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Abstract

Weakly supervised salient object detection (WSOD) tar-
gets to train a CNNs-based saliency network using only
low-cost annotations. Existing WSOD methods take vari-
ous techniques to pursue single ”high-quality” pseudo label
from low-cost annotations and then develop their saliency
networks. Though these methods have achieved good per-
formance, the generated single label is inevitably affected
by adopted refinement algorithms and shows prejudiced
characteristics which further influence the saliency net-
works. In this work, we introduce a new multiple-pseudo-
label framework to integrate more comprehensive and accu-
rate saliency cues from multiple labels, avoiding the afore-
mentioned problem. Specifically, we propose a multi-filter
directive network (MFNet) including a saliency network as
well as multiple directive filters. The directive filter (DF) is
designed to extract and filter more accurate saliency cues
from the noisy pseudo labels. The multiple accurate cues
from multiple DFs are then simultaneously propagated to
the saliency network with a multi-guidance loss. Exten-
sive experiments on five datasets over four metrics demon-
strate that our method outperforms all the existing con-
generic methods. Moreover, it is also worth noting that
our framework is flexible enough to apply to existing meth-
ods and improve their performance. The code and results
of our method are available at https://github.com/
OIPLab-DUT/MFNet.

1. Introduction
With the emergence of convolutional neural networks

(CNNs) [16], a lot of salient object detection (SOD) meth-
ods [31, 22, 32, 41] based on CNNs have been proposed
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Figure 1. Different pseudo labels synthesized by different re-
finement algorithms on class activation map (CAM), in which Y1

and Y2 represent pseudo labels from pixel-wise [4] and superpixel-
wise [29] refinement algorithms, respectively.

and broken the records. However, these CNNs-based SOD
methods heavily rely on large amounts of hand-labeling
data with pixel-level annotations, which are labor-intensive
and time-consuming [39].

Due to the high cost of labeling pixel-level annotations,
some promising works have been proposed to explore other
low-cost alternatives, including scribble [38, 35] and image-
level category labels [36, 29, 17]. Among them, the cate-
gory label based methods only require category labels for
training, and an overwhelming amount of labels for the
existence of object categories are already given (e.g. Ima-
geNet [5]). Thus, in this paper, we focus on the image-level
category label based salient object detection (WSOD1).

Previous works on WSOD proposed various techniques
such as global smooth pooling [29], multi-source supervi-
sions [36] and alternate optimization [17] to pursue sin-

1For convenience, we denote WSOD as methods based on image-level
category label in this paper.
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gle ”high-quality” pseudo label for training their saliency
networks. Though these works have achieved good perfor-
mance, the generated single ”high-quality” pseudo label is
usually trapped by its prejudiced characteristics due to the
different adopted refinement algorithms. For example, the
incomplete deficiency (3rd column in Figure 1) and redun-
dant noise (4th column in Figure 1).

Instead of pursuing single ”high-quality” pseudo labels,
we propose to utilize multiple pseudo labels to establish
a more robust framework and avoid the negative impacts
from the single prejudiced label. To begin with, we adopt
two different refinement algorithms, including a pixel-wise
one [4] and a superpixel-wise one [29], to synthesize two
different pseudo labels. Both of these two algorithms uti-
lize abundant appearance information in RGB images to
perform refinement for class activation maps (CAMs) [43].
The pixel-wise one treats each individual pixel as units,
takes its class activation score as clues and then infers its
neighbor pixels’ scores, while the superpixel-wise one takes
superpixels as its operation units. As a result, the synthe-
sized pseudo labels Y1 (from pixel-wise algorithm) and Y2

(from superpixel-wise algorithm) describe different charac-
teristics. As is shown in Figure 1, Y1 provides better de-
tailed information, but is usually trapped in incompleteness,
while Y2 can cover more complete objects but introduces
more extra noisy information. These observations drive us
to explore how to extract and integrate more comprehensive
and robust saliency cues from multiple pseudo labels.

The core insight of this work is to adequately excavate
the comprehensive saliency cues in multiple pseudo labels
and avoid the prejudice of the single label. To be specific,
for multiple pseudo labels, we 1) extract abundant accurate
multiple saliency cues from multiple noisy labels, and 2)
perform integration and propagate the integrated multiple
cues to the saliency network. Concretely, our contributions
are as follows:

• We introduce a new framework to utilize multiple
pseudo labels for WSOD, which employs more com-
prehensive and robust saliency cues in multiple labels
to avoid the negative impacts of a single label.

• We design a multi-filter directive network (denoted
as MFNet), in which multiple directive filters and a
multi-guidance loss are proposed to extract and in-
tegrate multiple saliency cues from multiple pseudo
labels respectively.

• Extensive experiments on five benchmark datasets
over four metrics demonstrate the superiority of our
method as well as the multiple pseudo labels.

• We also extend the proposed framework to existing
method MSW [36] and the prove its effectiveness
by achieving 9.1% improvements over Fω

β metric on
ECSSD dataset.

2. Related Work

2.1. Salient Object Detection

Early researches on salient object detection (SOD)
mainly leverage handcrafted features to segment the most
salient objects, such as boundary prior [34], center
prior [12] and so on [44, 13]. Recently, CNNs-based ap-
proaches have yielded a qualitative leap in performance due
to the powerful ability of CNNs in extracting informative
features. Various effective architectures [22, 41, 30, 24, 23]
are proposed to enhance the performance of the saliency
networks, among them, Liu et al. [22] propose a deep hier-
archical saliency network, which can simultaneously learn
powerful feature representations, informative saliency cues,
and their optimal combination mechanisms from the global
view. With the development of attention mechanisms, some
promising works [32, 27, 40] are presented to introduce var-
ious attention modules to improve the saliency networks, in
which Wu et al. [32] introduce a cascaded partial decoder
framework, utilizing generated relatively precise attention
maps to refine high-level features for improving the perfor-
mance. In recent years, boundary information is attached
much importance, and lots of works [21, 28, 42] propose
to explore boundary of the salient objects to predict a more
detailed prediction. In [28], Su et al. propose an effective
Cross Refinement Unit (CRU), which bidirectionally passes
messages between the two tasks of salient object detection
and edge detection.

Although these methods have achieved promising im-
provements, a large amount of pixel-level annotations are
needed for training their models, which are prohibitively
expensive.

2.2. Weakly Supervised Salient Object Detection

To achieve a trade-off between labeling efficiency and
model performance, weakly supervised salient object de-
tection using low-cost labels is presented. Wang et al. [29]
first propose to perform salient object detection with image-
level category labels and design a foreground inference net-
work (FIN) to infer saliency maps. A global smooth pool-
ing (GSP) is proposed to generate more integrated CAMs
from image-level labels, and a new CRF algorithm which
provides more accurate refinementis also proposed to giv-
ing rise to more effective network training. In [17], Li et al.
design a generic alternate optimization framework to pro-
gressively refine and update the initial saliency seeds from
a traditional SOD method MB+ [37], a conditional random
field based graphical model is also introduced to cleanse the
noisy pseudo labels.

Different from the previous works, Zeng et al. [36] pro-
pose that the saliency cues in category labels can be sup-
plemented by caption labels, and design a multi-source
weak supervision framework to integrate multiple informa-
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Figure 2. Overall framework of our proposed method. The class activation maps (CAMs) [43] are inferred by a trained image classification
network, and multiple pseudo labels are synthesized based on it. The proposed MFNet includes two directive filters and a normal encoder-
decoder saliency network. The architecture of the saliency decoder and directive filter is illustrated on the right, in which the three inputs
of the saliency decoder represent the features from the 3rd, 4th and 5th convolution block of the shared encoder.

tion in various supervisions. Besides, an attention transfer
loss is proposed to transmit supervision signal between net-
works, and an attention coherence loss is presented to en-
courage the networks to detect the generally salient regions.
Owe to the abundant saliency information in multi-source
weak supervisions, a promising improvement is achieved
in [36]. However, the multi-source framework only inte-
grates the abundant information to generate a single pseudo
label, leading that multi-source information cannot be ex-
plicitly propagated to the saliency network. In conclusion,
the above previous works target to pursue a single ”high-
quality” pseudo label and then develop saliency networks
on it.

Different from the aforementioned works, we hold that
the saliency cues in image-level category label can be differ-
ently excavated to synthesize multiple pseudo labels. The
saliency network developed on these multiple labels can be
more robust and avoid the prejudiced effects of single la-
bels.

3. The Proposed Method

To excavate the comprehensive saliency cues in multiple
pseudo labels, we propose a multiple pseudo label frame-
work. As is illustrated in Figure 2, the proposed frame-
work can be divided to two parts: 1) Synthesizing multiple
pixel-level pseudo labels on training images given existing
image-level classification dataset. 2) Developing the pro-
posed multi-filter directive network (MFNet) with the gen-
erated multiple labels. In this section, we will introduce the
first part in a brief way and then give the detailed descrip-
tions of the second one.

3.1. Synthesizing Multiple Pseudo Labels

Based on a image classification network, class activa-
tion maps (CAMs) [43] build a bridge from image-level
category labels to pixel-level pseudo labels, and play a vi-
tal role in weakly supervised segmentation tasks. Similar
to [36, 29], we adopt ImageNet dataset [5] as the training
set in this part for the sake of fairness.

For an image classification network, we replace the fully
connected layers with a global average pooling (GAP) [20]
layer and add an extra convolution layer. The GAP layer
encourages the classification network to identify the more
complete extent of the object. The classification scores S
are computed by:

S = conv(GAP (F5)), (1)

where conv(·) represents the new-added convolution layer,
and F5 represents the features from the last convolution
block of the classification network. The classification loss
Lc in this training stage is as follows:

Lc(S, Yc) = − 1

C
∗

C∑
i=1

yci ∗ log((1 + exp(−si))
−1

)

+ (1− yci) ∗ log(
exp(−si)

1 + exp(−si)
),

(2)

where C indicates the total numbers of category, yci and
si represent the elements of the category label Yc and the
computed classification scores S, respectively.

After the training stage of the classification network is
completed, we fix the learned parameters and perform in-
ference on the RGB image of DUTS-Train dataset [29] to
generate class activation maps (CAMs) M as follows:
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M =

C∑
i=1

norm(relu(conv(F5)i)) ∗ si, (3)

where conv(·) is the aforementioned new-added convolu-
tional layer. relu(·) indicates the relu activation function,
and norm(·) represents the normalization function that nor-
malizes the elements in CAMs to [0, 1].

As is mentioned above, we adopt both pixel-wise and
superpixel-wise algorithms on CAMs for refinements. The
pixel-wise refinement [4] takes the class activation score of
individual pixel in CAMs as seeds, and infers the scores of
its neighbor pixels using the RGB appearance information.
On the other hand, superpixel-wise refinement first clusters
pixels in a RGB image into superpixels using a clustering al-
gorithm SLIC [2] and then performs the similar refinement
on superpixels. Same as the previous works [36, 29, 17],
we also adopt CRF [15] for a further refinement, which is
widely-accepted in the weakly supervised methods.

3.2. The Multi-filter Directive Network

As is mentioned above, pseudo labels synthesized from
different refinements describe different characteristics, and
the saliency networks developed on a single label inevitably
suffers from its prejudiced characteristics. Therefore, we
target to explore how to effectively leverage the abundant
and comprehensive saliency cues in multiple pseudo labels.

A straightforward method to utilize multiple cues is de-
signing a dual decoder architecture as shown in (b) in Fig-
ure 5, which introduces two decoders to learn saliency cues
from two different pseudo labels respectively. Meanwhile
a mutual guidance loss is adopted to integrate multiple
saliency cues. We take the averaged predictions of dual de-
coders as the final saliency prediction in this ease. However,
in this straightforward method, noisy information existing
in prejudiced pseudo label may propagate to the saliency
network directly, and lead to negative impacts. To solve the
above problems, we propose a multi-filter directive network
(MFNet) to effectively integrate the filtered cues from mul-
tiple pseudo labels.

To be specific, we first design a directive filter (DF) to ex-
tract and filter the more accurate saliency cues from pseudo
labels. The architecture of the proposed directive filters is
illustrated in Figure 2. It takes the features from the shared
encoder as input, and extracts the saliency cues from pseudo
labels through several convolution layers. As is pointed out
in [9, 4, 26, 8], the convolutional neural networks possess
good robustness to noisy labels. Therefore, the inaccurate
saliency cues in pseudo labels can be gradually corrected
by the convolution layers in DF. As shown in Figure 3, the
extra noise and incomplete defects in pseudo labels are pro-
gressively corrected, and more concrete saliency cues are
extracted through convolutions.

Image Pseudo label (a) (b) (c)

Figure 3. Visualization of the directive filter F1. (a) and (b)
represent the feature maps from the 2nd and 4th convolution layers
of the directive filter, and (c) indicates the predictions P1 of F1.

To effectively utilize and integrate the comprehensive
saliency cues from multiple pseudo labels, we design the
proposed MFNet as is illustrated in Figure 2. Firstly, we
introduce two directive filters F1 and F2 to filter and ex-
tract accurate saliency cues from pseudo labels Y1 and Y2

respectively. To attach equal importance to different pseudo
labels, we set the same settings for two directive filters. The
corresponding training loss L1 and L2 for F1 and F2 are
computed as:

Lk(Pk, Yk) =−
∑
i

yki ∗ log pki − (1− yki)∗

log(1− pki), k = 1, 2,

(4)

where pki and yki represent the elements of the directive
filter predictions Pk and its pseudo labels Yk. Secondly, we
then simultaneously propagate these filtered accurate cues
to the saliency decoder through a multi-guidance loss Lmg ,
which can be described as follows:

Lmg(Ps, Ys) =−
∑
i

(1− yi) ∗ log(1− psi)

− yi ∗ log psi,
(5)

where psi is the elements of the saliency decoder predic-
tion Ps. Ys is the average prediction of directive filters after
the aforementioned pixel-wise refinement [4], and yi is its
elements.

In addition, we adopt a self-supervision strategy between
two directive filters, which aims to encourage two filters
to extract similar saliency cues from different pseudo la-
bels. The insight is that the common saliency cues learned
from different pseudo labels describe more accurate and
authentic saliency information. The loss Lss of this self-
supervision term is defined as follows:

Lss(P1, P2) = −
∑
i

(p1i − p2i)
2
. (6)
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The final loss function L for training the proposed
MFNet is given by the combination of the above loss func-
tions:

L = L1 + L2 + Lmg + δLss, (7)

where δ is a hyper-parameter which controls the weight of
the self-supervision term.

The architecture of the saliency network is illustrated in
Figure 2. We adopt a simple encoder-decoder framework,
which usually served as baseline network in SOD. It takes
three features from the 3rd, 4th and 5th convolution blocks
of the encoder as input, and perform multi-scale bottom-up
aggregation [41]. The predictions Ps of the saliency de-
coder is our final prediction, During testing, we only retain
the saliency network and discard the multiple directive fil-
ters for acceleration.

4. Experiments

4.1. Implementation Details

We conduct our method on the Pytorch toolbox with a
RTX 2080Ti GPU. The shared encoder in our method is
designed based on DenseNet-169 [11], which is same as
the latest work MSW [36]. During the training phase of
the classification network, we adopt the Adam optimization
algorithm [14] and set the learning rate and the maximum
iteration to 1e-4 and 20000, respectively. In the inference
phase, we generate CAMs using a multi-inference strategy
following the settings of [3]. To be specific, the input im-
ages are flipped and then resized to four scales. The final
maps are computed as the average of corresponding eight
CAMs. For the saliency network, we only take the RGB im-
ages of DUTS-Train dataset [29] and the generated pseudo
labels for training. In this stage, we also adopt the Adam op-
timization algorithm and set the learning rate and the maxi-
mum iteration to 3e-6 and 26000, respectively. All the train-
ing images are resized to 256 × 256 and the parameters of
new-added layers are initialized by Xavier algorithm [10].
The source code will be released upon publication.

4.2. Datasets and Evaluation Metrics

Following the previous works [29, 36], we adopt Ima-
geNet [5] and DUTS-Train dataset [29] as our training sets
for the classification network and the proposed MFNet re-
spectively for the sake of fairness. We test our method
on five widely-adopted datasets: ECSSD [33], DUTS-
Test [29], HKU-IS [18], DUT-OMRON [34] and PASCAL-
S [19]. ECSSD contains 1000 images of different sizes
with obvious salient objects. DUTS-Test includes 5019
samples of various challenging scenes. HKU-IS consists
of 4447 images with many multiple-object scenes. DUT-
OMRON contains 5168 images with complex structures

and contours. PASCAL-S includes 850 samples that are
annotated by 8 subjects in eye-tracking tests.

For a comprehensive comparison, we adopt four well-
accepted metrics, including S-measure [6], E-measure [7],
F-measure [1] as well as Mean Absolute Error (MAE), to
evaluate our method. Specifically, S-measure focuses on
evaluating the structural information of saliency maps and
evaluates region-aware and object-aware structural similar-
ity between saliency maps and ground truths. E-measure
attaches more importance on the unification of global and
local information. Besides, F-measure is a harmonic mean
of average precision and average recall, and MAE evaluates
the average difference between saliency maps and ground
truths.

4.3. Comparison with State-of-the-arts

We compare our approach denoted as MFNet with the
existing image-level category label based WSOD methods:
WSS [29], ASMO [17] and MSW [36]. The quantitative
and qualitative results are illustrated in the Table 1 and Fig-
ure 4. For a fair comparison, we obtain the saliency maps
of these methods from authors and conduct same evaluation
on all the methods.

Quantitative evaluation. The quantitative results on five
datasets are shown in Table 1. It can be seen that our method
outperforms all the previous works on almost metrics except
for S-measure on the DUT-OMRON dataset. It is worth not-
ing that F-measure of our method is significantly better than
the second best results on PASCAL-S (0.751 against 0.713),
HKU-IS (0.851 against 0.814) and DUT-Test (0.710 against
0.684). The improvements on MAE metrics further prove
the superiority of our method. Especially, 29.7% improve-
ment on HKU-IS dataset and 20.2% on DUT-OMRON
dataset are achieved. Moreover, from a deeper perspec-
tive, the previous work ASMO [17] achieves better per-
formance on the challenging DUT-OMRON dataset while
WSS [29] and MSW [36] show more superiority on the
other datasets. This is because the former uses a traditional
SOD method MB+ [37] to perform refinement and gener-
ate pseudo labels, while the latter leverages the aforemen-
tioned superpixel-wise refinement. It demonstrates that the
prejudiced single pseudo label from different refinement al-
gorithms does lead to different generalization abilities of
WSOD methods. Based on these observations, we argue
that exploring multiple pseudo labels is necessary and the
results in Table 1 also prove its effectiveness.

Qualitative evaluation. Figure 4 shows the qualitative
comparisons of our MFNet with existing WSOD methods
in some challenging scenes. It can be seen that our method
could segment more accurate and integrated objects than
other methods. For example, in some similar foreground
and background scenes in the 1st, 3rd and 4th rows on the
left in Figure 4, our method could discriminate more salient
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Table 1. Quantitative comparisons of E-measure (Es), S-measure (Sα), F-measure (Fβ) and MAE (M ) metrics over five benchmark
datasets. The supervision type (Sup.) I indicates using category annotations only, and I&C represents developing WSOD on both
category and caption annotations simultaneously. - means unavailable results. The best results are marked in boldface.

Methods Sup.
ECSSD DUTS-Test HKU-IS DUT-OMRON PASCAL-S

Sα Es Fβ M Sα Es Fβ M Sα Es Fβ M Sα Es Fβ M Sα Es Fβ M

WSS [29] I .811 .869 .823 .104 .748 .795 .654 .100 .822 .896 .821 .079 .725 .768 .603 .109 .744 .791 .715 .139

ASMO [17] I .802 .853 .797 .110 .697 .772 .614 .116 - - - - .752 .776 .622 .101 .717 .772 .693 .149

MSW [36] I&C .827 .884 .840 .096 .759 .814 .684 .091 .818 .895 .814 .084 .756 .763 .609 .109 .768 .790 .713 .133

MFNet I .834 .885 .854 .084 .775 .839 .710 .076 .846 .921 .851 .059 .742 .803 .646 .087 .770 .817 .751 .115

Image GT MFNet WSS [29] ASMO [17] MSW [36] Image GT MFNet WSS [29] ASMO [17] MSW [36]

Figure 4. Visual comparisons of our method with existing image-level annotation based WSOD methods in some challengling scenes.

objects accurately from its similar background. When the
background comes complex and noisy such as in the 2nd

and 3rd rows on the right, our method could also perform
better than the others.

4.4. Ablation Studies

We design various cases in ablation studies to prove the
superiority of our method comprehensively. For a clearer
description, the different frameworks of each case in Table
2 are shown in Figure 5.

Effectiveness of Directive Filter. We propose a directive
filter (DF) to extract and filter more accurate saliency cues
from noisy pseudo labels. It can be applied to both sin-
gle pseudo label setting (SDF) and multiple setting (MDF)
according to the numbers of pseudo labels. On the one
hand, SDF can encourage promising improvements on all
datasets as shown in cases (1) to (4) in Table 2, especially on
two challenging datasets DUTS-Test and DUT-OMRON.
It indicates that when pseudo labels tend to be more in-
accurate and noisy in challenging scenes, normal saliency
networks inevitably learn more negative information from
its direct supervision. In these scenes, the proposed SDF
can filter and extract accurate saliency cues and then en-
courages a more powerful saliency decoder. On the other
hand, MDF can effectively integrate multiple saliency cues
in various pseudo labels. To prove its superiority, we design
four different cases to fuse multiple saliency cues, including

three simple ways: average (Avg(·)), intersection (∩) and
union (∪), as well as the aforementioned straightforward
way: dual decoder. The results in cases (5) to (7) prove that
such three simple ways cannot adequately enough to lever-
age multiple information. The better performance of case
(8) indicates that a more proper approach to leverage multi-
ple labels can achieve a promising improvement. Cases (9)
is our final MFNet with MDF shown in (d) in Figure 5, it
can be seen that MDF contributes to ourperforming all the
other multiple settings by a large margin, especially on two
challenging datasets DUTS-Test and DUT-OMRON. These
observations support: 1) the effectiveness of our proposed
DF on extracting accurate saliency cues. 2) the superiority
of the proposed MDF on integrating multiple saliency cues.
Moreover, as is illustrated in Table 3, the saliency decoder
achieves an obvious improvement compared to its directive
filters (DFs). It proves that the filtered saliency cues from
DFs are accurate enough to encourage better results with
the proposed multi-guidance loss.

Effectiveness of multiple pseudo labels. We introduce
a multiple-pseudo-label WSOD framework, which targets
to integrate multiple saliency cues to avoid the bias of each
single pseudo label. First of all, as is mentioned above,
cases (5) to (7) in Table 2 are the aforementioned simple
ways to integrate multiple cues. Cases (5) and (7) lead to
similar performance and do not get obvious improvements
than single pseudo label cases (1) and (2), while case (6)
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Figure 5. The frameworks of different settings in ablation studies. (a) indicates single pseudo label cases (1) to (2) and (5) to (7), (b) refers
to dual-decoder framework in case (8), and (c) indicates single directive filter (SDF) cases (3) and (4). (d) is our proposed MFNet using
multiple directive filters (MDF), which corresponds to case (9).

Table 2. Quantitative results of ablation studies, Type means the number of used pseudo labels and Pseudo label indicates different
pseudo labels Y1 and Y2. DF represents our proposed directive filter (DF). In Case: (1) and (2) indicate the case which trains the
saliency networks with Y1 and Y2 respectively. Based on (1) and (2), case (3) and (4) adopt the proposed DF. Cases (5) to (7) first
integrate multiple labels through average (Avg(·)), intersection (∩) and union (∪) respectively, and then train the saliency networks on
these integrated labels. Case (8) adopts a straightforward dual-decoder framework and case (9) is our final MFNet.

Type Case DF Pseudo ECSSD DUTS-Test HKU-IS DUT-OMRON PASCAL-S

label Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓

Single

(1) Y1 0.818 0.113 0.607 0.099 0.824 0.080 0.607 0.099 0.724 0.134
(2) Y2 0.824 0.090 0.639 0.090 0.801 0.067 0.576 0.108 0.717 0.122
(3) ✓ Y1 0.835 0.095 0.698 0.082 0.840 0.066 0.641 0.089 0.734 0.125
(4) ✓ Y2 0.847 0.085 0.684 0.084 0.836 0.062 0.602 0.103 0.743 0.115

Multiple

(5) Avg(Y1, Y2) 0.826 0.087 0.638 0.088 0.800 0.066 0.576 0.106 0.716 0.120
(6) Y1 ∩ Y2 0.831 0.086 0.649 0.085 0.810 0.064 0.595 0.098 0.723 0.118
(7) Y1 ∪ Y2 0.823 0.091 0.637 0.093 0.800 0.070 0.637 0.093 0.714 0.124
(8) Y1 & Y2 0.843 0.087 0.670 0.083 0.831 0.064 0.607 0.093 0.735 0.118
(9) ✓ Y1 & Y2 0.854 0.084 0.710 0.076 0.851 0.059 0.646 0.087 0.751 0.115

Table 3. Comparisons on the results of the saliency decoder and
its two directive filters. Supervised by more accurate saliency
cues from directive filters, the final saliency decoder achieves
promising improvements.

Results
ECSSD DUTS-Test HKU-IS

Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓

P1 0.842 0.089 0.689 0.079 0.836 0.063
P2 0.844 0.088 0.686 0.080 0.836 0.063

Final Ps 0.854 0.084 0.710 0.076 0.851 0.059

achieves good improvements especially on the MAE metric.
These results indicate that the average and union introduce
more redundant noises from both pseudo labels and lead to
inferior performance. The reason why case (6) achieves bet-
ter performance than cases (5) and (7) is that the intersec-
tion operation on two pseudo labels can help to generates
high-confidence labels. Moreover, by adopting the dual-
decoder framework in case (8), a remarkable improvement
is achieved over the single pseudo label case (1) and (2),
which proves the superiority of multiple pseudo labels and
inspires us for a further exploration. Last but not least,

Image Case (3)Ground truth Case (4) Case (9)

Figure 6. Visual analysis of the effectiveness of multiple pseudo
labels. Case(3), (4) and (9) represent the results of cases (3), (4)
and (9), respectively. It can be seen that multiple labels encourage
more generalized and accurate results compared to single label.

case (9) is our proposed MFNet, compared to cases (3) and
(4), a promising improvement is achieved on all metrics,
which furthur proves the superiority of multiple cues. Fig-
ure 6 provides the visual results of multiple DF and single
DF settings. It proves that the more comprehensive saliency
cues in multiple pseudo labels helps to avoid the negative
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Table 4. The experiments on the effect of self-supervision and the
setting of its hyper-parameter δ. The best and second-best results
are marked in boldface and underline, respectively.

δ
ECSSD DUTS-Test HKU-IS

Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓

-2 0.844 0.081 0.679 0.083 0.837 0.058
0 0.851 0.084 0.702 0.077 0.848 0.058

→2← 0.854 0.084 0.710 0.076 0.851 0.059
4 0.848 0.089 0.706 0.078 0.850 0.061

impacts from single label and encourage more robust re-
sults.

4.5. Hyper-parameter Settings

We adopt a self-supervision strategy between multiple
directive filters, aiming to force them to learn more authen-
tic saliency cues from various pseudo labels. For a com-
prehensive comparison, we set the hyper-parameter δ from
-2 to 4 in Table 4 to discuss the effectiveness of the self-
supervision strategy as well as the hyper-parameter δ.

To be specific, when the δ is set to -2, the directive filters
are encouraged to learn different saliency cues from various
pseudo labels. Setting δ to 0 means that we do not adopt the
self-supervision strategy, and the last two rows in Table 4
indicate different hyper-parameters for the self-supervision
strategy. It can be seen that encouraging multiple direc-
tive filters to learn similar cues does perform better than the
other settings and the best performance is achieved when δ
is set to 2.

4.6. Application

To further demonstrate the effectiveness of our pro-
posed framework, we extend it to the latest WSOD meth-
ods MSW [36]. To be specific, for the coarse maps gener-
ated from the multi-source weak supervisions, we also per-
form two different refinements as we do to synthesize dif-
ferent pseudo labels, and then adopt the proposed multiple-
pseudo-label framework to extract and integrate the multi-
ple saliency cues. The architecture of the saliency decoders
follows the original setting in MSW for the fair compari-
son. Here, we add weighted F-measure Fω

β [25] for a more
comprehensive comparison.

The results in Table 5 illustrate that remarkable improve-
ments are achieved especially on the Fω

β and MAE metrics.
It indicates that the proposed multiple pseudo label frame-
work does adequately integrate saliency cues from multi-
ple labels and help existing method to achieve better per-
formance. The visual analysis in Figure 7 also supports
this observation, in which our framework helps MSW to
predict more accurate and complete saliency maps even in
challenging scenes. Moreover, it is worth noting that the

Table 5. The experiments of applying our multiple-pseudo-label
framework on the latest work MSW [36].

Settings
ECSSD HKU-IS

Fβ↑ Fω
β ↑ M↓ Fβ↑ Fω

β ↑ M↓

MSW [36] 0.840 0.716 0.096 0.814 0.685 0.084
+ Ours +0.016 +0.065 -0.019 +0.006 +0.058 -0.015

Image MSW [36] MSW + OursGround truth

Figure 7. Visual analysis of applying our framework on the latest
previous work MSW [36].

proposed framework can not only be extended to other sin-
gle pseudo label methods, but also flexible enough to inte-
grate more other pseudo labels by just adding more directive
filters when more pseudo labels can be obtained.

5. Conclusion

In this paper, we propose to utilize multiple pseudo la-
bels to avoid the negative impacts from the prejudiced sin-
gle label. To this end, we introduce a new framework to ex-
plore more comprehensive and accurate saliency cues from
multiple labels. To be specific, we design a multi-filter
directive network (MFNet) which consists of an encoder-
decoder saliency network as well as multiple directive fil-
ters. We first use multiple directive filters to extract and
filter more accurate saliency cues from multiple labels, and
then propagate these filtered cues to the saliency decoder
simultaneously. We also adopt a self-supervision strategy
to encourage similar guidance of different directive filters,
and implicitly integrate multiple saliency cues with a multi-
guidance loss. Comparisons with previous methods prove
the superiority of the proposed method, and ablation stud-
ies also support the effectiveness of each component.
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