
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Consistency Shift

Jiefeng Peng1,2*, Jiqi Zhang1*, Changlin Li3, Guangrun Wang4†,
Xiaodan Liang1, Liang Lin1

1Sun Yat-sen University 2DarkMatter AI Research
3GORSE Lab, Dept. of DSAI, Monash University 4University of Oxford

{jiefengpeng,wanggrun,xdliang328}@gmail.com,
zhangjq49@mail2.sysu.edu.cn, changlin.li@monash.edu, linliang@ieee.org

Abstract

Recently proposed neural architecture search (NAS)
methods co-train billions of architectures in a supernet and
estimate their potential accuracy using the network weights
detached from the supernet. However, the ranking correla-
tion between the architectures’ predicted accuracy and their
actual capability is incorrect, which causes the existing NAS
methods’ dilemma. We attribute this ranking correlation
problem to the supernet training consistency shift, includ-
ing feature shift and parameter shift. Feature shift is iden-
tified as dynamic input distributions of a hidden layer due
to random path sampling. The input distribution dynamic
affects the loss descent and finally affects architecture rank-
ing. Parameter shift is identified as contradictory parameter
updates for a shared layer lay in different paths in different
training steps. The rapidly-changing parameter could not
preserve architecture ranking. We address these two shifts
simultaneously using a nontrivial supernet-⇧ model, called
⇧-NAS. Specifically, we employ a supernet-⇧ model that
contains cross-path learning to reduce the feature consis-
tency shift between different paths. Meanwhile, we adopt a
novel nontrivial mean teacher containing negative samples
to overcome parameter shift and model collision. Further-
more, our ⇧-NAS runs in an unsupervised manner, which
can search for more transferable architectures. Extensive
experiments on ImageNet and a wide range of downstream
tasks (e.g., COCO 2017, ADE20K, and Cityscapes) demon-
strate the effectiveness and universality of our ⇧-NAS com-
pared to supervised NAS. See Codes1.

1. Introduction

Automatic neural architecture search (NAS) has been an
intense longing in machine learning in the past four years.

*Jiefeng Peng and Jiqi Zhang are co-first authors and share equal con-
tributions. Their names are listed in alphabetical order.

†Corresponding Author.
1Code: https://github.com/Ernie1/Pi-NAS

input

w/o supernet-Π model w/ supernet-Π model

path i path j path i path j
(a) Feature shift. Left: Without the supernet-⇧ model, there is a
feature shift between different paths’ feature maps. Right: With
supernet-⇧ model, the feature shift is significantly reduced.

(b) Parameter shift. Different colors represent the distribution of
parameters in different iterations. Left: without our nontrivial
mean teacher, the parameter has significantly varying distribu-
tions in training. Right: with our nontrivial mean teacher, the
parameter shift is significantly reduced.

Figure 1: Illustration of supernet training consistency shift.

Early works use reinforcement learning [69] or evolution-
ary algorithms [40] to discover high-performance architec-
tures in the search space. The searching procedure usually
costs thousands of GPU days for large datasets, as each
sampled architecture needs training from scratch. Recently,
to alleviate the heavy burden, weight sharing NAS meth-
ods [16, 9, 20, 54, 33, 30, 15, 36, 17, 1, 8] are widely
used, where candidate architectures share weights and train
simultaneously in a supernet2. After training, a candi-
date subnet’s weights detached from the supernet are used
to predict its actual performance. Despite the remarkable
progress in efficiency, weight-sharing NAS’s effectiveness

2A supernet is an over-parameterized network that integrates the entire
search space. Each architecture within the search space corresponds to a
supernet’s sub-net capturing the required operations.

12354

is still unstable, i.e., it has a low ranking correlation between
candidates’ actual accuracies and accuracies estimated in
supernet. In short, inaccurate architecture ranking is an in-
evitably critical problem in today’s NAS.

In this paper, we attribute the ranking correlation prob-
lem to the supernet training consistency shift, including fea-
ture shift and parameter shift. Feature shift is identified as
dynamic input distributions of a hidden layer. Specifically,
a given layer’s input feature maps always have an uncertain
distribution due to random path sampling (see Figure 1a,
left). This distribution uncertainty can hurt the architecture
ranking correlation. Precisely, we can use the loss to mea-
sure the architecture accuracy, and we can link the accuracy
ascent to gradient descent. Based on the back-propagation
rule, a stable input distribution can guarantee a good rank-
ing correlation. In contrast, the input distribution dynamic
affects the loss descent and finally affects architecture rank-
ing. Parameter shift is identified as contradictory param-
eter updates for a given layer. In supernet training, a given
layer will always be present in different paths from itera-
tion to iteration (see Figure 1b, left). The parameter in this
layer may have a contradictory update from iteration to it-
eration. These unstable updates lead to varying parameters’
distributions, hurting the architecture ranking correlation in
two ways. On the one hand, stable parameters can ensure
a correct loss descent and guarantee an accurate architec-
ture ranking, while frequent parameter change could not
preserve architecture ranking. On the other hand, varying
parameters can also result in a feature shift, further hurting
architecture ranking correlation. In summary, both feature
shift and parameter shift can hurt the architecture ranking
correlation. Detailed experimental analysis in Section 4
provide solid evidence to support this analysis.

Motivated by consistency regularization methods [29,
44], we propose a nontrivial supernet-⇧ model, called ⇧-
NAS, to reduce these two shifts simultaneously. Specif-
ically, to cope with the feature shift, we propose a novel
supernet-⇧ model. We evaluate each data point through
two randomly sampled paths, then apply a consistency cost
between the two predictions to penalize the feature consis-
tency shift between different paths. As shown in Figure 1a
(right), our method can significantly reduce the feature shit
and thus can improve the architecture ranking correlation.
To address the parameter shift, we propose a novel non-
trivial mean teacher model by maintaining an exponential
moving average of weights in supernet teacher. Although
a mean teacher can stabilize the parameters in single net-
work training, it could be trapped in a trivial solution and
lead to a model collision in supernet training. Our nontriv-
ial mean teacher novelly contains appropriate negative sam-
ples to avoid such a model collision. An impressive result of
our method in reducing the parameter shift is shown in Fig-
ure 1b (right). In brief, our ⇧-NAS can reduce the supernet

training consistency shift and thus improve the architecture
ranking, which is critical for NAS’s effectiveness.

One by-product that could not be ignored is that our ⇧-
NAS runs in an unsupervised manner, which has an addi-
tional gain that existing supervised NAS methods do not
have. Concretely, similar to unsupervised representation
learning that can learn general features, our ⇧-NAS can
search for more transferrable and universal architectures
than supervised NAS counterparts.

Since the “good architectures” in previous NAS search
spaces usually have considerable computation complexity,
using these search spaces for evaluation lacks interpretabil-
ity. To evaluate our ⇧-NAS, we design a nontrivial search
space based on 16-layer ResNet-50. Our searched mod-
els on this space achieve a state-of-the-art top-1 accuracy
of 81.6% on ImageNet, surpassing ResNeSt-50 by 0.5%
with comparable computation cost. We also validate ⇧-
NAS on NAS-Bench-201 with CIFAR-10, beating state-of-
the-art NAS methods and verifying our method’s effective-
ness. In addition, our ⇧-NAS models keep state-of-the-art
on many downstream tasks (e.g., COCO 2017 detection and
segmentation, ADE20K segmentation, and Cityscapes seg-
mentation), demonstrating the universality of our ⇧-NAS.

Overall, this paper makes three contributions.
• We attribute the inaccurate architecture ranking to the

supernet training consistency shift, including feature
and parameter shifts. Then we provide a detailed em-
pirical analysis of how these two shifts are making
NAS methods ineffective.

• We propose a ⇧-NAS method with two key compo-
nents, i.e., a supernet-⇧ model and a nontrivial mean
teacher, to address feature shift and parameter shift, re-
spectively. Notably, our nontrivial mean teacher model
introduces appropriate negative samples to avoid being
trapped in a trivial solution.

• Our ⇧-NAS method shares the merit of unsupervised
representation learning, i.e., the universality property.
We can search for architectures that are more trans-
ferrable and universal than supervised NAS methods.
Substantial empirical results are obtained on ImageNet
and a wide range of downstream tasks to demonstrate
the effectiveness and universality of our ⇧-NAS.

2. Related Work

Neural Architecture Search (NAS). NAS has attracted
increasing research attention in recent years. Early NAS
works [67, 14, 37, 69, 3, 40, 42] consume a huge amount
of computation resources to train thousands of candidate
models from scratch while using an agent (an RNN con-
troller or evolution algorithm) to explore better-performing
architectures in the search space. To alleviate the com-
putational overhead caused by the training process, re-
searchers starts to share the weights among candidate archi-

12355

tectures [16, 9, 20, 54, 33, 30, 15, 36, 17, 1, 8]. Gradient-
based weight sharing methods [36, 9, 54, 63] jointly op-
timize the shared network parameters and the architecture
choosing factors by gradient descent. In one-shot meth-
ods [20, 16, 8, 4, 30], the supernet is first optimized with
path sampling, and then sub-models are sampled and eval-
uated with the weights inherited from the supernet. De-
spite the acceleration of weight sharing, these approaches
still suffer a critical issue on their effectiveness [4, 16, 33].
Existing attempting on solving this issue includes ensuring
optimization fairness among all child models [16], reduc-
ing the search space greedily during training [33], modular-
izing the large search space into blocks using an interme-
diate knowledge distillation [30] and constraining the sub-
net optimization to prevent multi-model forgetting [64, 65].
Recently, unsupervised NAS methods are also starting to
attract research interest [35, 58, 31, 66, 48].
Reducing Consistency Shift. Feature shift is represented
as the instability of the network to the perturbation of an
input image. Penalizing the consistency shift can help de-
velop the network’s tolerance to incorrect labels and im-
prove the classification accuracy in semi-supervised learn-
ing [2, 41, 29, 44, 60, 56, 38, 7, 57, 52, 50, 47]. [29]
proposes ⇧-model to encourage consistent output for in-
put with different augmentation and dropout, and extend
the ⇧-model by temporal ensembling the network’s output
for each input, to retain the consistency of the outputs. Pa-
rameter shift is represented as the instability of network pa-
rameters. To address the parameter shift, a mean teacher
model [44] refines the temporal ensembling by averaging
the model weights rather than outputs, which has also been
used to stabilize weight sharing training [32]. In this pa-
per, we attribute NAS’s inefficiency to incorrect architecture
ranking caused by supernet training consistency shift, i.e.,
feature shift and parameter shift. Since ⇧ model is a clas-
sical tool to reduce feature shift, we propose a supernet-⇧
model to address the feature shift. Our supernet-⇧ model
is a novel one as we use a novel formulation of cross-
path learning. On the other hand, mean-teacher is widely
adopted to reduce parameter shift because it can reliably
reduce the implausible uncertainties. Hence, we introduce
mean teacher to address our parameter shift. Although a
mean teacher can be employed to stabilize the parameters in
single network training, it could be trapped in a trivial solu-
tion and lead to a model collision in supernet training. Our
nontrivial mean teacher novelly contains appropriate nega-
tive samples to avoid such a model collision. In summary,
our method is a nontrivial NAS method aiming at closing
the supernet training consistency shift, but not a straight-
forward combination of the NAS and ⇧ model and mean
teacher.
Contrastive Learning. Recent contrastive learning-based
methods have brought a leap in unsupervised representa-

tion learning [39, 55, 26, 45, 68, 22, 11, 51]. Being cast as
either the dictionary look-up task [55, 22] or the consistent
learning task [45, 11], these methods learn discriminative
representations by bringing the representation of different
views of the same image closer and spreading representa-
tions of views from different images apart. MoCo [22, 13]
uses an exponential moving average (EMA) encoder to gen-
erate predictions and keep a large bank of the historical pre-
dictions as the negative samples. In BYOL [19], the online
network with a predictor is trained to be consistent with
the EMA target network without requiring negative pairs.
However, straightforward applying the technique from con-
trastive learning to NAS could be either unnecessary or un-
successful. Due to the training consistency shift, there will
be a feature shift in a pair of samples in contrastive learning,
especially in negative sample pairs. This makes the supernet
optimization unstable and hard to convergent. In contrast,
our ⇧-NAS contains a cross-path training formulation that
can satisfactorily address the feature shift problem.

3. Methodology

We first briefly introduce the dilemma of NAS, i.e., in-
accurate architecture ranking, then attribute incorrect archi-
tecture ranking to the supernet training consistency shift, in-
cluding feature shift and parameter shift. Then, we propose
a nontrivial supernet-⇧ model with two key components,
i.e., a supernet-⇧ model and a nontrivial mean teacher, to
address feature shift and parameter shift, respectively. At
last, we search promising architecture in linear evaluation.

3.1. Dilemma of NAS

Inaccurate architecture ranking. Let A denote the archi-
tecture search space. ↵ 2 A and !↵ are the network ar-
chitecture and the network weights, respectively. As men-
tioned above, NAS aims to find an optimal pair (↵⇤, !⇤

↵)
such that the model performance is maximized in search
space A. The searching procedure can be formulated as
two subproblems. The first one is a architecture training
that trains the network weights of given architectures. The
second one is an architecture search that searches for an ar-
chitecture with the best performance if trained. As training
each architecture from scratch to convergence is prohibitive
in practice due to the high computation cost, recently,
weight-sharing NAS was proposed. [9, 20, 54, 33, 30]
propose to train for different candidates concurrently via
a weight sharing strategy, encoding the search space A in
an over-parameterized supernet. Thus, all candidate archi-
tectures can inherit their weights immediately from the su-
pernet. However, the proxy weights borrowed from the su-
pernet do not adequately indicate network weights trained
from scratch to convergence, as each subgraph is not fairly
and sufficiently optimized in supernet. This may lead to a
low ranking correlation between the candidates’ predicted
accuracy and their actual capability, which causes the inef-

12356

x

Online Candidate Operation EMA Candidate Operation Stop Gradient

xi'

xj'

xi

xj

Supernet-Π model

Mean teacher

relative
consistency cost

relative
consistency cost

Random
Transforms

Feature Flow

zj'

zi'

zj

zi

z~

MLP

MLP

Frozen Supernet-Π model

x Classifier

loss

Accuracy

Feature Container

Training

Evaluation

Π-NAS Learning Linear Evaluation Search
Z~

Figure 2: An overview of proposed ⇧-NAS method. In ⇧-NAS learning, the input image is transformed into four different
views that are then separately routed through the supernet-⇧ model and nontrivial mean teacher to calculate relative consis-
tency cost with negative targets. The outputs of the mean teacher are saved in the container to serve as negative targets in the
future. In Linear Evaluation Search, the classifier is trained analogous to linear evaluation, and the accuracy is used as the
metrics of architecture search.

fectiveness of architecture search. We identify this as the
dilemma of NAS.

Supernet training consistency shift. So, what causes
the dilemma of NAS? In this paper, we attribute the inac-
curate architecture ranking to the supernet training consis-
tency shift, which contains feature shift and parameter shift.

Feature shift is identified as dynamic input distributions
of a hidden layer. Let xl denote the input of layer l and yl

denote its output. wl is its network weights. Since the fi-
nal architecture accuracy is inaccessible during the training,
we use the loss L to measure the architecture accuracy, and
the accuracy ascent can be connected to the loss descent.
According the chain rule of differentiation in the back-
propagation algorithm, we have: @L

@wl
= @L

@yl

@yl

@wl
= @L

@yl
xl.

This indicates architecture ranking-preserving is highly de-
pendent on the inputs xl. But for a given layer l, due to ran-
dom path sampling in supernet, the preceding path varies,
and the input xl also varies. We thus should guarantee a
stable xl to preserve a good architecture ranking correla-
tion. Otherwise, an input distribution dynamic impacts the
loss descent and finally affects architecture ranking.

Parameter shift is identified as contradictory parameter
updates for a given layer. In supernet training, a given layer
l will always be present in different paths from iteration to
iteration. Its weights may have a contradictory update from
iteration to iteration, i.e., wt+1

l wt
l � @Lt

@wt
l
. The rapidly-

varying wl will hurt the architecture ranking correlation in
two ways. On the one hand, the loss descent is not only
connected to @L

@wl
but is also connect wl � @L

@wl
. This in-

dicates that stable parameters can ensure a correct loss de-
scent and guarantee an accurate architecture ranking, while
frequently-varying parameters could not preserve architec-
ture ranking. On the other hand, since the input xl is gener-
ated by the network weights of the previous layers, varying
parameters can also result in a feature shift, which further
hurts architecture ranking correlation.

In summary, both feature shift and parameter shift can

hurt the architecture ranking correlation, further making
NAS methods ineffective. Detailed experimental analy-

sis in Section 4 provide evidence to support this analysis.

3.2. ⇧-NAS: A Nontrivial Supernet-⇧ Model

As discussed, reducing the supernet training consistency
shift can alleviate the dilemma of NAS. In the following, we
design a novel and effective nontrivial supernet-⇧ model,
including a supernet-⇧ model and a nontrivial mean teacher
model, to address feature shift and parameter shift, respec-
tively. Our ⇧-NAS can successfully preserve the architec-
ture ranking and thus improve NAS’s effectiveness.
Supernet-⇧ model. To guarantee a stable input distribu-
tion, we are devoted to penalizing the inconsistency be-
tween the same input predictions through different sampled
paths. Motivated by a ⇧ model, we evaluate data point x
through two randomly sampled paths, denoted as path i and
j, to get its representations {zi, zj , z0i, z0j}. Note that we
obtain representations z and z0 with different views of aug-
mentation, i.e., z = f(x) and z0 = f 0(x), where f and
f 0 are mapping functions of the supernet model. Without
loss of generality, we define f and f 0 as the student/teacher
models. Normally, the student and the teacher are identical.

After obtaining evaluations of the same input x, we de-
fine a cross-path consistency cost as follow:

LCon = �E
X
[D(zi, z

0
j) +D(zj , z

0
i)] (1)

where X and D denote a training data set and a consis-
tency metric, respectively. Figure 2 shows a pipeline of our
supernet-⇧ model with cross-path learning. By minimiz-
ing Eqn. 1, one could reduce the feature consistency shift
caused by different random paths and thus stabilize the dis-
tributions of input features of a hidden layer.

In brief, we formulate our method under the ⇧ frame-
work with cross-path learning, i.e., supernet-⇧ model. Ex-
tensive experiments show a remarkable improvement in the
architecture ranking correlation.

12357

Nontrivial mean teacher model. Besides addressing fea-
ture shift, we also intend to reduce parameter shift by
smoothing parameter updates from iteration to iteration. In-
spired by mean-teacher [44], we propose to maintain an ex-
ponential moving average weights for teacher model rather
than barely replicate from student model in supernet-⇧
model training. Formally, we denote Wt as parameters of
student mapping function f at training step t. Then, weights
of mean teacher model f 0 can be defined as:

W 0
t = �W 0

t�1 + (1� �)Wt (2)

where � 2 [0, 1] is a smoothing coefficient hyper-parameter.
Although the capability of a mean teacher to stabilize

the parameters is obvious, it could be trapped in a trivial
solution in the supernet-⇧ model. Specifically, barely opti-
mizing consistency loss might lead to model collapse. For
example, representations that are constant across arbitrary
inputs are always entirely consistent. To circumvent this
problem, we introduce appropriate negative samples to our
model, i.e., nontrivial mean teacher model. Formally, an
additive consistency cost is:

LAdd = E
X

E
eZ
[D(zi, ez) +D(zj , ez)]

�
(3)

where eZ represents a whole collection of negative sam-
ples ez, and ez 2 eZ. Note that negative samples ez can
be collected from our nontrivial mean teacher model by
reusing the previous predictions (see the Feature Container
in Figure 2). A relative consistency cost can be written as:
LRef = LCon + LAdd.

Since our target is to maximize the consistency met-
ric between positive samples while minimizing the nega-
tive ones, we can formulate the optimization as the cate-
gorical cross-entropy of classifying the positive samples,
with exp(D(z,z0))P

eZ exp(D(z,ez))+exp(D(z,z0) being the prediction. We
model consistency metric D with dot-product similarity as
D(z, z0) = zT z0. Thus the final loss function of ⇧-NAS is
formulated as:

L = �E
X

⇥
log

ez
T
i z0j

P
eZ
ez

T
i ez + ez

T
i z0j

+ log
ez

T
j z0i

P
eZ
ez

T
j ez + ez

T
j z0i

⇤
. (4)

3.3. Linear Evaluation Search

After optimizing the nontrivial supernet-⇧ model with
W , an architecture search is conducted by evaluating the
representation capability of candidates ↵. Inspired by the
standard linear evaluation protocol [28, 21] using in self-
supervised learning, we train a linear classifier on the top of
the frozen representation, i.e., without updating the super-
net parameters W nor the batch statistics. Specifically, the
linear classifier Fc is also optimized via a common weight
sharing strategy. Then, we estimate the capability of the
sub-model by its accuracy Rval on the validation set and
search for the best performance:

↵⇤ = argmax
↵2A

Rval(Fc(W↵,↵;X,Y)) (5)

where W↵ is the sub-architecture ↵’s parameters inherited
directly from parameters W .

Thanks to ⇧-NAS learning and linear evaluation search-
ing, our ⇧-NAS not only improves the search effectiveness
but also shows the superiority in searching for more trans-
ferable and universal architectures. Finally, an overview of
our ⇧-NAS is presented in Figure 2.

4. Experiments

4.1. Implementation Details

Search space and dataset. We construct our supernet
based on 16-layer ResNet-50 by replacing the residual
bottleneck in each layer with 4 candidate Split-Attention
blocks [62] of radix s, cardinality x and width d. Thus our
search space A includes 416 architectures.

• Block0: 1s1x64d • Block1: 2s1x64d
• Block2: 1s2x42d • Block3: 2s2x40d

Note that Block1 is the building block of ResNeSt-50 [62].
We deliberately design such search space by two con-

siderations. First, these four candidate blocks have similar
Params and FLOPs to avoid performance gain at the cost
of model complexity since models with higher complexity
often achieve higher accuracy. Thus, our search space is a
nontrivial space to examine NAS’s effectiveness. Second,
our search space is similar with ResNet rather than the re-
cent works [20, 54, 30, 36] since the experiments demon-
strate that variants of ResNet are more efficient in practice
even though the statics are in the opposite. As shown in
Table 2, with the same top-1 accuracy on ImageNet, the
latency of ResNeSt-50 surpasses EfficienNet-B3 [43] by
a margin of 14.5% even though with 2.9⇥ more FLOPs.
To further reduce the training consistency shift, we share
the bottleneck’s downsample operation among all candidate
blocks in the same layer. The advantage of downsample-
sharing strategy will be illustrated in Section 4.5.

Our ⇧-NAS is evaluated on ImageNet, a state-of-the-art
classification dataset widely used in recent NAS methods
[20, 54, 30]. For the search procedure, we randomly pick
out 50 images per class from the original 1.28M training set
to build a 50k validation set, and the reset of images is used
as a training set for supernet learning. All of our ImageNet
results are tested on the original validation set.
Training details. We perform our ⇧-NAS in 3 stages: ⇧-
NAS learning, linear evaluation, and architecture search.

In ⇧-NAS learning, inspired by [12], we use an augmen-
tation strategy of random resize&crop, color jitter, color
drop, Gaussian blur, and horizontal flip. Besides, we em-
ploy a 2-layer MLP as the supernet head. The smoothing
coefficient � of the mean teacher in Eqn. (2) is set to 0.999
in practice. The relative consistency loss is optimized by an
SGD optimizer with a learning rate of 0.03, a momentum of

12358

Table 1: Image classification fast results on the validation
set. (Acc@S: top-1 accuracy in supernet)

Model Params FLOPs Acc@S Acc@1 Acc@5
ResNeSt-50 27.5M 5.42G 64.6% 80.7% 95.3%
⇧-NAS-↵ (ours) 27.1M 5.38G 65.0% 81.2% 95.4%
⇧-NAS-� (ours) 27.2M 5.39G 65.1% 81.2% 95.6%
⇧-NAS-� (ours) 27.0M 5.30G 65.0% 81.1% 95.6%
⇧-NAS-� (ours) 26.9M 5.30G 65.0% 81.0% 95.4%
⇧-NAS-✏ (ours) 26.9M 5.42G 65.0% 81.0% 95.4%

0.9, and a weight decay of 10�4. We adopt a cosine decay
learning rate schedule to train for 100 epochs with a total
batch size of 192 on 8 NVIDIA GTX 2080Ti GPUs.

As for linear evaluation, we fetch the optimized
supernet-⇧ model and replace the 2-layer MLP with a ran-
dom initialized 1000-dimensional linear classifier. Only the
linear classifier is trained on ImageNet for 100 epochs while
the supernet’s parameters W are frozen. At each train-
ing step, the linear classifier’s inputs are obtained across
stochastic paths from the supernet. Note that the batch
statistics are used instead of tracked statistics in batch nor-
malization (BN) layers to avoid inaccurate statistics across
different sampled paths. Only random resize&crop, hor-
izontal flip are used for data augmentation. We train the
classifier with a total batch size of 256 for 100 epochs using
a cross-entropy loss and an SGD optimizer with an initial
learning rate of 30, a momentum of 0.9, and a weight decay
of 0. The learning rate decays by 0.1 at 60 and 80 epochs.

In architecture search, the candidate architectures are
evaluated separately with the top-1 accuracy on the 50k Im-
agenet validation set mentioned above. Again, to avoid the
inaccurate batch statistics in BN, we pick out a further 50k
images from the rest of the training set to recalculate the
statistics for each optional path. Then, we adopt a search
algorithm, Action Space [53], to seek candidates with the
best performance with a maximum sample size of 1000.

4.2. Experiments on ImageNet

Fast results of searched models. As shown in Table 1,
we first evaluate the top 5 models searched by our ⇧-NAS
as well as the ResNeSt-50 (Block1) in a fast training set-
ting. All the models are trained from scratch on the orig-
inal ImageNet training set for 270 epochs with PyTorch-
Encoding [61] following the same setting of ResNeSt-50
except using a total batch size of 512 instead of 8192 due to
the limit of GPU memory. Our models significantly outper-
form ResNeSt-50 by an average margin of 0.4%, even with
fewer parameters and FLOPs. In particular, all the searched
top models achieve similar top-1 accuracy in supernet and
training from scratch, respectively, which proves the effec-
tiveness of our ⇧-NAS from another side.
Comparison with the state-of-the-art models. We select
one of the searched models ⇧-NAS-↵ as our best model,

Table 2: Image classification results on the validation set.
img/sec and GPU denote the inference speed and the GPU
memory usage of the model performing inference, respec-
tively, with a batch size of 128 on one NVIDIA GTX 2080Ti
GPU. † Using crop size 300, otherwise 224. ⇤ Searching for
a bunch of sub-optimal solutions with close accuracy.
Model Params FLOPs img/sec GPU Accuracy
ResNet-50 [24] 25.6M 4.12G 835.9 2.55G 78.4
SENet-50 [27] 27.7M 4.25G - - 78.9
SKNet-50 [34] 27.5M 4.47G - - 79.2
EfficientNet-B3†[43] 12.2M 1.88G 490.5 9.25G 81.1
ResNeSt-50 [62] 27.5M 5.42G 561.6 4.16G 81.1
Searched Models on Our Search Space A from NAS Methods
SPOS [20] 27.1M 5.43G 536.4 4.12G 81.04±0.03
FairNAS [16] 26.9M 5.31G 541.7 3.87G 81.05±0.06
DNA [30] 26.8M 5.41G 571.6 3.71G 81.1*
FBNetV2 [46] 26.8M 5.29G 478.7 3.89G 81.1*
TuNAS [5] 26.8M 5.39G 554.8 4.95G 81.1*
⇧-NAS-cls (ours) 27.1M 5.38G 556.8 4.07G 81.6

denoted as ⇧-NAS-cls, on ImageNet classification, con-
sidering a trade-off between performance and efficiency.
We retrain ResNet-50 [24] (always undertrained in previ-
ous NAS works), ResNeSt-50 and our searched models
on ImageNet under the same settings with an augmenta-
tion scheme, named AugMix [25]. For a fair comparison
with the state-of-the-art NAS methods, we apply them on
our search space A. For SPOS [20] and FairNAS [16],
we manipulate the same architecture search procedure as
ours. For DNA [30], we select the candidate block with
the minimum loss in each layer to build as its top model.
For FBNetV2 [46] and TuNAS [5], we treat our search
space as four possible channel decisions in each layer to
apply the channel masking scheme. As we can see in Table
2, ⇧-NAS-cls marks a new state-of-the-art top-1 accuracy
81.6%, surpassing ResNeSt-50 by a large margin of 0.5%
in a similar computation complexity. By contrast, in our
nontrivial search space, the previous NAS methods seem
stuck at the local optima near ResNeSt-50, verifying the
advantage of ⇧-NAS to reduce the supernet training con-
sistency shift. Moreover, even though having more com-
putation complexity, our ⇧-NAS-cls achieves higher per-
formance than EfficientNet-B3 [43] with lower latency and
less GPU memory in practice. Notably, the results in Table
2 suggest that our ⇧-NAS-cls not only achieves state-of-
the-art performance but also runs at a fast speed indeed.
Model ranking. As discussed in Section 1, a strong ranking
correlation between candidates’ actual and predicted per-
formance in the supernet is essential to the effectiveness
of NAS. Here, we compare our ranking correlation with
DNA [30] and SPOS [20]. We use the top 5 architectures
in Table 1 and randomly sample other eight architectures
from the search space and train them in a fast setting de-
scribed above to obtain their top-1 accuracy training from

12359

Table 3: Ranking correlations (in Kendall’s Tau metric) of
diverse NAS methods in our search space.
Method Ours DNA SPOS FairNAS FBNetV2 TuNAS
Classification 0.79 0.45 0.19 0.36 0.32 0.14
Instance seg. 0.51 0.38 0.18 - - -

Figure 3: Ranking correlations on 792 architectures on
NAS-Bench-201 [18] on CIFAR-10 without skip con-
nection and zero operations compared to SPOS [20],
arch2vec [59] and ProxylessNAS [9].

Table 4: Results on NAS-Bench-201 on CIFAR-10.
Method Ours SPOS arch2vec ProxylessNAS WPL GDAS-NSAS
Test(%) 93.83±0 93.57±0 92.53±0.32 92.08±0.03 90.92±0.11 93.55±0.16

Table 5: Instance segmentation results with Mask-RCNN
[23] on the COCO 2017 validation set.

Model APBox APMask

ResNet-50 [24] 39.93±0.04 35.99±0.06
ResNeSt-50 [62] 42.81±0.02 38.14±0.01
⇧-NAS-cls (ours) 43.72 39.13
⇧-NAS-trans (ours) 44.11±0.04 39.48±0.02

Table 6: Semantic segmentation results with DeeplabV3
[10] on the validation set of ADE20K and Cityscapes.

Model ADE20K Cityscapes
pixAcc mIoU mIoU

ResNet-50 [24] 80.66±0.27 42.74±0.64 78.42±0.30
ResNeSt-50 [62] 81.22±0.05 45.18±0.06 80.08±0.20
⇧-NAS-trans (ours) 81.31±0.04 45.49±0.02 80.40±0.30

scratch, then fetch their predicted performances in the su-
pernet of each method to compute the ranking correlations.
The second row of Table 3 suggests the advanced effective-
ness of ⇧-NAS as it predicts the model’s performance much
more correctly. As analyzed in Section 3.1, this is due to
the training consistency shift problem, which will be fur-
ther discussed in Section 4.5.

4.3. Experimenet on NAS-Bench-201 Benchmarks

We additionally validate our ⇧-NAS on a popular cell-
based search space, NAS-Bench-201 [18], on CIFAR-10
dataset. This search space is represented as a DAG, where
each edge is associated to an operation with 5 options:
zero, skip connection, 1 ⇥ 1 convolution, 3 ⇥ 3 convolu-

Figure 4: Ranking correlations of diverse NAS meth-
ods. Values within the parentheses are their correspond-
ing Kendall’s Tau. Our ⇧-NAS gains the best correla-
tion, indicating that ⇧-NAS effectively reduces the train-
ing consistency shift.(CP: cross-path learning; MT: mean
teacher; DS: downsample-sharing; DA: learning different
augmented views of the same image)

tion and 3 ⇥ 3 average pooling. This DAG has 4 nodes,
where each node represents the sum of feature maps trans-
formed through the edges pointing to this node. For the
sake of simplicity, though we train the supernet involving
all 5 operations, we predict the performances of all 792 ar-
chitectures without zero and skip connection operations to
measure the ranking correlation to their ground-truth perfor-
mances. As shown in Figure 3 and Table 4, our method sig-
nificantly outperforms SPOS [20], arch2vec [59] (an unsu-
pervised NAS method), ProxylessNAS [9] (a differentiable
method), WPL [6] (a different solution to address parameter
shift) and GDAS-NASA [65] by a clear margin, verifying
our method’s effectiveness and compatibility.

4.4. Experiments on Transfer Learning

Instance segmentation results. To explore the transfer-
ability of our ⇧-NAS models, we first evaluate them on a
widely used transfer learning task, instance segmentation,
which simultaneously solves the problem of object detec-
tion and semantic segmentation. We train the Mask-RCNN
[23] on COCO-2017 with our searched models as its back-
bone following the instructions of [62, 49]. Rather than
one model, we evaluate all the 13 architectures (used in 4.2
Model ranking) with pretrain models on ImageNet. Also,
we study the ranking correlation by averaging the bound-
ing box mAP (APbb) and mask mAP (APmk) as the actual
performance. As shown in the third row of Table 3, the ef-
fectiveness of our ⇧-NAS stays superior, which indicates
that our approach can search for architectures that are more
transferrable and universal. Note that we choose the archi-
tecture with the best performance as a transferable model,
⇧-NAS-trans (a.k.a. ⇧-NAS-�, one of our top 5 searched
architectures), for the transfer learning. Table 5 shows that
both of ⇧-NAS-trans and ⇧-NAS-cls outperform ResNeSt-
50 by a significant margin (0.91% and 1.30% in APbb).
Semantic segmentation results. We further transfer
⇧-NAS-trans to the downstream task of semantic seg-
mentation on ADE20K and Cityscapes datasets. We
train DeeplabV3[10] with the implementation of PyTorch-

12360

Figure 5: Cosine similarity matrices of the outputs from the last layer of 4 paths in each supernet variant. The value within
the parentheses is the average after stripping out the diagonal. Our ⇧-NAS achieves the overall highest feature similarity,
intuitively explaining its effectiveness to reduce the supernet’s training consistency shift.

Encoding and the settings from[62]. For the ADE20K
dataset, we train the model for 120 epochs with a base im-
age size of 520 and cropped image size of 480. As for the
Cityscapes dataset, the model is trained for 240 epochs; the
base image size is 2048; the cropped image size is 768. We
also follow [62] to use multi-scale evaluation with flipping.
Results are shown in Table 6, both of which demonstrate the
advantage of our ⇧-NAS-trans.

4.5. Ablation Study

Effectiveness of components. To evaluate the impact of
our ⇧-NAS separately, we first distinguish it from SPOS
by cross-path learning, mean teacher and downsample-
sharing. As shown in Table 7 and Figure 4, we test the
combination methods with Kendall’s Tau as a ranking cor-
relation between their models’ predicted and actual perfor-
mance. Adopting the same testing scheme in Section 4.2,
we apply each method on their supernets’ training and then
evaluate the 13 architectures (used in 4.2 Model ranking).
As we can see, the Supernet-⇧ model reduces by 0.31 with-
out the mean-teacher, which indicates mean teacher plays
a role in high ranking correlation. The most notable thing
is that without cross-path learning, the method lost its ef-
fectiveness as SPOS. Obviously, cross-path learning is the
essential component in our ⇧-NAS. Downsample-sharing
also shows its strength in predicting accurate performance
for candidate architectures with a 0.39 improvement. Note
that when we try to perform ⇧-NAS without nontrivial
mean teacher, the supernet converged quickly to a state that
outputs all zeros, which disables the distinguishing ability
of the model (see Table 7).
Feature consistency and ranking correlation. As ana-
lyzed in Section 3, training consistency shift damages the
ranking correlation of NAS. To further demonstrate this
statement, we explore and visualize the feature similarity
from the last layer across paths. For example, we randomly
sample 4 architectures except the last layer are Block0,
Block1, Block2 and Block3 respectively, which are denoted
as s0, s1, s2 and s3. Then we evaluate the feature co-
sine similarity between each pair of them. Figure 5 shows

Table 7: Effectiveness of each component of our ⇧-
NAS. (CP: cross-path learning; MT: mean teacher; DS:
downsample-sharing)

Method CP MT DS nontrivial Kendall’s Tau
SPOS [20] X 0.19
S-⇧ model X X X 0.48
Ours w/o CP X X X 0.14
Ours w/o DS X X X 0.40
Ours w/o nontrival X X X collision
Ours X X X X 0.79

the embedding feature similarity of different methods. By
correlating Figure 4, we found that a high feature consis-
tency lead to a strong ranking correlation of supernet, which
demonstrates convincingly our motivation. Notably, Figure
5 also proves our ⇧-NAS indeed reduces supernet training
consistency shift, especially for cross-path learning.

5. Conclusion

This paper recognizes the importance of architecture
ranking in NAS and attributes the ranking correlation prob-
lem to the supernet training consistency shift, including fea-
ture shift an parameter shift. To address these two shifts,
we propose a nontrivial supernet-⇧ model, i.e., ⇧-NAS.
Specifically, we propose a supernet-⇧ model with cross-
path learning to reduce feature shift and a nontrivial mean
teacher to cope with parameter shift. Notably, our ⇧-NAS
can search for more transferable and universal architectures
than supervised NAS. Extensive experiments on many tasks
demonstrate the search effectiveness and universality of our
⇧-NAS compared to the NAS counterparts.

Acknowledgement

This work was supported in part by National Key R&D
Program of China under Grant No.2020AAA0109700, Na-
tional Natural Science Foundation of China (U19A2073
and 61976233), Guangdong Province Basic and Applied
Basic Research (2019B1515120039), Guangdong Out-
standing Youth Fund (2021B1515020061), Shenzhen Fun-
damental Research Program (RCYX20200714114642083,
JCYJ20190807154211365), Zhejiang Lab’s Open Fund
(2020AA3AB14) and CSIG Young Fellow Support Fund.

12361

References

[1] Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari,
Kento Uchida, Shota Saito, and Kouhei Nishida. Adaptive
stochastic natural gradient method for one-shot neural archi-
tecture search. In ICML, pages 171–180, 2019. 1, 3

[2] Philip Bachman, Ouais Alsharif, and Doina Precup. Learn-
ing with pseudo-ensembles. In NeurIPS, pages 3365–3373,
2014. 3

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.
2

[4] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc V. Le. Understanding and simplifying
one-shot architecture search. In ICML, pages 549–558, 2018.
3

[5] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang
Cheng, Pieter-Jan Kindermans, and Quoc V. Le. Can weight
sharing outperform random architecture search? an investi-
gation with tunas. In CVPR, June 2020. 6

[6] Yassine Benyahia, Kaicheng Yu, Kamil Bennani Smires,
Martin Jaggi, Anthony C Davison, Mathieu Salzmann, and
Claudiu Musat. Overcoming multi-model forgetting. In In-
ternational Conference on Machine Learning, pages 594–
603. PMLR, 2019. 7

[7] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In NeurIPS,
pages 5049–5059, 2019. 3

[8] Andrew Brock, Theodore Lim, James M. Ritchie, and
Nick Weston. SMASH: one-shot model architecture search
through hypernetworks. In ICLR, 2018. 1, 3

[9] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 1, 3, 7, 12, 13

[10] Liang-Chieh Chen, G. Papandreou, Florian Schroff, and H.
Adam. Rethinking atrous convolution for semantic image
segmentation. ArXiv, abs/1706.05587, 2017. 7

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 3

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey E. Hinton. A simple framework for contrastive learn-
ing of visual representations. ArXiv, abs/2002.05709, 2020.
5

[13] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 3

[14] Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang,
Chang Huang, Lisen Mu, and Xinggang Wang. RENAS:
reinforced evolutionary neural architecture search. In CVPR,
pages 4787–4796, 2019. 2

[15] Xiangxiang Chu, Bo Zhang, Jixiang Li, Qingyuan Li, and
Ruijun Xu. Scarletnas: Bridging the gap between scalabil-
ity and fairness in neural architecture search. arXiv preprint
arXiv:1908.06022, 2019. 1, 3, 12

[16] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-
nas: Rethinking evaluation fairness of weight sharing neural
architecture search. CoRR, abs/1907.01845, 2019. 1, 3, 6

[17] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four GPU hours. In CVPR, pages 1761–1770,
2019. 1, 3

[18] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In ICLR,
2020. 7, 12, 13

[19] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020. 3

[20] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV.
Springer, 2020. 1, 3, 5, 6, 7, 8, 12, 13

[21] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In CVPR.
IEEE, 2006. 5

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 3

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask r-cnn. ICCV, 2017. 7

[24] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CVPR, 2016. 6, 7

[25] Dan Hendrycks, Norman Mu, E. D. Cubuk, Barret Zoph, J.
Gilmer, and Balaji Lakshminarayanan. Augmix: A simple
data processing method to improve robustness and uncer-
tainty. ArXiv, abs/1912.02781, 2020. 6

[26] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua
Bengio. Learning deep representations by mutual in-
formation estimation and maximization. arXiv preprint
arXiv:1808.06670, 2018. 3

[27] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, 2018. 6

[28] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-
visiting self-supervised visual representation learning. In
CVPR, pages 1920–1929, 2019. 5

[29] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
2, 3

[30] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-
wisely supervised neural architecture search with knowledge
distillation. In CVPR, 2020. 1, 3, 5, 6, 12

[31] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng, Bing
Wang, Xiaodan Liang, and Xiaojun Chang. BossNAS: Ex-
ploring hybrid CNN-transformers with block-wisely self-
supervised neural architecture search. In ICCV, 2021. 3

[32] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic Slimmable Net-
work. In CVPR, 2021. 3

12362

[33] Xiang Li, Chen Lin, Chuming Li, Ming Sun, Wei Wu, Junjie
Yan, and Wanli Ouyang. Improving one-shot nas by sup-
pressing the posterior fading. In CVPR, 2020. 1, 3

[34] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selec-
tive kernel networks. In CVPR, 2019. 6

[35] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan
Yuille, and Saining Xie. Are labels necessary for neural ar-
chitecture search? arXiv preprint arXiv:2003.12056, 2020.
3

[36] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. In ICLR, 2019. 1, 3, 5

[37] Renato Negrinho and Geoffrey J. Gordon. Deeparchitect:
Automatically designing and training deep architectures.
CoRR, abs/1704.08792, 2017. 2

[38] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus
Cubuk, and Ian Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. In NeurIPS, pages
3235–3246, 2018. 3

[39] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 3

[40] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin.
Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017. 1, 2

[41] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and perturba-
tions for deep semi-supervised learning. In NeurIPS, pages
1163–1171, 2016. 3

[42] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In CVPR, pages 2820–2828, 2019. 2

[43] M. Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. ArXiv,
abs/1905.11946, 2019. 5, 6

[44] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, 2017. 2,
3, 5

[45] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. arXiv preprint arXiv:1906.05849,
2019. 3

[46] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fb-
netv2: Differentiable neural architecture search for spatial
and channel dimensions. In CVPR, June 2020. 6

[47] Guangcong Wang, Jian-Huang Lai, Wenqi Liang, and
Guangrun Wang. Smoothing adversarial domain attack
and p-memory reconsolidation for cross-domain person re-
identification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 3

[48] Guangrun Wang, Liang Lin, Rongcong Chen, Guangcong
Wang, and Jiqi Zhang. Joint learning of neural transfer
and architecture adaptation for image recognition. IEEE

Transactions on Neural Networks and Learning Systems (T-
NNLS), 2021. 3

[49] Guangrun Wang, Guangcong Wang, Keze Wang, Xiaodan
Liang, and Liang Lin. Grammatically recognizing images
with tree convolution. In Rajesh Gupta, Yan Liu, Jiliang
Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, CA, USA, August 23-27, 2020,
pages 903–912. ACM, 2020. 7

[50] Guangrun Wang, Guangcong Wang, Xujie Zhang, Jianhuang
Lai, Zhengtao Yu, and Liang Lin. Weakly supervised per-
son re-id: Differentiable graphical learning and a new bench-
mark. IEEE Transactions on Neural Networks and Learning
Systems, 32(5):2142–2156, 2020. 3

[51] Guangrun Wang, Keze Wang, Guangcong Wang, Philip H. S.
Torr, and Liang Lin. Solving inefficiency of self-supervised
representation learning. 2021. 3

[52] Guangcong Wang, Xiaohua Xie, Jianhuang Lai, and Jiaxuan
Zhuo. Deep growing learning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2812–
2820, 2017. 3

[53] Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and
Yuandong Tian. Sample-efficient neural architecture search
by learning action space. ArXiv, abs/1906.06832, 2019. 6

[54] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
CVPR, 2019. 1, 3, 5

[55] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, pages 3733–3742, 2018. 3

[56] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,
and Quoc V Le. Unsupervised data augmentation for con-
sistency training. arXiv preprint arXiv:1904.12848, 2019.
3

[57] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In CVPR, pages 10687–10698, 2020. 3

[58] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang.
Does unsupervised architecture representation learning help
neural architecture search? NeurIPS, 33, 2020. 3

[59] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang.
Does unsupervised architecture representation learning help
neural architecture search? In NeurIPS, 2020. 7, 12, 13

[60] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lu-
cas Beyer. S4l: Self-supervised semi-supervised learning. In
ICCV, pages 1476–1485, 2019. 3

[61] Hang Zhang. PyTorch-Encoding. https://github.
com/zhanghang1989/PyTorch-Encoding, 2018. 6

[62] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi-
Li Zhang, Haibin Lin, Yu e Sun, Tong He, Jonas Mueller, R.
Manmatha, M. Li, and Alex Smola. Resnest: Split-attention
networks. ArXiv, abs/2004.08955, 2020. 5, 6, 7, 8

[63] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang,
Zongyuan Ge, and Steven W. Su. Differentiable neural archi-
tecture search in equivalent space with exploration enhance-
ment. In NeurIPS, 2020. 3

12363

[64] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and
Steven Su. Overcoming multi-model forgetting in one-shot
nas with diversity maximization. In CVPR, pages 7809–
7818, 2020. 3

[65] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Chuan
Zhou, Zongyuan Ge, and Steven W Su. One-shot neural ar-
chitecture search: Maximising diversity to overcome catas-
trophic forgetting. IEEE Annals of the History of Computing,
2020. 3, 7

[66] Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian
Sun. Neural architecture search with random labels. In
CVPR, 2021. 3

[67] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-
Lin Liu. Practical block-wise neural network architecture
generation. In CVPR, pages 2423–2432, 2018. 2

[68] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In ICCV, pages 6002–6012, 2019. 3

[69] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 1, 2

12364

