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Abstract

The core of visual place recognition (VPR) lies in how to
identify task-relevant visual cues and embed them into dis-
criminative representations. Focusing on these two points,
we propose a novel encoding strategy named Attentional
Pyramid Pooling of Salient Visual Residuals (APPSVR). It
incorporates three types of attention modules to model the
saliency of local features in individual, spatial and cluster
dimensions respectively. (1) To inhibit task-irrelevant lo-
cal features, a semantic-reinforced local weighting scheme
is employed for local feature refinement; (2) To leverage
the spatial context, an attentional pyramid structure is con-
structed to adaptively encode regional features according
to their relative spatial saliency; (3) To distinguish the dif-
ferent importance of visual clusters to the task, a para-
metric normalization is proposed to adjust their contribu-
tion to image descriptor generation. Experiments demon-
strate APPSVR outperforms the existing techniques and
achieves a new state-of-the-art performance on VPR bench-
mark datasets. The visualization shows the saliency map
learned in a weakly supervised manner is largely consistent
with human cognition.

1. Introduction
Visual place recognition (VPR) has become the core

technique of many promising applications in the field of
computer vision [1,2,5,39,41,45] and robotics [7,10,11,25],
such as autonomous driving [6,24,28], geo-localization [22,
23, 40], 3D reconstruction [9] and virtual reality [26].

VPR in large-scale environments is typically solved as
an instance retrieval task [1, 2, 18, 19, 40, 41, 45], where the
goal is to find the most visually similar database images
for a given query image. The main challenge is different
viewpoints, weather and illumination may cause dramatic
changes in the appearance of the same scene. Partial occlu-
sion and dynamic objects also bring additional challenges
to the task. Therefore, how to construct powerful image
representations has raised widespread concerns in the field.

In the exploratory work carried out over the past decades,
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Figure 1. APPSVR consists of two main steps: local refinement
and global integration. Refining the prior knowledge of “preserv-
ing the semantics of buildings”, local refinement (b) can adaptively
highlight billboards and inhibit repeated structures on buildings.
Certain visual cues improperly retained in (b) (e.g., vehicle parts
that look like architectural windows) can be suppressed in the sub-
sequent global integration (c). Finally, the overall attention (d)
of APPSVR is consistent with human perception habit of valuing
static structures and omitting misleading visual elements.

VLAD [3] and its variants [1, 19, 48] stand out from other
counterparts by introducing residual that can better charac-
terize the nuances of local details. Drawing on their wis-
dom, we follow the basic idea of aggregating cluster-wise
residuals for feature embedding. Considering that not every
visual element in the image is helpful to the VPR task, it is
necessary to emphasize the task-relevant ones in the image
representation.

With similar motivations, early attempts [2, 20, 39] have
been made to accentuate task-relevant local features. Fol-
lowing the pace of deep learning, the recent attention-aware
methods for VPR can be broadly divided into two cate-
gories. The data-driven methods [19, 31, 51] usually in-
tegrate trainable attention modules into the encoding net-
work. Through end-to-end learning, these modules essen-
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tially act as a black box weighting of local features. The
rule-based methods [27, 29, 35] typically use artificial rules
to filter specific visual cues for subsequent encoding. Their
performance is susceptible to the bias of rough prior knowl-
edge. To combine the advantages of both categories, we
adopt a semantic reinforced attention module [32] for local
feature refinement, where semantic priors can be reflected
by the initial weights of the parametric model. With further
fine-tuning, the model can learn comprehensive reasoning
habits from prior knowledge and data-driven training.

Besides the individual distinctiveness, local features’
task relevance also greatly depends on their context in the
scene. Some existing methods, such as contextual reweight-
ing [19] and multi-scale regional pooling [44, 48, 51], have
demonstrated the advantages of incorporating spatial infor-
mation into the encoding strategy. Inspired by them, we
develop an attentional pyramid pooling to leverage the fea-
tures’ regional context. Specifically, an overlapping pyra-
mid structure is constructed, where regional features are for-
mulated by aggregating salient visual residuals within each
grid. Then through a spatial attention module, regional fea-
tures are weighted by their relative spatial saliency before
being embedded into the visual word vector. In particular,
our spatial saliency weight is derived based on the global
context, not just based on the regions in the rigid grid.

Moreover, the final representation of VLAD variants [1,
17,34] is normally the concatenation of visual word vectors,
whose scales are equalized by intra-normalization [17].
Consequently, all visual words contribute the same to the
descriptor generation and similarity metric. To distinguish
their different importance to the task, we propose a paramet-
ric normalization, through which visual word vectors are
rescaled according to their task relevance and then concate-
nated as a unit image descriptor. In this way, the different
saliency of visual clusters can be intuitively highlighted in
the similarity interpretation during indexing.

In summary, we propose an attentional encoding strategy
for VPR, named Attentional Pyramid Pooling of Salient Vi-
sual Residuals (APPSVR). Particularly, we introduce three
types of attention modules to model the saliency of local
features in individual, spatial and cluster dimensions re-
spectively. Incorporating the triple attention, our model can
adaptively identify and embed salient visual cues into dis-
criminative image descriptor. Experiments verify the effec-
tiveness of all proposed modules, and demonstrate that our
model significantly outperforms baseline methods on city-
scale benchmark datasets. In summary, our contributions
are as follows:

• We propose an encoding strategy APPSVR for VPR,
which integrates the triple attention from individual,
spatial and cluster saliency into feature embedding.

• For local feature refinement, we adopt a semantic-
reinforced local weighting scheme, where crompre-

hensive local saliency can be learned from both prior
knowledge and data-driven fine-tuning.

• We propose an attentional pyramid pooling and a para-
metric normalization for global integration, through
which spatial and cluster saliency can be incorporated
into the encoding strategy.

• Experiments demonstrate that APPSVR outperforms
existing methods and achieves a new state-of-the-art
performance on benchmark datasets. The visualization
shows the attention learned under weak supervision is
highly consistent with human cognition.

2. Related Work

Traditionally, the large-scale VPR is framed as an image
retrieval task, where the key is to find a discriminative repre-
sentation for accurate and fast indexing. In this section, we
will briefly review the literature on the global image repre-
sentation for VPR that is related to our method.

Early methods employ variants of Bag of Words [39, 41,
45], Vector of Locally Aggregated Descriptors (VLAD) [3]
or Fisher Vectors (FV) [33,34] to encode hand-crafted local
features [4, 12]. With the rise of deep learning, the com-
munity has gradually shifted to exploiting the intermediate
activations of pretrained CNNs as deep local features. Re-
placing hand-crafted local features with deep learned ones
can bring stable performance improvements for aggrega-
tion methods, such as sum pooling [3], max pooling [38],
VLAD [30] and FV [47]. Additionally, combining the
spatial information of multi-scale patches [18, 43, 48] into
feature embedding has also proven to lead to better im-
age representation. Recent studies [1, 13, 36] explore the
deep learning based architectures that can be used for task-
specific training. Arandjelovic et al. [1] introduce the sem-
inal VLAD pooling layer named NetVLAD. Yu et al. [48]
propose SPENetVLAD, which encodes spatial information
by stacking regional features. Gordo et al. [13] retrain the
R-MAC [44] on a landmark dataset and obtain an outstand-
ing improvement. Despite the considerable advantages, the
aforementioned methods allow all local features to partic-
ipate in feature embedding, where misleading visual cues
are also encoded into the image representation.

In order to reduce the influence of task-irrelevant local
features, researchers put forward the consolidation of at-
tention blocks with CNN architectures. Kim et al. [19]
enhance the NetVLAD [1] through a contextual reweight-
ing network (CRN). Zhu et al. [51] propose APAnet that
aggregates multi-scale regional features weighted by cas-
caded attention blocks. Concurrently, some approaches use
artificial prior knowledge for semantic-guided feature filter-
ing [27, 29, 35]. They retain the local features with speci-
fied semantics for subsequent embedding. While the pre-
vious attention strategies are either completely data-driven
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Figure 2. The overall flowchart of APPSVR. For local refinement, a hierarchical weighting scheme reinforced by semantic priors is
employed to suppress the misleading local features within each cluster. For global integration, spatial saliency is first leveraged to highlight
the salient regional features in visual word vector encoding. Then cluster saliency is incorporated to adjust the contribution of visual word
vectors to the final image representation.

or based on artificial rules, Peng et al. [32] propose SRAL-
Net that introduces semantic priors to enhance the differ-
ential local weighting scheme. However, it overlooks the
contextual information of local features in the process of
feature weighting. The role of intra-cluster local saliency
on the final image representation is also restricted by intra-
normalization [17]. On top of SRALNet, through atten-
tional pyramid pooling, APPSVR utilizes the multi-scale
spatial information for more discriminative feature embed-
ding. Additionally, APPSVR provides data-driven weight-
ing for clusters, which adjusts their contribution to both im-
age descriptor generation and similarity metric.

3. Preliminaries
Before introducing the proposed method, we first pro-

vide an overview of the baseline NetVLAD [1].
Deep local features. A cropped convolutional neuron

network (e.g., VGG-16 [42] or AlexNet [21]) is first ex-
ploited as the base network. The spatial activations from
the output feature maps M ∈ RD×H×W are normalized
and regarded as deep local features x ∈ RD×1×1.

Soft-assignment. The deep local features are then di-
vided into K visual word clusters through soft-assignment.
As in Eq.(1), the soft-assignment weight αk(xi) of a local
feature xi being allocated to the kth cluster is related to its
proximities to the cluster centroids {ck}Kk=1. The constant a
is selected to be a large positive number, which controls the
decay of the response with the magnitude of the distance.

αk(xi) =
e−a‖xi−ck‖2∑K
j=1 e

−a‖xi−cj‖2
=

ew
T
k0xi+bk0∑K

j=1 e
wT

k0xi+bk0

(1)

Descriptor generation. Through Eq.(2), each visual
word vector Vk is formulated by indiscriminately aggregat-
ing the local residuals belonging to the cluster.

Vk =

HW∑
i=1

αk(xi)(xi − crk) (2)

Then as in Eq.(3), the descriptor V (X) of an image X is
obtained by stacking visual word vectors {Vk(X)}Kk=1 and
performing intra-normalization [17] and L2-normalization.
Let Ṽk(X) denote a normalized visual word vector. The
L2-normalization actually conducts an element-wise multi-
plication by 1√

K
for all subvectors, so that ‖V (X)‖=1.

V (X) =

[
Ṽ1(X)√

K
,
Ṽ2(X)√

K
, ...,

ṼK(X)√
K

]
(3)

4. Proposed Method
In this section, we describe the proposed method in de-

tail. Fig.2 provides an overview of our encoding strategy,
which can be summarized into two main steps: local refine-
ment and global integration. Each functional step will be
explained sequentially in the following subsections.

4.1. Local refinement

Since not all local features describe the task-relevant vi-
sual cues in an image, indiscriminatively encoding all of
them as in Eq.(2) will result in misleading features degrad-
ing the image representation. Therefore, we adopt semantic
reinforced intra-cluster weighting [32] for local feature re-
finement, which uses individual distinctiveness to suppress
misleading features with semantics unrelated to the task.
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(a) Inter-cluster soft-assignment (b) Intra-cluster local weighting

Figure 3. Illustration of the hierarchical weighting for local fea-
ture refinement. Deep local features are first divided into different
clusters through soft-assignment. Then intra-cluster local weight-
ing is conducted to suppress misleading features in each cluster.

Intra-cluster local weighting. Following the common
steps described in Section 3, we first extract deep local fea-
tures {xi} from an image and divide them into K visual
word clusters through soft-assignment αk(xi) as in Eq.(1).

As visual cues describing similar appearance and seman-
tics are usually mapped closer in the feature space and have
consistent task relevance, we regard the Voronoi cell of each
feature cluster as a combination of multiple information ar-
eas and ambiguous areas. Each informative area In is repre-
sented by an informative centroid crkn (4 in Fig.3.b), while
each ambiguous area Sl is represented by a shadow centroid
cskl (+ in Fig.3.b). The intra-cluster saliency weight βk(xi)
of a local feature xi is formulated as its probability of being
located in the informative areas of the kth cluster. Formally,
as in Eq.(4), βk(xi) is related to the proximities of xi to the
intra-cluster centroids {crkn}Nn=1 and {cskl}Ll=1.

βk(xi) =

∑N
n=1 e

−b‖xi−cr
kn‖

2∑L
l=1 e

−b‖xi−cs
kl‖2 +

∑N
n=1 e

−b‖xi−cr
kn‖2

(4)
Intuitively, local features located in ambiguous areas

have the smallest distance to their closest shadow centroid.
The denominator of their βk(xi) will be much larger than
the numerator, due to the large positive constant b that con-
trols the response with the magnitude of the distance. As a
result, they will be assigned a low saliency weight.

By reducing e−b‖xi‖2 and using the abbreviated symbol
{ckj}N+L

j=1 to represent {crkn}Nn=1 and {cskl}Ll=1, Eq.(4) can
be further derived as Eq.(5) and implemented by a trainable
convolutional layer followed by summing Softmax logits of
the specified channels.

βk(xi) =

∑N
n=1 e

2bcT
knxi−b‖ckn‖2∑N+L

j=1 e2bc
T
kjxi−b‖ckj‖2

=

∑N
n=1 e

wT
knxi+bkn∑N+L

j=1 ew
T
kjxi+bkj

(5)

Semantic constrained initialization. As in Fig.(3), the
hierarchical weighting in Eq.(1) and Eq.(5) can be inter-
preted as allocating features into clusters and intra-cluster

Original image Overall saliencyIntra-cluster local weighting

αk αk * βk

… …

… …

Figure 4. Visualization of local refinement on examples from
Pittsburgh dataset. From the intra-cluster saliency of visual cues
before and after local weighting (2nd column), it can be seen that
vehicles are suppressed and sidewalks are preserved.

sub-areas. This signifies that prior attention can be provided
by an initial feature space partition, which is actually deter-
mined by the centroids {ck}, {crkn} and {cskl} according to
Eq.(1) and Eq.(5). Thus, we follow [32] to choose features
with specified semantics for initializing these centroids.

Specifically, a pre-trained semantic segmentation model
(DeepLabV3 [8] in this case) is used to predict the semantic
label of local features. The features predicted to be from
static semantics are sampled and clustered to generate the
K cluster centroids {ck} and the N informative centroids
{crkn} of each cluster. Those features predicted to belong
to task-irrelevant semantics are clustered to generate a list
of shadow candidates. The L shadow centroids {cskl} of
each cluster are chosen to be the top L candidates with the
shortest distances to the cluster centroid.

Via the special initialization, local features with mislead-
ing semantics are most likely to be closest to a shadow cen-
troid and are assigned a low saliency weight. This provides
initial attention for the local weighting scheme. Consider-
ing that rough priors and initial attention may not be perfect
for the VPR task, we further fine-tune the network through
end-to-end training to obtain the optimal attention reason-
ing. In this way, the ultimate reasoning habits can be learned
from both prior knowledge and data-driven learning. Fig.4
visualizes the inferred local saliency of some samples.

4.2. Global Integration

After leveraging individual saliency, we further combine
spatial and cluster saliency to embed the refined local fea-
tures into the global image representation.

Attentional Pyramid Pooling. Conventionally, a vi-
sual word vector is generated through Eq.(2), where spatial
information between local features is decoupled and over-
looked. However, a feature’s task relevance also largely de-
pends on the context in the scene. (e.g., as in Fig.1, window
structure of vehicles or buildings varies in importance to the
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Figure 5. The diagram of attentional pyramid pooling for gen-
erating cluster-wise visual word vectors. Spatial pyramid pooling
is performed on the refined local residuals to generate multi-scale
regional features, the relative spatial saliency of which is evalu-
ated by the spatial attention block. The final visual word vector is
formulated by weighted sum pooling of the regional features.

task.) Therefore, we propose an attentional pyramid pool-
ing module to highlight the local residuals with informative
context when generating visual word vectors. Specifically,
an overlapping pyramid structure [51] is first employed to
divide the feature maps into multi-scale regions. Through a
sliding window of size (d2W/(2n−1+1)e,d2H/(2n−1+1)e)
and stride (dW/(2n−1+1)e,dH/(2n−1+1)e), a total of 4n−1

spatial grids will be generated at level n of the pyramid,
where adjacent grids overlap by approximately 50% for bet-
ter entities alignment. Let fn,mk be the mth regional feature
at the nth pyramid level. It can be obtained by aggregating
the salient cluster-wise residuals within the spatial grid.

fn,mk =

HgridWgrid∑
i=1

αk(xi)βk(xi)(xi − crk) (6)

Since not all regional features describe the informative
area, a spatial attention block is introduced to adjust their
contribution to feature embedding. The spatial attention
block consists of the same number of convolutional lay-
ers as the pyramid levels. At each pyramid level, a con-
volutional layer with the same kernel size and stride as the
sliding window is employed to evaluate the distinctiveness
of each spatial region. Then the multi-scale regional fea-
tures fn,mk and their distinctiveness µn,mk (which denotes
the spatial distinctiveness of the mth region at the nth pyra-
mid level with regard to the kth cluster) are stacked as fk =

[f1,1
k ...fn,mk ...fN,4

N−1

k ] and µk = [µ1,1
k ...µn,mk ...µN,4

N−1

k ]
respectively. The relative spatial saliency µ̃k is calculated
by L2-normalizing the µk, so that each element µ̃n,mk is re-
lated to the global context. Finally, the kth visual word vec-
tor Vk is generated by aggregating the multi-scale regional
features weighted by their relative spatial saliency.

Vk = fᵀ
k µ̃k =

N∑
n=1

4n−1∑
m=1

µ̃n,mk fn,mk (7)

Parametric Normalization. After getting the visual
word vectors, the image descriptor of VLAD variants [1,17,
34] is normally obtained through Eq.(3). During indexing,
the similarity of two imagesX1 andX2 is measured by the
inner product of their descriptors V , which can be further
decomposed as the average sum of similarities between the
corresponding normalized visual word vectors Ṽk:

Sim〈X1,X2〉 = V (X1) · V (X2)

=
1

K

∑K

k=1
Ṽk(X1) · Ṽk(X2)

(8)

It can be seen that all clusters have the same contribution
to the similarity metric, while their significance to the task
may not be the same. e.g., a cluster containing architectural
features is more important than that containing sky features.

Therefore, we propose a parametric normalization,
where trainable parameter γk is introduced to quantify the
importance of the kth visual cluster to the task. In imple-
mentation, the trainable weights γ = [γ1, γ2, ..., γK ] is first
L2-normalized as the cluster saliency γ̃ = [γ̃1, γ̃2, ..., γ̃K ].
Then a unit image descriptor can be generated by concate-
nating the normalized visual word vectors ṼK rescaled by
their corresponding cluster saliency γ̃K .

V (X) = [γ̃1 · Ṽ1(X), γ̃2 · Ṽ2(X), ..., γ̃K · ṼK(X)] (9)

In this way, the similarity of two image descriptors can
be derived as Eq.(10), where γ̃2k distinguishes the contribu-
tion of visual word clusters to the similarity metric.

Sim〈X1,X2〉 =
∑K

k=1
γ̃2k · Ṽk (X1) · Ṽk (X2) (10)

Compare Eq.(9) with Eq.(3), the representations differ
in the element-wise scalar γk. If γ̃k equals to 1√

K
for each

k ∈ [1,K], the similarity metric in Eq.(10) will degenerate
into Eq.(8). Thus, the intra-normalization followed by L2-
normalization in [1,17] can be regarded as a special case of
our proposed parametric normalization. During training, γ̃k
is initialized by 1√

K
to mimic the conventional normaliza-

tion pipeline, where all visual word vectors are considered
equally important to the similarity metric in the beginning.

Attention in local refinement Overall AttentionAttention in global integration

Figure 6. Using the same images in Fig.4 for visualization,
global integration (2nd column) places greater emphasis on build-
ing structures. Local and global attention complement each other.
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5. Loss Function
In the retrieval-based VPR task, reference images with

the representations closest to the query are considered as po-
tential positive candidates. For accurate indexing, a positive
reference imageXp

r is expected to be closer to the queryXq

than any negative reference Xn
r in the feature space. Thus,

we use the triplet ranking loss [14–16,36] in Eq.(11) to train
the image representation fθ, where [y]+ = max(y, 0) en-
sures non-negative output and m is the empirical margin.

lθ(Xq, X
p
r , X

n
r ) =[d2(fθ(Xq), fθ(X

p
r ))

− d2(fθ(Xq), fθ(X
n
r )) +m]+

(11)

Since the loss takes triplets as input, we use the same
tuple mining strategy as in [1] to collect a set of tuples
(Xq, X

p∗
r , {Xn

r }) for each training iteration. A tuple con-
sists of 1 query, 1 positive and N negatives, which can be
combined intoN triplets (Xq, X

p∗
r , Xnj

r ). The training loss
of each tuple is formulated as Eq.(12), and the parametric
model is trained by minimizing it. To enhance the robust-
ness of the learned representation, data augmentation is per-
formed, including random cropping and color jitter.

Lθ(Xq, X
p∗
r , {Xn

r }) =
1

N

N∑
j=1

lθ(Xq, X
p∗
r , Xnj

r ) (12)

6. Experiments
6.1. Benchmark Datasets

We use the three common VPR benchmark datasets,
namely Pitts250k, Pitts30k, and Tokyo24/7, to evaluate the
proposed APPSVR. Pitts250k [46] collects 254k images
from the Pittsburgh area, with changes in both appearance
and viewpoint. Pitts30k [1] is proposed as a subset of
Pitts250k to speed up the training and evaluation process.
Tokyo24/7 [1, 45] contains 76k images captured in Tokyo
during daytime, sunset and night. It is relatively more chal-
lenging in terms of larger illumination change, more clutters
and dynamic objects. Following the latest SOTA [32, 48],
we train all evaluated models on Pitts30k-train and test
them on Pitts30k-test, Pitts250k-test, Tokyo24/7 respec-
tively. Fig.7 visualizes some examples of challenging im-
age pairs in the employed datasets.

6.2. Evaluation Metric

The performance of evaluated models is measured by
Recall@N , which is the percentage of the queries that are
correctly retrieved when given N potential positive candi-
dates. The candidates are the first N reference images with
the most similar representations to the query. For Pitts250k,
Pitts30k and Tokyo24/7, the retrieval reasoning of a query is
correct if any of the candidates is not more than dr = 25m
away from the query image.

R
eference Im

age
Q

uery Im
age

Pittsburgh Dataset

R
eference Im

age
Q

uery Im
age

Tokyo24/7 Dataset

Figure 7. Examples of challenging image pairs in Pittsburgh and
Tokyo24/7. (APPSVR correctly retrieves all queries above)

6.3. Implementation Details

We crop the VGG-16 [42] pretrained on ImageNet at the
last convolutional layer, and use it as the unified base net-
work to extract local features. APPSVR and other com-
parative models are appended as a pooling layer to gener-
ate the global image descriptor. PCA whitening (PCA-W)
is further performed to formulate more compact represen-
tations with 4096 and 512 dimensions (4096-D and 512-
D). Through hyperparameter tuning, the number of infor-
mative centroids N and shadow centroids L of each clus-
ter in APPSVR are selected as 1 and 4 respectively. Other
common hyperparameters for model building and training
configuration are chosen to be the same as in [1, 32]. For
a fair comparison, we implement all methods in PyTorch,
using the unified protocol to train and evaluate them.

6.4. Ablation Study

To analyze the advantages of each component in our pro-
posed method, we compare APPSVR variants that apply
different component combinations. In the following experi-
ment, APPSVR with only the local weighting scheme (LW)
is set as the basic model. We use additional abbreviations
to denote the application of semantic constrained initializa-
tion (SC), attentional pyramid pooling (AP) and parametric
normalization (PN) to the basic APPSVR.

As shown in Table.1, applying each component progres-
sively can bring steady performance improvements to our
model. It demonstrates the effectiveness of individual mod-
ules, and shows that their advantages can be accumulated.
Increasing the number of scales in the AP module further
improves the results, which can be attributed to the multi-
scale regional weighting that provides finer entity alignment
and spatial saliency regulation. Compared with the base-
line NetVLAD, our optimal model with all components en-
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Table 1. Ablation study on the proposed components. ’-Ln’ denotes applying AP with n scales. All representations are 4096-D.

Method Components Pitts30k-test Pitts250k-test Tokyo24/7
LW SC PN AP r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10

NetVLAD [1] × × × × 85.2 92.8 94.9 86.5 93.8 95.5 68.9 78.7 81.3
APPSVR

√
× × × 86.1 93.1 94.9 87.5 94.4 95.9 70.8 80.0 82.9

APPSVR-SC
√ √

× × 86.3 93.4 95.4 87.8 94.8 96.3 72.1 83.2 87.3
APPSVR-PN

√
×

√
× 86.4 93.2 95.3 88.1 94.4 96.0 73.0 82.2 84.1

APPSVR-SC-PN
√ √ √

× 86.4 93.6 95.5 88.1 95.2 96.5 73.7 84.8 88.3
APPSVR-SC-PN-L2

√ √ √ √
87.3 94.2 95.8 88.5 95.4 96.8 75.2 83.8 88.7

APPSVR-SC-PN-L3
√ √ √ √

87.4 94.3 95.8 88.8 95.6 96.8 77.1 85.7 89.5

Figure 8. Applying PN(-∗-) achieves a coherent refinement in the
performances for all models(-·-). Our method(red) shows obvious
advantages in both the 4096-D (··) and 512-D (-·) representations.

abled (APPSVR-SC-PN-L3) shows a comprehensive per-
formance advantage. An increase of about 2% and 7% can
be observed on Pittsburgh and Tokyo respectively.

We also evaluate the generalization ability of the PN
module on other VLAD variants. It can be seen from Fig.8
that applying PN brings stable improvements for all the
baseline models. This reflects the advantages of introducing
cluster saliency and shows that the proposed PN is generally
effective for different VLAD-centric architectures.

6.5. Comparison with State-of-The-Arts

We compare our model with VPR benchmark methods
based on global descriptor retrieval. Positioned as an at-
tentional VLAD pooling layer, our APPSVR is first com-
pared with other VLAD-centric architectures. CRN [19]
extends NetVLAD [1] with a contextual reweighting layer.
SPENetVLAD [49] stacks the regional NetVLAD descrip-
tors to preserve spatial information. GhostVLAD [50] spec-
ifies the ghost clusters for misleading features and elimi-
nate them from feature embedding. SRALNet [32] intro-
duces semantic priors to enhance local attention learning.
Table 2 shows the comparison results based on the original
and 4096-D representations. As can be seen, GhostVLAD,
CRN, and APPSVR-SC (SRALNet) all surpass NetVLAD,
proving the necessity of introducing local weighting for fea-

Table 2. Performance comparison to other VLAD-centric architec-
tures with original and 4096-D (bold) representations.

Method PCA-W
Pitts250k-test Tokyo24/7

r@1 r@5 r@10 r@1 r@5 r@10

NetVLAD [1]
w/o 84.1 92.5 94.5 60.0 76.2 79.7

4096D 86.5 93.8 95.5 68.9 78.7 81.3

GhostVLAD [50]
w/o 84.1 92.7 95.1 61.6 76.5 80.6

4096D 87.1 94.1 95.8 68.9 81.0 84.1

CRN [19]
w/o 84.7 92.9 95.3 61.9 75.6 79.7

4096D 87.2 94.2 95.9 69.0 81.3 83.2

SPENetVLAD [48]
w/o 85.2 93.4 95.3 60.0 74.6 81.3

4096D 87.4 94.5 96.1 71.8 82.9 87.6

GhostVLAD-SC [32]
w/o 85.5 93.8 95.6 66.0 78.4 84.4

4096D 87.6 94.6 96.1 71.4 81.9 85.7

SRALNet [32]
w/o 85.8 94.1 95.9 68.6 80.0 83.8

4096D 87.8 94.8 96.3 72.1 83.2 87.3

APPSVR-SC-PN-L3
w/o 86.6 94.6 96.3 68.3 81.3 85.7

4096D 88.8 95.6 96.8 77.1 85.7 89.5

ture refinement. The methods applying SC (GhostVLAD-
SC, SRALNet and ours) consistently outperform the others
without SC, which shows the superiority of reinforcing at-
tention learning with semantic priors. Futher applying PN
and AP expands our advantages, where APPSVR-SC-PN-
L3 achieves a new SOTA performance on both benchmark
datasets. This validates our global integration that integrates
spatial and cluster saliency into the feature embedding.

Then we compare the performance of models on a more
compact 512-D representation. We include more methods
whose original descriptor is 512-D. R-MAC [44] formulates
the descriptor by summing the maximum activations within
spatial grids. APAnet [51] aggregates multi-scale regional
features weighted by cascaded attention blocks. GeM [37]
generalizes max and average pooling by introducing a learn-
able pooling parameter. Their performance are given in Ta-
ble 3. It can be observed that the VLAD-centric methods
show an overall advantage over the global pooling meth-
ods, which may be attributed to residuals and clusters that
can better characterize local details and distinguish subtle
differences. It verifies the rationality of our use of cluster-
wise residual aggregation for feature embedding. Besides,
our method outperforms all comparative models in Table 3,
which further demonstrates the compelling advantages of
APPSVR in different dimensional representations. 1

1More results and visualization can refer to the supplementary material.
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Figure 9. The illustration of visual cue saliency in the image representation learned by APPSVR. Overall, static building structures are
the most highlighted (bright yellow) while dynamic objects, such as vehicles and riders, are strongly suppressed (dark purple). Some other
interesting details can also be observed: for roadside trees (4th column), the trunks are assigned with higher weights than the canopy.

Table 3. Performance comparison of methods based on 512-D rep-
resentation. For a fair comparison, all evaluated models are imple-
mented in PyTorch and trained using the same protocol.

Method PCA-W
Pitts250k-test Tokyo24/7

r@1 r@5 r@10 r@1 r@5 r@10
Max pooling [38] 512D 39.3 59.0 67.2 11.8 23.5 33.3
Sum pooling [3] 512D 70.7 84.1 88.5 28.6 43.8 53.0
R-Mac [44] 512D 76.3 88.6 92.0 40.3 60.6 67.0
APAnet [51] 512D 76.7 88.8 91.7 51.1 66.7 71.1
GeM [37] 512D 80.4 91.0 93.7 56.2 72.4 80.0
NetVLAD [1] 512D 83.3 92.3 94.5 55.2 68.9 74.9
GhostVLAD [50] 512D 83.9 92.6 95.1 56.5 71.8 76.5
SPENetVLAD [48] 512D 84.5 93.0 94.8 59.0 71.8 78.7
CRN [19] 512D 84.5 92.9 95.0 59.1 73.7 76.8
SRALNet [32] 512D 84.8 93.5 95.6 60.6 76.5 80.0
APPSVR-SC-PN-L3 512D 85.3 94.0 95.8 62.0 76.5 80.0

6.6. Qualitative Results.

In Fig.9, we take several images from Pittsburgh and
TokyoTM datasets as examples to visualize the overall at-
tention learned by APPSVR. The super-imposed heat maps
illustrate the divergent importance of visual cues to the im-
age representation. It can be seen that the regions associated
with architectures are highlighted, while the others repre-
senting vehicles and riders are mostly suppressed. Impres-
sively, for roadside trees, the trunks are assigned with higher
weights than the canopy, from which one can further con-
clude that APPSVR can automatically learn to distinguish
the long-term static objects from those time-varying ones.
Fig.10 visually shows how APPSVR perceives two images
from the same scene but with different appearances. 1

7. Conclusions

In this paper, we propose an attention-aware encoding
strategy APPSVR for visual place recognition. To inhibit
misleading visual elements in feature embedding, we use a
semantic-reinforced local weighting scheme for local fea-

Figure 10. The two images depict the same scene under differ-
ent illumination and seasonal conditions. APPSVR focuses on the
static objects (buildings & road marks) and ignores the dynamic
vehicles, which guarantees the robustness of the representation.

ture refinement. To highlight the varying saliency of task-
relevant visual elements in the image representation, we
propose an attentional pyramid pooling and a parametric
normalization to combine the spatial and cluster saliency
in global integration. Experiments demonstrate that the in-
troduced triple attention can bring stable performance ad-
vantages and better generalization capability to the model.
Quantitatively, our architecture consistently outperforms
the SOTA methods on varying dimensional representations.
Qualitatively, the visualization shows that the learned atten-
tion under a weakly supervised manner is largely consistent
with human cognition, which highlights long-term static ob-
jects while suppressing misleading ones.
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Schindler, and Marc Pollefeys. Hyperpoints and fine vo-
cabularies for large-scale location recognition. 2015 IEEE
International Conference on Computer Vision (ICCV), pages
2102–2110, 2015.

[40] Torsten Sattler, Tobias Weyand, Bastian Leibe, and Leif
Kobbelt. Image retrieval for image-based localization revis-
ited. In BMVC, 2012.

[41] Grant Schindler, Matthew A. Brown, and Richard Szeliski.
City-scale location recognition. 2007 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–7, 2007.

[42] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[43] Niko Sünderhauf, Sareh Shirazi, Adam Jacobson, Feras Day-
oub, Edward Pepperell, Ben Upcroft, and Michael Mil-
ford. Place recognition with convnet landmarks: Viewpoint-
robust, condition-robust, training-free. In Robotics: Science
and Systems, 2015.

[44] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular
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