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Abstract

Self-supervised methods play an increasingly important
role in monocular depth estimation due to their great poten-
tial and low annotation cost. To close the gap with super-
vised methods, recent works take advantage of extra con-
straints, e.g., semantic segmentation. However, these meth-
ods will inevitably increase the burden on the model. In this
paper, we show theoretical and empirical evidence that the
potential capacity of self-supervised monocular depth esti-
mation can be excavated without increasing this cost. In
particular, we propose (1) a novel data augmentation ap-
proach called data grafting, which forces the model to ex-
plore more cues to infer depth besides the vertical image po-
sition, (2) an exploratory self-distillation loss, which is su-
pervised by the self-distillation label generated by our new
post-processing method - selective post-processing, and (3)
the full-scale network, designed to endow the encoder with
the specialization of depth estimation task and enhance the
representational power of the model. Extensive experiments
show that our contributions can bring significant perfor-
mance improvement to the baseline with even less compu-
tational overhead, and our model, named EPCDepth, sur-
passes the previous state-of-the-art methods even those su-
pervised by additional constraints. Code is available at
https://github.com/prstrive/EPCDepth.

1. Introduction

Depth estimation has always been a fundamental prob-
lem of computer vision, which dominates the performance
of various applications, e.g., virtual reality, autonomous
driving, robotics, etc. As the cheapest solution, monocu-
lar depth estimation (MDE) has made considerable progress
due to the evolvement of Convolution Neural Networks
[27, 44, 45, 16]. However, most existing state-of-the-art ap-
proaches rely on supervised training [7, 6, 8, 29, 1], whose
training datasets collection is a cumbersome and formidable
challenge. As an alternative, self-supervised methods elimi-
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Monodepth2 [13] DepthHint [49]

EdgeDepth [68] EPCDepth

Figure 1. Depth estimation from a single image. Our model
(EPCDepth), trained only on stereo data, performs the best and
produces the sharpest and most complete result with the least com-
putational cost.

nate the need for ground-truth depth through recasting depth
estimation as the reconstruction problem among stereo im-
ages [10, 12, 49, 68], monocular video [67, 2, 42, 32] or a
combination of both [62, 13].

In terms of performance alone, recent works have shown
that the gap between self-supervision and full-supervision
has made a de facto reduction. But on the other hand, this
reduction largely benefits from the sophisticated model ar-
chitecture and extra constraints from external modalities,
e.g., semantic segmentation [2, 26, 68, 15], optical flow
[57, 40], depth normal [54], etc. Apparently, these factors
substantially increase the burden of the model training and
run counter to the concept of self-supervision to some ex-
tent. In this paper, we show the potential of self-supervised
monocular depth estimation even without these additional
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constraints from three aspects: data augmentation, self-
distillation, and model architecture.

Generally, the closer the projection on the image is to the
lower boundary, the smaller the depth of the object. This
feature of vertical image position has been proven to be the
main cue adopted by the MDE model to infer depth, while
the apparent size and other cues that humans will rely on
are ignored [47]. We conjecture that the reason is that in
the traditional training mechanism that takes the entire im-
age as input, the feature of vertical image position exists
in almost every training sample, while the number of sam-
ples for other cues is relatively small, which leads to a long-
tailed distribution on cues. Obviously, this kind of paranoia
tends to damage the generalization ability of the model. To
solve this, we propose a novel data augmentation method
called Data Grafting, which breaks this dilemma by ver-
tically grafting a certain proportion from another image to
appropriately weaken the relationship between depth and
vertical image position. Moreover, there is another fact that
the precision of different scales output by the multi-scale
network is inconsistent at different pixels, and this moti-
vates us to generate better disparity maps as pseudo-labels
to realize the self-distillation of the model. Concretely, we
propose Selective Post-Processing (SPP) to select the best
prediction for each pixel among all scales according to the
reconstruction error, which is inspired by the availability
of all views during training, and the similar idea has been
proven effective in the field of multi-view stereo [55]. Fi-
nally, we extend the traditional multi-scale network to the
full-scale network by inserting prediction modules not only
on the decoder but also on the encoder to advance the spe-
cialization of depth prediction from decoder to encoder and
absorb the representational power of the model. The supe-
rior result of our model is shown in Figure 1.

To summarize, our main contributions are listed below
in fourfold:

• We introduce a conceptually simple but empirically ef-
ficient data augmentation approach, which enables the
model to learn more effective cues besides the vertical
image position.

• We apply self-distillation to MDE for the first time with-
out any auxiliary network and generate better pseudo-
labels based on our training-oriented selective post-
processing method.

• We propose a more efficient full-scale network to
strengthen the constraints on the model and enhance the
encoder’s specificity of depth estimation.

• Without bells and whistles, we achieve state-of-the-art
performance within self-supervised methods even com-
pared to those high-performance models that are trained
by extra constraints.

2. Related Works
Self-Supervised Monocular Depth Estimation. The
depth is predicted as an intermediate in self-supervised
MDE to synthesize the reconstructed view from the source
view, and the photometric loss between the target view and
the reconstructed view is calculated as the target of min-
imization. There are mainly two kinds of self-supervised
methods: trained by synchronized stereo images [10, 12, 38,
49, 68] or monocular video [67, 57, 2, 42]. For the first cat-
egory, the model with known relative placement only needs
to predict the disparity, that is, the inverse of the depth.
For the second category, additional predictions of the rel-
ative pose of the camera are required. Recently, abundant
works have improved the performance of self-supervised
MDE through new loss function [10, 49, 13, 42, 68], new
architecture [38, 66, 58, 14, 32] and new supervision from
extra constraints [54, 57, 40, 2, 26, 68, 15].

In this paper, we further excavate the potential capacity
of self-supervised MDE with the realization of training on
stereo images.
Self-Distillation. Knowledge distillation is a pioneering
work to transfer knowledge from powerful teacher networks
to student networks using the softmax output [18], inter-
mediate feature [41, 17], attention [61, 21], relationship
[56, 34, 36], etc. Self-distillation is a special case where the
model itself is used as a teacher. Intuitively, the model can
be distilled by the same model trained previously [9], but
these approaches are inefficient because they need to train
multiple generations synchronously. Therefore, some re-
cent works advocate distilling the model within one gener-
ation, which take supervision from prior iterations [52, 24],
consistency of distorted data [51], invariance among intra-
class [60] and the output of deeper portion [64].

These methods only focus on the self-distillation of the
classification task. In this work, we applied self-distillation
to the regression task of depth estimation. Different from
the method of using the whole network to promote sub-
networks in [38], we select the optimal disparity map from
all output scales as the self-distillation label to distill the
whole network in one generation.
Data Augmentation. For overfitting, data augmentation is
an efficient approach to mitigate this drawback by implic-
itly increasing the total amount of training data and teaching
models about the invariance of the data domain. Common
data augmentation methods can be summarized into two
categories: learnable [46, 4] and parameter learning free
[27, 5, 63, 59, 65]. Learnable methods are more univer-
sal and work out of the box, while the subsequent methods
are easier to be implemented and most of them are tailored
to specific datasets.

Motivated by the fact that the monocular depth estima-
tion model mainly relies on the vertical image position and
tends to overlook other useful cues, we propose a new pa-
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Figure 2. Framework illustration. The proposed approach is mainly composed of three procedures. The input batch data is first refactored
by data grafting, and here we take the grafting ratio of 0.6 as an example. Immediately after that, the full-scale network will estimate the
disparity map at all scales, which means that not only the decoder but also the encoder will infer the disparity. Finally, the full-scale
disparity will be used to generate the self-distillation label through selective post-processing for the encoder and decoder scale separately
and calculate the loss lsd. Meanwhile, the model will be trained with the assistance of photometric loss lph and depth hint loss lh, and it is
worth noting that these losses are executed on all scales.

rameter learning free data augmentation method, called data
grafting, to force the model to explore more cues.

3. Method
We adopt rectified stereo pairs as the input of our self-

supervised model in training, while only a single image
is required to infer depth at test time. This kind of self-
supervised method is mainly divided into three steps. The
model F : I → d ∈ RH×W , that will first estimate the
disparity map d, which represents the offset of the corre-
sponding pixel between the stereo pair, from the target view
I ∈ RC×H×W . Next, the model will be trained iteratively
by minimizing the discrepancy between the target view and
the view Ĩ reconstructed from the source view I ′ with dif-
ferentiable warping fw(I ′, d). The photometric loss mea-
sured with the combination of SSIM [48] and L1 is often
adopted to express the discrepancy between the target view
and the reconstructed view just as:

lph(d) = lph(I, Ĩ) = α
1− SSIM(I, Ĩ)

2
+ β|I − Ĩ| (1)

where SSIM() is computed over a 3× 3 pixel window, with
α = 0.85 and β = 0.15. Finally, the depth map z ∈ RH×W

will be recovered from d, which is outputted by the trained
model, with known baseline b and focal length f under for-
mula z = bf/d.

In this section, we will introduce the main contributions
of this paper in detail. The framework pipeline is just shown
in Figure 2.

3.1. Data Grafting

Lack of data in both quantity and diversity is the first
tricky obstacle faced by monocular depth estimation, which
will damage the generalization ability of the model. One of
the significant overfitting risks in MDE is the excessive de-
pendence on the vertical image position as described in Sec.
1. Although data augmentation is the most cost-effective
and ubiquitous solution, there is almost no relevant research
on existing self-supervised MDE methods, and only some
simple data perturbations such as horizontal flipping are
used. The reason mainly lies in that self-supervised MDE
methods generate supervisory signals based on the degree
of matching between views, which requires strict pixel cor-
respondence (epipolar constraint) to ensure that the match-
ing error only comes from the estimated disparity. Obvi-
ously, the traditional data augmentation method will break
this correspondence, thereby damaging the performance of
the model as shown in our experiments in Sec. 5.2.

However, we note that this restriction is relaxed in the
category with stereo pairs as input. Because the two views
were taken with parallel cameras and rectified, the match
between them will only occur in the horizontal direction,
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Figure 3. Illustration of data grafting.

e.g., panning left or right. Therefore, we can do perturbation
in the vertical direction to augment our data.

To this end, we found that grafting two images with dif-
ferent semantics together can effectively alleviate the over-
fitting risk in MDE and encourage the model to better utilize
the full context of the input without destroying the epipo-
lar constraint. We conduct the data grafting within a mini-
batch, and it is determined by two hyper-parameters: the
grafting ratio r and the corresponding uniform probability
p. We reconstruct the input by vertically grafting an area
with a proportion of r from another input with the prob-
ability of p, and randomly flip these two parts vertically,
as shown in Figure 3. Meanwhile, grafting is not only for
the target view, but also for its corresponding Depth Hint,
which will be introduced in Sec. 3.4, and the source view.
But each grafting operation can only be performed between
the same category, e.g., both are target views. And the graft-
ing config of all inputs in a batch is the same. The grafting
detail of a single input is shown in Algorithm 1.

Algorithm 1: Data Grafting

Input: Input I1; Another input of the same category
randomly sampled from the same batch I2;
Shape of input (c, h, w); Random vertical
flip factor flip.

Output: Grafted input I1.
1 Random sampling r from {0, 0.2, 0.4, 0.6, 0.8} with

the uniform probability of 0.2;
2 if r = 0 then
3 return I1.
4 else
5 graft h = Ceil(h× r);
6 I1[:, graft h :, :]← I2[:, graft h :, :];
7 if flip < 0.5 then
8 T = I1;
9 I1[:, h− graft h :, :]← T [:, : graft h, :];

10 I1[:, : h− graft h, :]← T [:, graft h :, :];
11 end
12 end
13 return I1.

3.2. Full-scale Network

The coarse-to-fine strategy has been proven effective in
MDE which continuously refines the estimation with iter-
ative warping [10, 12, 13, 49]. The common practice is
to output multi-scale disparity prediction in the decoder,
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Figure 4. Full-scale network. The “e0 ∼ e4” represents the scale
in the encoder and “d0 ∼ d4” represents the scale in the decoder.
The spatial size of each scale increases with the decrease of serial
number.

whose spatial size is incremental. In this scenario, the
knowledge learned by the encoder is more abstract and gen-
eral, while that in the decoder is more specific to the depth
estimation task.

Intuitively, advancing the specialization of depth esti-
mation to the encoder can give stronger constraints to the
model and further improve its performance. Therefore, we
extend the traditional multi-scale to full-scale, which means
that we also add the multi-scale disparity prediction block
to the encoder. Meanwhile, we insert a residual block, or
more precisely an RSU block [39], between the prediction
block and the residual stage in the encoder as the bridge to
mitigate the impacts between different scales.

Furthermore, just as depicted in Figure 4, we adopt the
RSU block, which is more powerful and more lightweight,
to construct the decoder to draw the representational capac-
ity of our full-scale network. After training, we can discard
the encoder-scale or even part of the decoder-scale, and only
retain the largest scale of the decoder, which means that the
full-scale network will not bring more parameters or com-
putation than the traditional network.

3.3. Self-distillation

Self-distillation is an effective way to generate more su-
pervised signals for the model, and it is particularly impor-
tant for self-supervised learning. Here, we propose selective
post-processing to generate the self-distillation label, and
with which we create a new loss, termed Self-Distillation
Loss lsd, for the model.

Selective Post-Processing aims to filter out the optimal
disparity at each pixel from multiple disparity scales. Actu-
ally, the largest disparity map in the decoder that we of-
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Figure 5. Precision improvement statistics of SPP result on
each scale for all test samples in Eigen split [6].

ten output is not always the best at all pixels, as shown
in Table 5. Maybe the “d0” scale is better at pixel a but
the “d3” scale is better at pixel b. Hence, to distinguish
the optimal scale at each pixel, we adopt the reconstruc-
tion error or the photometric loss as our criterion, which
is inspired by [49]. Given the full-scale disparity maps
D = [dd0, . . . , dd4, de0, . . . , de4], we will calculate a re-
construction error map for each scale according to Equation
(1). Then, the self-distillation label of encoder ye and de-
coder yd can be constructed based on the assumption that
the smaller the error, the better the predicted disparity. The
detailed procedure of SPP, which is the same between the
encoder-scale and decoder-scale, is shown in Algorithm 2.
The statistic result in Figure 5 shows that the SPP can get
the most precise results.

Algorithm 2: Selective Post-Processing
Input: The target view I; The source view I ′;

Multi-scale disparity maps D′.
Output: Self-distillation label y.

1 Initialization: emin = None;
2 for d in D′ do
3 Upsample d to the same size as I;
4 Reconstruct target view Ĩ = fw(I

′, d);
5 Calculate the reconstruction error e = lph(I, Ĩ);
6 if d = D′[0] then
7 y = d;
8 emin = e;
9 else

10 Find all the pixels where e < emin;
11 Update y with d at these pixels;
12 Update emin with e at these pixels;
13 end
14 end
15 return y.

Self-Distillation Loss is the differenc between the dis-
parity map and the self-distillation label for each scale, and
it can be modeled as:

lsd(d) = log (|yc(d) − d|+ 1) (2)

where c(·) is used to determine whether d belongs to the
decoder-scale or the encoder-scale.

3.4. Training Loss

Following [49], we incorporate the hint loss that has been
proven effective for thin structures into our model. The
Depth Hint h is generated by the Semi-Global Matching
(SGM) algorithm [19, 20] and be consulted only when the
reconstruction error can be improved upon. It can be for-
mulated for pixel i in each scale as:

lh(di) =

{
log (|hi − di|+ 1), if lph(I, Ĩh)i < lph(I, Ĩ)i

0, otherwise
(3)

where Ĩh denotes the reconstructed view with Hint h.
Therefore, the final training loss is composed of the av-

erage of the three items of photometric loss, self-distillation
loss and hint loss at each scale:

l =
1

|D|
∑
d∈D

(lph(d) + lsd(d) + lh(d)) (4)

4. Implementation Details
We implement our model in PyTorch [35]. The proce-

dure of calculating Depth Hint is the same as that of [49].
We use Adam [25] optimizer with the base learning rate of
1e-4 and train the joint loss for 20 epochs. Besides our new
data augmentation approach, we adopted the preprocessing
techniques in [13]. In data grafting, we found that the graft-
ing ratio r = 0.2 × n, where n ∈ N and r < 1, can get
the best effect, as shown in Algorithm 1. Unless otherwise
specified, we take ResNet-18 which is pre-trained on Ima-
geNet [23] as the encoder and resize the input to 320×1024.
As for the RSU block [39], we remove the Batch Normal-
ization layer [22] and replace the ReLU [33] with ELU
[3] activation. More specifically, we take RSU3 ∼ RSU7
to construct the decoder’s layers and the encoder’s bridges
from minimum scale to maximum scale respectively.

5. Experiments
We first verify the performance of our model on the

KITTI dataset [11], and perform a comprehensive ablation
study on each component. Finally, the generalization abil-
ity of our model is validated on the NYU-Depth-v2 dataset
[43].
KITTI Stereo was recorded from a driving vehicle and con-
tains 42,382 rectified stereo pairs from 61 scenes. To ensure
the objectivity of comparison, we utilize the Eigen split [6],
which is composed of 22,600 training image pairs in 32
scenes, and 697 test pairs in other 29 scenes. We report
all seven of the standard metrics [7] with Garg’s crop [10]
and a standard distance cap of 80 meters [12].
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Method PP Data H ×W Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [7] D 184× 612 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Kuznietsov et al. [28] DS 187× 621 0.113 0.741 4.621 0.189 0.862 0.960 0.986
Yang et al. [53] X D†S 256× 512 0.097 0.734 4.442 0.187 0.888 0.958 0.980
Luo et al. [31] D∗DS 192× 640 crop 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Fu et al. [8] D 385× 513 crop 0.099 0.593 3.714 0.161 0.897 0.966 0.986
Lee et al. [30] D 352× 1216 0.091 0.555 4.033 0.174 0.904 0.967 0.984
Zhan et al. [62] MS 160× 608 0.135 1.132 5.585 0.229 0.820 0.933 0.971
Godard et al. [13] X MS 320× 1024 0.104 0.775 4.562 0.191 0.878 0.959 0.981
Watson et al. [49] X MS 320× 1024 0.098 0.702 4.398 0.183 0.887 0.963 0.983
Shu et al. [42] MS 320× 1024 0.099 0.697 4.427 0.184 0.889 0.963 0.982
Lyu et al. [32] MS 320× 1024 0.101 0.716 4.395 0.179 0.899 0.966 0.983
Garg et al. [10] S 188× 620 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard et al. [12] X S 256× 512 0.138 1.186 5.650 0.234 0.813 0.930 0.969
Wong et al. [50] S 256× 512 0.133 1.126 5.515 0.231 0.826 0.934 0.969
Pilzer et al. [38] Teacher S 256× 512 0.098 0.831 4.656 0.202 0.882 0.948 0.973
Chen et al. [2] X SC 256× 512 0.118 0.905 5.096 0.211 0.839 0.945 0.977
Godard et al. [13] X S 192× 640 0.108 0.842 4.891 0.207 0.866 0.949 0.976
Watson et al. [49] X S 192× 640 0.106 0.780 4.695 0.193 0.875 0.958 0.980
Ours X S 192× 640 0.099 0.754 4.490 0.183 0.888 0.963 0.982
Pillai et al. [37] X S 384× 1024 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Godard et al. [13] X S 320× 1024 0.105 0.822 4.692 0.199 0.876 0.954 0.977
Watson et al. [49] X S 320× 1024 0.099 0.723 4.445 0.187 0.886 0.962 0.981
Zhu et al. [68] Finetuned X SC† 320× 1024 0.097 0.675 4.350 0.180 0.890 0.964 0.983
Ours X S 320× 1024 0.093 0.671 4.297 0.178 0.899 0.965 0.983
Watson et al. [49] ResNet50 X S 320× 1024 0.096 0.710 4.393 0.185 0.890 0.962 0.981
Zhu et al. [68] Finetuned ResNet50 X SC† 320× 1024 0.091 0.646 4.244 0.177 0.898 0.966 0.983
Ours ResNet50 X S 320× 1024 0.091 0.646 4.207 0.176 0.901 0.966 0.983

Table 1. Quantitative results on the KITTI dataset [11] using the split of Eigen et al. [6]. Best results in each category are in bold. For
red metrics, lower is better. And higer is better for blue metrics. Abbreviation in Data column: D refers to methods that are supervised by
the ground truth depth, D† use auxiliary depth supervision from SLAM, D∗ use auxiliary depth supervision from synthetic depth labels, C
for supervision from segmentation labels, C† for supervision from predicted segmentation labels, S refers to the supervision from stereo
images and M for models trained by monocular video. PP represents post-processing [12]. The underlined model is our baseline. We
annotate all the methods that use extra tricks, e.g., fine-tuning and teacher model.

NYU-Depth-v2 was captured with a Microsoft Kinect sen-
sor and consists of a total 582 indoor scenes. We validate
our model on the official test set using the same standard
metrics as in KITTI.

5.1. Depth Estimation Performance

We conduct a comprehensive comparison with multifar-
ious methods on the KITTI benchmark to verify our depth
estimation performance. First of all, we need to emphasize
that our model is only trained on KITTI stereo data and is
trick-free. We compare our approach with the recent self-
, semi- and fully-supervised monocular depth estimation
methods in Table 1. And the results show that our approach
outperforms all existing self-supervised methods on all met-
rics and even some of the fully-supervised methods. Our
approach of training only on stereo pairs improves 0.013 on
the δ < 1.25 compared to our baseline model [49], and this
improvement is 225% (= 0.899−0.886

0.890−0.886 − 1) higher than that
of [68], which has finetuned the model and used additional
constraints. Furthermore, our method is not only outstand-
ing in the category trained with stereo images, but also has
a major advantage in the category of methods trained with
stereo video (MS). Even if compared with the best score of
each metric in the MS category, our approach won out in

most metrics. Moreover, we have done more experiments
on low-resolution and complex backbones to demonstrate
the generality and robustness of our model, and the con-
sistent performance improvement obtained just proves it.
It’s worth noting that we have further reduced the gap be-
tween full-supervision and self-supervision by nearly 79%
(= 1− 0.904−0.901

0.904−0.890 ) compared to our baseline [49]. Besides,
the qualitative results in Figure 6 show that our model pre-
dicts more accurately in challenging areas.

While our model significantly improves the performance
of the baseline, it also retains the advantages of simple im-
plementation. Each plug-and-play improvement can be eas-
ily integrated into other models, which is critical for future
in-depth studies of monocular depth estimation.

5.2. Ablation Studies

We perform ablation analysis on the KITTI. The results
in Table 6 show that our full model combining all com-
ponents has leading performance, and the baseline model,
without any of our contributions, performs the worst.
Benefits of data grafting. With data grafting, we can im-
plicitly increase the amount of data by 1/p times on the
basis of our baseline. The results in Table 2 show that only
20% of the data is used to obtain competitive performance
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Input Godard 𝑒𝑡 𝑎𝑙. [12] Godard 𝑒𝑡 𝑎𝑙. [13] Watson 𝑒𝑡 𝑎𝑙. [49] Zhu 𝑒𝑡 𝑎𝑙. [68] Ours

Figure 6. Qualitative results. Our model (EPCDepth) in the last column produces the most accurate and sharpest results, especially in
challenging areas, e.g., tree trunks, cars, etc.

Data Amount Abs Rel Sq Rel RMSE δ < 1.25
w/o DG 100% 0.096 0.696 4.368 0.892
Full 20% 0.098 0.696 4.344 0.890
Full 50% 0.096 0.683 4.305 0.896
Full 100% 0.093 0.671 4.297 0.899

Table 2. Ablation study on training data amount. DG refers to
data grafting. And the % means the percentage of data amount.

Augmentation Abs Rel Sq Rel RMSE δ < 1.25
RandErasing [65] 0.115 0.992 4.987 0.858
Cutout [5] 0.106 0.830 4.753 0.874
CutMix [59] 0.105 0.831 4.752 0.876
DataGrafting 0.102 0.782 4.581 0.883

Table 3. Comparison against other similar augmentation meth-
ods. And the input size is 192× 640.

to the model without data grafting under 100% of the data,
which just verifies the strong generalization ability of our
model. Moreover, we make a comparison with other simi-
lar augmentation methods to demonstrate our effectiveness
in Table 3. The result just shows that breaking the relation-
ship between the depth and the vertical image position with
a certain probability, which is the uniqueness of data graft-
ing, can allow the model to potentially grasp more effective
cues. The unsatisfaction of other methods may lie in the
lack of regularization ability for the vertical image position

Source Abs Rel Sq Rel RMSE δ < 1.25
PP 0.094 0.680 4.320 0.898
SPP 0.094 0.675 4.312 0.899
SPP separate 0.093 0.671 4.297 0.899

Table 4. Ablation study on distillation source. PP refers to the
post-processing result of the largest scale in the decoder.

Scale Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252

d0 0.0925 0.671 4.297 0.899 0.965
d1 0.0922 0.668 4.292 0.899 0.965
d2 0.092 0.655 4.268 0.898 0.965

Table 5. Quantitative results of different scales.

and the damage of the epipolar constraint between views at
the edge of the hole. Meanwhile, we conduct a sensitiv-
ity experiment on the grafting ratio. The resuls in Figure 7
show that the odd setting (e.g. n/3) is generally better than
even setting (e.g. n/2), and performs best when r = n/5,
which indicates that the grafting result holding a piece of
dominant semantic information is more effective.
Benefits of self-distillation. From Table 5, we expect to
select the optimal scale for each pixel through selective
post-processing. The comparison results in Table 4 be-
tween different label generation methods show that the SPP
can get more stable improvement and distilling encoder and
decoder separately is more effective. Meanwhile, we no-
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Method DG SD FS HR Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.107 0.848 4.745 0.194 0.875 0.957 0.980
Baseline + DG X 0.102 0.782 4.581 0.188 0.883 0.960 0.981
Baseline + SD X 0.105 0.822 4.708 0.193 0.876 0.958 0.981
Baseline + FS X 0.103 0.785 4.628 0.189 0.881 0.960 0.981
Baseline HR X 0.101 0.758 4.497 0.187 0.886 0.962 0.982
Baseline HR + DG X X 0.098 0.694 4.371 0.182 0.890 0.963 0.983
Baseline HR + SD X X 0.099 0.744 4.465 0.186 0.888 0.962 0.982
Baseline HR + FS X X 0.097 0.701 4.364 0.182 0.892 0.963 0.982
Full HR w/o FS X X X 0.098 0.702 4.377 0.184 0.888 0.963 0.983
Full HR w/o SD X X X 0.094 0.678 4.312 0.180 0.898 0.965 0.982
Full HR w/o DG X X X 0.096 0.696 4.368 0.182 0.892 0.963 0.982
Full HR X X X X 0.093 0.671 4.297 0.178 0.899 0.965 0.983

Table 6. Ablation resuls amongst variants of our model (EPCDepth) on the KITTI dataset. DG refers to data grafting, SD refers to
self-distillation, FS refers to full-scale and HR refers to high resolution.

Figure 7. Sensitivity analysis of grafting ratio r. The smaller the
value, the better in the red line chart, and the worse in the blue.

Full-Scale Abs Rel Sq Rel RMSE δ < 1.25
+ Encoder Scale 0.105 0.811 4.668 0.877
+ Bridges 0.104 0.798 4.655 0.878
+ RSU 0.103 0.785 4.628 0.881

Table 7. Ablation study on full-scale network. Conducted by
continuously accumulating each module with input size 192×640.

ticed that the magnitude of its performance improvement
is minimal and is affected by the capacity of the model.
But we hope that our exploration can open the door to self-
distillation in this regression task.
Benefits of full-scale network. Our full-scale network
draws on some advantages of the multi-generation strategy,
that is to impose more constraints on the model, and the
results in Table 6 just prove its power. Furthermore, we ex-
plore the effectiveness of the encoder scale, RSU blocks and
the encoder’s bridges respectively, by ablating their effects
in Table 7. Note that each experiment is carried out on the
basis of the previous experiment. The continuous perfor-
mance improvement of each module proves their effective-
ness. Meanwhile, our full-scale network achieves superior
performance with 9.88 GFLOPS at test time, compared to
10.1 GFLOPS of the traditional network [13, 49, 68].

Monodepth2 [13] DepthHint [49] EdgeDepth [68] Ours (EPCDepth) GTInput

Figure 8. Qualitative results on the NYU-Depth-v2 dataset.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [13] 0.355 0.673 1.252 0.373 0.485 0.771 0.907
DepthHint [49] 0.298 0.457 1.043 0.331 0.539 0.821 0.937
EdgeDepth [68] 0.292 0.437 1.018 0.319 0.563 0.834 0.941
Ours (EPCDepth) 0.247 0.277 0.818 0.285 0.605 0.869 0.961

Table 8. Quantitative results on the NYU-Depth-v2 dataset.

5.3. Generalizing to NYU-Depth-v2

Since there are no stereo pairs in NYU-Depth-v2 dataset,
we train on the KITTI dataset and then test on it just as
Monodepth [12] did on Make3D. The preprocessing strat-
egy we adopt is the same as that of [58], and median scaling
is applied for all models. The results shown in Table 8 and
Figure 8 just verify our strong generalization ability.

6. Conclusion
We extracted the potential capacity of self-supervised

monocular depth estimation through our novel data aug-
mentation method, exploratory self-distillation and efficient
full-scale network. The experiments demonstrate that our
model (EPCDepth) can yield the best performance with the
least computational cost. In future work, we will try to fur-
ther improve the performance of self-distillation by explor-
ing more accurate label generation methods. Besides, ap-
plying our contributions to other categories, e.g., M, MS
and even supervised method, is also a potential direction.
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