier. To our knowledge, the only
approaches that tackle this task on a triangle mesh setting
using exclusively 2D supervision are [!5], which focuses
on a VAE setting using face colors (as opposed to full tex-
ture mapping) and is thus complementary to our work, and
[4, 39], which adopts a GAN setting. In particular, [4] repre-
sents the earliest attempt in generating textured 3D meshes
using GANS, but their approach cannot supervise textures
directly from image pixels. By contrast, the more recent
[39] proposes a more comprehensive framework that can
model both meshes and UV-mapped textures, which allows
for successful application to natural images (albeit with key-
point annotations). We build upon [39], from which we
borrow the GAN architecture but substantially rework the
supervision strategy to relax the keypoint requirement.

3. Method
Data requirements. As usual in both the reconstruc-
tion [24, 20, 10, 29] and generation [14, 4, 39] literature,

we require a dataset of segmented images. Segmentation
masks (a.k.a. silhouettes) can easily be obtained through
an off-the-shelf model (we use PointRend [26] pretrained
on COCO [30]; details in Appendix A.1). Whereas prior
approaches require keypoint annotations for every image,
we only require an untextured mesh template for each im-
age category, which can be downloaded freely from the
web. Optionally, our framework supports multiple mesh
templates per category, a choice we explicitly evaluate in
sec. 4.2. We note that pose estimation from silhouettes
alone can in some cases be ambiguous, and therefore we
rely on object part semantics to resolve these ambiguities
wherever possible. To this end, we use the semi-supervised,
large-vocabulary object detector from [17, 38] to infer part
segmentations on all images. We adopt their pretrained
model as-is, without further training or fine-tuning, but
post-process its output as described in Appendix A.1.

Dataset preparation. Since our goal is to apply our method
to real-world data that has not been manually cleaned or
annotated — unlike the commonly-used datasets CUB [45]
and Pascal3D+ [31] — we attempt to automatically detect
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Figure 2. The dataset is initially processed into a clean collection
of images with associated object masks and semantic part segmen-
tations. This is done via off-the-shelf models and does not involve
any additional data collection. Semantic classes have a precise
meaning and are shared between different categories (e.g. wheels
appear in both cars and motorbikes).

and remove images that do not satisfy some quality crite-
ria. In particular, objects should not be (i) too small, (ii)
truncated, or (iii) occluded by other objects (implementa-
tion details in Appendix A.1). This filtering step is tuned
for high precision and low recall, as we empirically found
that it is beneficial to give more importance to the former.
All our experiments and evaluations (sec. 4) are performed
on the dataset that results from this step. Finally, sample im-
ages and corresponding silhouettes/part segmentations can
be seen in Fig. 2, which also highlights how some semantic
parts are shared across image categories.

3.1. Pose estimation framework

Overview. Most reconstruction and generation approaches
require some form of pose estimation to initialize the learn-
ing process. Jointly learning a distribution over camera
poses and shapes/textures is extremely challenging and
might return a trivial solution that does not entail any 3D
reasoning. Therefore, our approach also requires a pose es-
timation step in order to allow the learning process to con-
verge to meaningful solutions. Our proposed pose estima-
tion pipeline is summarized in Fig. 3: starting from a set
of randomly-initialized camera hypotheses for each object
instance, we render the mesh template(s) using a differen-
tiable renderer and optimize the camera parameters so that
the rendered silhouette matches the target silhouette of the
object. At this point, no semantics, colors, or textures are
involved, so the approach can lead to naturally ambiguous
poses (see Fig. 3 right, for an example). We then introduce a
novel ambiguity detection step to select only images whose
inferred pose is unambiguous, and use the most confident
ones to infer a 3D semantic template, effectively augment-
ing the initial mesh templates with semantic information
(more examples of such templates can be seen in Fig. 5).
Afterwards, the process is repeated — this time leveraging
semantic information — to resolve ambiguities and possibly
reinstate images that were previously discarded. The final
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Figure 3. Left: schematic overview of the proposed pose estimation pipeline. The left side shows our data requirements (a collection
of 2D images and one or more untextured mesh templates). For clarity, we only show the optimization process for the circled airplane,
although the semantic template inference step involves multiple instances. Right: ambiguity arising from opposite poses. The two camera
hypotheses produce almost-identical silhouettes which closely approximate the target, but describe opposite viewpoints. This particular
example would initially be rejected by our ambiguity detection test, but it would then be resolved once semantics are available.

output is a camera pose for each object as well as a confi-
dence score that can be used to trade off recall (number of
available images) for precision (similarity to ground-truth
poses). In the following, we describe each step in detail.
Silhouette optimization. The first step is a fitting proce-
dure applied separately to each image. Following [10], who
observe that optimizing multiple camera hypotheses with
differing initializations is necessary to avoid local minima,
we initialize a set of N, camera hypotheses for each im-
age as described in Appendix A.l. Our camera projection
model is the augmented weak-perspective model of [39],
which comprises a rotation q € R* (a unit quaternion), a
scale s € R, a screen-space translation t € R2, and a per-
spective correction term 2y € R which is used to approxi-
mate perspective distortion for close objects. We minimize
the mean squared error (MSE) in pixel space between the
rendered silhouette R(-) and the target silhouette x:
Jmin [R(Vir, Foii o t,5,20) =x[*, (1)
where R is the differentiable rendering operation, Vy, rep-
resents the (fixed) mesh template vertices, and Fy, repre-
sents the mesh faces. Each camera hypothesis is optimized
using a variant of Adam [25] that implements full-matrix
preconditioning as opposed to a diagonal one. Given the
small number of learnable parameters (8 for each hypothe-
sis), the O(n?) cost of inverting the preconditioning matrix
is negligible compared to the convergence speed-up. We
provide hyperparameters and more details about this choice
in the Appendix A.1. In the settings where we use multiple
mesh templates N;, we simply replicate each initial camera
hypothesis IV, times so that the total number of hypotheses
to optimize is N, - N;. In this case, we compensate for the
increase in optimization time by periodically pruning the
worst camera hypotheses during optimization. Addition-
ally, in all settings, we start by rendering at a low image res-
olution and progressively increase the resolution over time,
which further speeds up the process. We describe how both
strategies are implemented in the Appendix A.1.
Scoring and ambiguity detection. All symmetric objects
(i.e. many natural and man-made objects) present ambigu-

ous poses: opposite viewpoints that produce the same sil-
houette after 2D projection (Fig. 3 right). Similar ambigui-
ties can also arise as a result of noisy segmentation masks,
inappropriate mesh templates, or camera hypotheses that
converge to bad local minima. Since wrong pose estimates
have a significant negative impact on the rest of the pipeline,
this motivates the design of an ambiguity detection step.
Ideally, we would like to accept pose estimates that are
both confident — using the intersection-over-union (IoU) be-
tween the rendered/target silhouettes as a proxy measure —
and unambiguous, i.e. no two camera hypotheses with high
IoU should describe significantly different poses. We for-
malize this as follows: we first score each hypothesis k as
(Veont)r = (softmax(viey / 7))k, where 7 = 0.01 is a tem-
perature coefficient that gives similar weights to IoU values
that are close to the maximum, and low weights to IoU val-
ues that are significantly lower than the maximum. Next, we
require that highly-confident poses (as measured by Vcons)
should describe similar rotations. We therefore construct a
pairwise distance matrix D of shape N, x N., where each
entry d;; describes the geodesic distance between the rota-
tion of the ¢-th hypothesis and the rotation of the j-th hy-
pothesis. Entries are then weighted by v s across both
rows and columns, and are finally summed up, yielding a
scalar agreement score v,y for each image:

D=1- (QTQ)OQa Vagr = HD © (Vconfvg;nf)Hl 2
where Q is a 4 x N, matrix of unit quaternions (one per
hypothesis), M°? denotes the element-wise square, and ®
denotes the element-wise product.

The agreement score v,y can be roughly interpreted as
follows: a score of 0 (best) implies that all confident camera
hypotheses describe the same rotation (they agree with each
other). A score of 0.5 describes two poses that are rotated by
180 degrees from one another'. Empirically, we established
that images with v, > 0.3 should be rejected.

Semantic template inference. Simply discarding ambigu-
ous images might significantly reduce the size and diver-

IFor example, consider a D matrix of size 2 X 2, where entries along
the main diagonal are 0, and 1 elsewhere.
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sity of the training set. Instead, we propose to resolve the
ambiguous cases. While this is hardly possible when we
only have access to silhouettes, it becomes almost trivial
once semantics are available (Fig. 3 right). A similar idea
was proposed in [29], who infer a 3D semantic template by
averaging instances that are close to a predetermined ex-
emplar (usually an object observed from the left or right
side). Yet, our formulation does not require an exemplar
but directly leverages samples that have passed the ambigu-
ity detection test. Since our data requirements assume that
mesh templates are untextured, our first step in this regard
aims at augmenting each mesh template with part seman-
tics. Among images that have passed the ambiguity test
(vagr < 0.3), we select the camera hypothesis with the high-
est IoU. For each mesh template, the semantic template is
computed using the top Ny, = 100 images assigned to that
template, as measured by the IoU. Then, we frame this step
as an optimization problem where the goal is to learn vertex
colors while keeping the camera poses fixed, minimizing
the MSE between the rendered (colored) mesh template and
the 2D image semantics, averaged among the top samples:

Z HR(thh Ftpla Ctpl; qi7tia Siy ZOi) - Ci||27 (3)

min

Cop top
where Cy, represents the vertex colors of the template and
C; denotes the 2D semantic image. For convenience, we
represent Cy, as a K X N, matrix, where N, is the number
of vertices and K is the number of semantic classes (color
channels, not necessarily limited to 3), and C;j is a K X Ny,
matrix, where N, is the number of image pixels. In the
Appendix A.1, we derive an efficient closed-form solution
that requires only a single pass through the dataset. Exam-
ples of the resulting semantic templates are shown in Fig. 5.

Ambiguity resolution. In the last step of our pose esti-
mation pipeline, we repeat the scoring process described
in “Scoring and ambiguity detection” with the purpose of
resolving ambiguities. Instead of evaluating the scores
on the IoU, however, we use the mean intersection-over-
union (mloU) averaged across semantic classes. Since our
inferred semantic templates are continuous, we adopt a
smooth generalization of the mloU (weighted Jaccard simi-
larity) in place of the discrete version:

Z Hmln Ckvck)Hl (4)
[|max( Cu, Cu)llx

mloU =

where Cy is the rendered semantic class k and min, max
(performed element-wise) represent the weighted inter-
section and union, respectively. We then recompute the
confidence scores and agreement scores as before (using
the mIoU as a target metric), discard the worst 10% images
in terms of mloU as well as those whose v, > 0.3, and
select the best hypothesis for each image as measured by
the mloU. We found no practical advantage in repeating
the semantic template inference another time, nor in re-
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Figure 4. Generation framework using the convolutional mesh rep-
resentation. Images are fed into a network trained to reconstruct
meshes (parameterized as 2D displacement maps), given camera
poses. The meshes are then used to project natural images onto
the UV map. Finally, the resulting partial textures, displacement
maps, and (optionally) predicted semantics are used to train a 2D
convolutional GAN in UV space.
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optimizing/fine-tuning the camera poses using semantics.
We show this quantitatively in sec. 4.2 and discuss further
details on various exploratory attempts in Appendix A.4.

3.2. Generation framework

The camera poses obtained using the approach described
in sec. 3.1 can be used to train a generative model as shown
in Fig. 4. For this component, we build upon [39], from
which we borrow the convolutional mesh representation and
the GAN architecture. Our generation approach mainly
consists of three steps. (i) Given a collection of images, seg-
mentation masks, and their posesz, we train a reconstruc-
tion model to predict mesh, texture, and semantics given
only the 2D image as input. Although predicted textures are
not used in subsequent steps (the GAN learns directly from
image pixels), [39] observe that predicting textures during
training has a beneficial regularizing effect on the mesh, and
therefore we also keep this reconstruction term. Unlike [39]
(where semantics were not available), however, we also pre-
dict a 3D semantic part segmentation in UV space, which
provides further regularization and enables interesting con-
ditional generation settings (we showcase this in sec. 4.2).
As in [39], we parameterize the mesh as a 2D displacement
map that deforms a sphere template in its tangent space. (ii)
Through an inverse rendering approach, image pixels are
projected onto the UV map of the mesh, yielding partially-
occluded textures. Occlusions are represented as a binary
mask in UV space. (iii) Finally, displacement maps and
textures are modeled in UV space using a standard 2D con-
volutional GAN, whose training strategy compensates for
occlusions by masking inputs to the discriminator.
Architecture. Our experiments (sec. 4) analyze two differ-
ent settings: A where we train a separate model for each
category, and B where we train a single model for all cat-

2In [39], poses are estimated via structure-from-motion on ground-truth
keypoints. In this work, we use our proposed approach (sec. 3.1).
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Figure 5. Learned 3D semantic templates. We show one template per category from two views (front/back). Colors are exaggerated for
presentation purposes, but in practice the probability maps are smoother. We also highlight how semantic parts are shared among categories.

egories. In setting A, we reuse similar reconstruction and
GAN architectures to [39] in order to establish a fair com-
parison with their approach. We only modify the output
head of the reconstruction model, where we add K extra
output channels for the semantic class prediction () de-
pends on the category). In setting B, we condition the model
on the object category by modifying all BatchNorm layers
and learning different gain and bias parameters for each cat-
egory. Additionally, in the output head we share semantic
classes among categories (for instance there is a unique out-
put channel for wheel that is shared for buses, trucks, efc.;
see Fig. 5). We do not make any other change that would af-
fect the model’s capacity. As for the GAN, in both A and B,
we use the same architecture as [39]. Further details regard-
ing hyperparameters, implementation and optimizations to
improve rendering speed can be found in Appendix A.1.
Loss. The reconstruction model is trained to jointly mini-
mize the MSE between (i) rendered and target silhouettes,
(ii) predicted RGB texture and target 2D image, (iii) pre-
dicted semantic texture (with K channels) and target 2D se-
mantic image. As in [39], we add a smoothness loss to en-
courage neighboring faces to have similar normals. Finally,
the availability of mesh templates allows us to incorporate a
strong shape prior into the model via a loss term that can
be regarded as an extreme form of semi-supervision: on
images with very confident poses (high IoU), we provide
supervision directly on the predicted 3D vertices by adding
a MSE loss between the latter and the vertices of the mesh
template (i.e. our surrogate ground-truth), only on the top
10% of images as measured by the IoU. This speeds up con-
vergence and helps with modeling fine details such as wings
of airplanes, where silhouettes alone provide a weak learn-
ing signal from certain views. This step requires remeshing
the templates to align them to a common topology, which
we describe in Appendix A.1.

4. Experiments

We quantitatively evaluate the aspects that are most cen-
tral to our approach: pose estimation and generation quality.
Pose estimation. On datasets where annotated keypoints
are available, we compare the poses estimated by our

approach to poses estimated from structure-from-motion
(SfM) on ground-truth keypoints. Since the robustness of
StM depends on the number of visible keypoints, we never
refer to SfM poses as “ground-truth poses”, as these are not
available in the real-world datasets we use. Nonetheless,
we believe that SfM poses serve as a good approximation
of ground-truth poses on most images. Our evaluation met-
rics comprise (i) the geodesic distance (GD) between the
rotation q predicted by our approach and the SfM rotation
p, defined as GD = 1 — (p - q)? for quaternions, where
GD € [0,1] *; and (ii) the recall, which measures the frac-
tion of usable images that have passed the ambiguity detec-
tion test. We evaluate pose estimation at different stages:
after silhouette optimization (where no semantics are in-
volved), and after the semantic template inference. Addi-
tionally, we compare settings where only one mesh template
per category is available, and where multiple mesh tem-
plates are employed (we use 2—4 templates per category).

Generative modeling. Following prior work on textured
3D mesh generation with GANs [39], we evaluate the
Fréchet Inception Distance (FID) [16] on meshes rendered
from random viewpoints. For consistency, our implemen-
tation of this metric follows that of [39]. Since our pose
estimation framework discards ambiguous images and the
FID is sensitive to the number of evaluated images, we al-
ways use the full dataset for computing reference statistics.
As such, there is an incentive for optimizing both GD and
recall metrics as opposed to trading one off for the other.
Finally, consistently with [39], we generate displacement
maps at 32 x 32 resolution, textures at 512x 512, and sample
from the generator using a truncated Gaussian at o = 1.0.

4.1. Datasets

We evaluate our approach on three datasets: CUB-200-
2011 (CUB) [45], Pascal3D+ (P3D) [31], and a variety of
classes from ImageNet [6]. The first two provide keypoint
annotations and serve as a comparison to previous work,
whereas on the latter we set new baselines. Combining all

3More commonly known as cosine distance when quaternions are used
to describe orientations, as in our case.
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Figure 6. Qualitative results for all 13 classes used in our work. For each class, we show one wireframe mesh on the left, the corresponding
textured mesh on the right, and two additional textured meshes on the second row. Meshes are rendered from random viewpoints.

Bird Car Airplane

Setting Step  ||GD(1)|GD (Recall) ||GD(1)|GD (Recall)||GD(1)|GD (Recall)
Silhouette|| 0.47 |0.35 (52%) || 0.12 |0.05 (75%) || 0.31 |0.28 (85%)
Semantics|| 0.29 |0.24 (74%) || 0.11 |0.06 (84%) || 0.25 |0.18 (78%)
Repeat x2|| 0.29 |0.24 (76%) || 0.15 |0.11 (85%) || 0.24 |0.17 (75%)
Silhouette|| 0.47 |0.33 (44%) || 0.10 |0.05 (78%) || 0.28 |0.22 (81%)
Semantics|| 0.32 |0.27 (76%) || 0.06 [0.04 (88%) || 0.22 |0.15 (79%)
Repeat x2|| 0.32 0.27 (78%) || 0.07 |0.05 (89%) || 0.21 |0.16 (80%)

Single
template

Multiple
templates

Table 1. Pose estimation results under different settings. Best in
bold; second best underlined. We report geodesic distance (GD;
lower = better) after each step and associated recall (higher = bet-
ter) arising from ambiguity detection. For comparison, we also re-
port GD w/o ambiguity detection, GD(1), assuming 100% recall.

datasets, we evaluate our approach on 13 categories.

CUB (Birds). For consistency with prior work, we adopt
the split of [39, 20] (=6k training images). As we work in
the unconditional setting, we do not use class labels.
Pascal3D+ (P3D). Again, we adopt the split of [39, 20], and
test our approach on both car and airplane categories. Since
[39] has only tested on cars, we train the model of [39] on
airplanes and provide a comparison here. P3D comprises a
subset of images from ImageNet and [39] evaluates only on
this subset; for consistency, we adopt the same strategy.
ImageNet. Our final selection of classes comprises the ve-
hicles and animals that can be seen in Fig. 5/6. The list
of synsets used in each class as well as summary statis-
tics are provided in the Appendix A.3. The set of Ima-
geNet classes includes car and airplane, which partially
overlap with P3D. Therefore, when we mention these two
classes, we always specify the subset we refer to (ImageNet
or P3D). We also note that the dataset is heavily imbalanced,
ranging from /300 usable images for giraffe to thousands
of images for car. For this reason, in setting B we take mea-
sures to balance the dataset during training (Appendix A.1).

4.2. Results

Pose estimation. We evaluate our pose estimation frame-
work on bird, car, and airplane, for which we have key-
point annotations. Reference poses are obtained using the
StM implementation of [20]. For birds (CUB), the scores
are computed on all images, whereas for cars/airplanes they
are computed on the overlapping images between P3D and

our ImageNet subset. Results are summarized in Table 1.
Interestingly, using multiple mesh templates does not seem
to yield substantially different results, suggesting that our
approach can work effectively with as little as one template
per class. Moreover, incorporating semantic information
improves both GD and recall. Finally, we repeat the ambi-
guity detection and semantic template inference steps a sec-
ond time, but observe no improvement. Therefore, in our
following experiments we only perform these steps once.
We further discuss these results in Appendix A.2, where we
aim to understand the most common failure modes by ana-
lyzing the full distribution of rotation errors. Qualitatively,
the inferred 3D semantic templates can be found in Fig. 5.

Generative model. We report the FID on ImageNet in Ta-
ble 2, left (bird refers to CUB), where we set new baselines.
As before, we compare settings where we adopt a single
mesh template vs multiple templates. We also showcase a
conditional model that learns to synthesize all categories us-
ing a single generator (setting B). Although this model has
the same capacity as the individual models (but was trained
to generate all classes at once), we note that its scores are
in line with those of setting A, and in some classes (e.g.

Skin color (white - brown) Specularreflections (matte - shiny)
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Figure 7. Disentanglement and interpolation in the model trained
to generate all classes (setting B). Top: directions in latent space
that correlate with certain style factors, such as skin color and
lighting. The effect is consistent across different classes. Bottom:
interpolation between different classes with a fixed latent code.
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Setting MBike Bus  Truck Car Airplane Bird Sheep Elephant Zebra Horse Cow Bear Giraffe|All Method

Single TPL (A)|107.4 219.3 164.1 30.73 77.84  55.75 173.7 114.5
Multi TPL (A) [107.0 160.7 206.1 32.19 102.2  56.54 155.1 1359

28.19 113.3 137.0 187.1 157.7 |-
22.10 107.1 133.0 195.5 126.0 |-

Single TPL (B) |94.74 204.98 179.3 39.68 46.46
Multi TPL (B) [94.03 187.75 204.7 46.11 77.27  77.23 163.8 146.2

88.47 169.9 127.6  24.47 106.9 139.4 156.4 176.8 |60.82

Bird (CUB) Car (P3D) Airplane (P3D)
Keypoints+SfM [39]  |41.56 43.09 147.8*
Silhouette (single TPL)|73.67 38.16 100.5
Silhouette (multi TPL) |88.39 36.17 96.28
Semantics (single TPL)|55.75 36.52 81.28
31.70 113.4 117.5 189.9 158.0 |63.00  goandics (multi TPL) 56.54 37.56 88.85

Table 2. Left: FID of our approach on ImageNet (except bird, which refers to CUB). We report results for models trained separately on
different classes (setting A) and a single model that generates all classes (setting B). Right: comparison of our FID w.r.t. prior work, using
either silhouettes alone or our full pipeline. * = trained by us; TPL = mesh template(s); lower = better, best in bold, second best underlined.

airplane) they are significantly better, most likely due to
a beneficial regularizing effect. However, we also note that
there is no clear winner on all categories. To our knowledge,
no prior work has trained a single 3D generator on multiple
categories without some form of supervision from synthetic
data. Therefore, in one of the following paragraphs we an-
alyze this model from a disentanglement perspective. Next,
in Table 2 (right), we compare our results to the state-of-
the-art [39] on the bird, car, and airplane categories from
CUB/P3D. We find that our approach outperforms [39] on
car and airplane (P3D) — even though we do not exploit
ground-truth keypoints — and performs slightly worse on
bird (CUB). We speculate this is mainly due to the fact that,
on CUB, all keypoints are annotated (including occluded
ones), whereas P3D only comprises annotations for visible
keypoints, potentially reducing the effectiveness of SfM as a
pose estimation method. Finally, we point out that although
there is a large variability among the scores across classes,
comparing FIDs only makes sense within the same class,
since the metric is affected by the number of images.

Qualitative results. In addition to those presented in Fig. 1,
we show further qualitative results in Fig. 6. For animals,
we observe that generated textures are generally accurate
(e.g. the high-frequency details of zebra stripes are modeled
correctly), with occasional failures to model facial details.
With regards to shape, legs are sporadically merged but also
appear correct on many examples. We believe these issues
are mostly due to a pose misalignment, as animals are de-
formable but our mesh templates are rigid. As part of future
work, we would like to add support for articulated mesh
templates [28] to our method. As for vehicles, the gener-
ated shapes are overall faithful to what one would expect,
especially on airplanes where modeling wings is very chal-
lenging. We also note, however, that the textures of rare
classes (truck above all) present some incoherent details.
Since we generally observe that the categories with more
data are also those with the best results, these issues could
in principle be mitigated by adding more images. Finally,
we show additional qualitative results in the Appendix A.2.
Disentanglement and interpolation. We attempt to inter-
pret the latent space of the model trained to synthesize all
classes (setting B), following [13]. We identify some direc-
tions in the latent space that correlate with characteristics
of the 3D scene, including light intensity (Fig. 1, top-right),
specular reflections and color (Fig. 7). Importantly, these
factors seem to be shared across different classes and are

H Wheel

[] Headlight
B Windshield
[ Bumper

Y
B B2 =

Figure 8. Conditional mesh generation from semantic layouts. In
this demo, we progressively build a car by sketching its parts,
proposing an interesting way of controlling the generation process.

learned without explicit supervision. Although our analysis
is preliminary, our findings suggest that 3D GANs disen-
tangle high-level features in an interpretable fashion, simi-
lar to what is observed in 2D GANs to some extent (e.g. on
pose and style). However, since 3D representations already
disentangle appearance and pose, the focus of the disentan-
gled features is on other aspects such as texture and light-
ing. Fig. 7 (bottom) illustrates interpolation between dif-
ferent classes while keeping the latent code fixed. Style is
preserved and there are no observable artifacts, suggesting
that the latent space is structured.

Semantic mesh generation. Since our framework predicts
a 3D semantic layout for each image, we can condition the
generator on such a representation. In Fig. 8, we propose a
proof-of-concept where we train a conditional model on the
car class that takes as input a semantic layout in UV space
and produces a textured mesh. Such a setting can be used
to manipulate fine details (e.g. the shape of the headlights)
or the placement of semantic parts.

5. Conclusion

We proposed a framework for learning generative mod-
els of textured 3D meshes. In contrast to prior work, our
approach does not require keypoint annotations, enabling
its use on real-world datasets. We demonstrated that our
method matches the results of prior works that use ground-
truth keypoints, without having to rely on such information.
Furthermore, we set new baselines on a subset of categories
from ImageNet [0], where keypoints are not available. We
believe there are still many directions of interest to pursue
as future work. In addition to further analyzing disentan-
glement and exploring more intuitive semantic generation
techniques, it would be interesting to experiment with artic-
ulated meshes and work with more data.
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