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Abstract

We present 4D-Net, a 3D object detection approach,
which utilizes 3D Point Cloud and RGB sensing informa-
tion, both in time. We are able to incorporate the 4D infor-
mation by performing a novel dynamic connection learning
across various feature representations and levels of abstrac-
tion, as well as by observing geometric constraints. Our
approach outperforms the state-of-the-art and strong base-
lines on the Waymo Open Dataset. 4D-Net is better able
to use motion cues and dense image information to detect
distant objects more successfully. We will open source the
code.

1. Introduction
Scene understanding is a long-standing research topic

in computer vision. It is especially important to the au-
tonomous driving domain, where a central point of inter-
est is detecting pedestrians, vehicles, obstacles and potential
hazards in the environment. While it was traditionally un-
dertaken from a still 2D image, 3D sensing is widely avail-
able, and most modern vehicle platforms are equipped with
both 3D LiDAR sensors and multiple cameras producing
3D Point Clouds (PC) and RGB frames. Furthermore, au-
tonomous vehicles obtain this information in time. Since
all sensors are grounded spatially, their data collectively,
when looked at in time, can be seen as a 4-dimensional en-
tity. Reasoning across these sensors and time clearly of-
fers opportunities to obtain a more accurate and holistic un-
derstanding, instead of the traditional scene understanding
from a single 2D still-image or a single 3D Point Cloud.

While all this 4D sensor data is readily available on-
board, very few approaches have utilized it. For example,
the majority of methods targeting 3D object detection use a
single 3D point cloud as an input [17], with numerous ap-
proaches proposed [24, 52, 36, 31, 39, 40, 55, 57, 56]. Only
more recently has point cloud information been consid-
ered in time, with approaches typically accumulating sev-
eral point clouds over a short time horizon [21, 20, 55, 31].

Furthermore, the sensors have complementary character-
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Figure 1. 4D-Net effectively combines 3D sensing in time (PCiT)
with RGB data also streamed in time, learning the connections
between different sensors and their feature representations.

istics. The point cloud data alone may sometimes be insuf-
ficient, e.g., at far ranges where an object only reflects a
handful of points, or for very small objects. More infor-
mation is undoubtedly contained in the RGB data, espe-
cially when combined with the 3D Point Cloud inputs. Yet,
relatively few works attempted to combine these modali-
ties [34, 50, 19, 23]. Notably, only 2 of the 26 submissions
to the Waymo Open Dataset 3D detection challenge oper-
ated on both modalities [46]. No methods have attempted
combining them when both are streamed in time. The ques-
tions of how to align these very different sensor modalities
most effectively, as well as how to do so efficiently, have
been major roadblocks.

To address these challenges, we propose 4D-Net, which
combines Point Cloud information together with RGB cam-
era data, both in time, in an efficient and learnable man-
ner. We propose a novel learning technique for fusing infor-
mation in 4D from both sensors, respectively building and
learning connections between feature representations from
different modalities and levels of abstraction (Figure 1). Us-
ing our method, each modality is processed with a suit-
able architecture producing rich features, which are then
aligned and fused at different levels by dynamic connec-
tion learning (Figure 2). We show that this is an effective
and efficient way of processing 4D information from multi-
ple sensors. 4D-Nets provide unique opportunities as they
naturally learn to establish relations between these sensors’
features, combining information at various learning stages.
This is in contrast to previous late fusion work, which fuse
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already mature features that may have lost spatial informa-
tion, crucial to detecting objects in 3D.

Our results are evaluated on the Waymo Open
Dataset [47], a challenging Autonomous Driving dataset
and popular 3D detection benchmark. 4D-Net outperforms
the state-of-the-art and is competitive in runtime. Impor-
tantly, being able to incorporate dense spatial information
and information in time improves detection at far ranges
and for small and hard to see objects. We present several
insights into the respective significance of the different sen-
sors and time horizons, and runtime/accuracy trade-offs.

Our contributions are: (1) the first 4D-Net for object de-
tection which spans the 4-Dimensions, incorporating both
point clouds and images in time, (2) a novel learning
method which learns to fuse multiple modalities in 4D,
(3) a simple and effective sampling technique for 3D Point
Clouds in time, (4) a new state-of-the-art for 3D detection
on the Waymo Open Dataset and a detailed analysis for un-
locking further performance gains.

2. Related Work
Object Detection from RGB. The earliest detection ap-

proaches in the context of autonomous driving were pri-
marily focused on camera-based object detection, often
drawing heavily from the extensive body of 2D vision
work [49, 14, 4, 14, 3, 7, 32, 9, 44, 17, 13], with some more
advanced works using deep learning features [2, 12, 43].
Detection with temporal features, i.e., integrating features
across several neighboring frames [16, 53], and leveraging
kinematic motion to improve detection consistency across
time [6] have also been applied. However, looking at the
images as videos and processing them with video CNNs is
not common.

Object Detection from Point Cloud. Many approaches
found it effective to apply well-established 2D detec-
tors on a top-down (BEV) projection of the point cloud
(AVOD [23], PIXOR [57], Complex-YOLO [41], HD-
NET [56]). This input representation can be advantageous
because it makes it easier to separate objects, and object
sizes remain constant across different ranges. However, it
results in loss of occlusion information, does not effectively
exploit the full 3D geometric information, and is inherently
sparse. Certain techniques can be used to alleviate these
drawbacks, e.g., learning a pseudo-image projection [24].

An alternative to top-down representations is operating
directly on the range image, projecting the PC into perspec-
tive view. This representation is inherently dense, simpli-
fies occlusion reasoning and has been used in various works
(e.g. LaserNet [30], VeloFCN [26], [5]). Another line of
work tries to exploit the complementary nature of both by
jointly operating on multiple views [59, 52].

Instead of relying on view projections, some methods di-
rectly operate on the 3D voxelized point cloud [60, 25, 51].

Voxel resolution can greatly affect performance and is typi-
cally limited by computational constraints. To reduce com-
pute, some rely on applying sparse 3D convolutions, such as
Vote3Deep [15], Second [55] or PVRCNN [39]. Dynamic
voxelization has been proposed in [59].

Other methods operate directly on the raw point cloud
data, e.g. SPLATNet [45], StarNet [31] or PointRCNN [40].

Point Clouds in Time (PCiT). Integrating information
from multiple point clouds has been proposed recently.
StarNet [31] does not explicitly operate in time, but can use
high-confidence predictions on previous frames as “tempo-
ral context” to seed object center sampling in the following
frames. [21] extract features on individual frames and accu-
mulate information in an LSTM over 4 frames for detection.
[11] apply 4D ConvNets for spatial-temporal reasoning for
AR/VR applications. [55, 20, 58] combine multiple point
clouds in time by concatenating them and adding a channel
representing their relative timestamps.

Point Clouds and RGB fusion. Acknowledging the
merits of sensor fusion, researchers have attempted to
combine LiDAR and camera sensing to improve perfor-
mance [34, 10, 27]. Frustum PointNet [35] first performs
image-based 2D detection, and then extrapolates the detec-
tion into a 3D frustum based on LiDAR data. Alternatively,
one can project the point cloud into the camera view - in
its simplest form creating RGB-D input, although alterna-
tive depth representations may be used [19, 18]. However,
this provides limited scalability as each detection inference
would only cover a very limited field of view. Conversely,
the point cloud input can be enriched by adding color or se-
mantic features [50, 42, 23]. This, however, comes at the
expense of losing spatial density - one of the primary ad-
vantages of camera sensors. Several methods have instead
applied modality-specific feature extractors, which are then
fused downstream [23, 28, 10, 54, 27]. None of the above-
mentioned approaches operate on either modality in time.

3. 4D-Net

4D-Net proposes an approach to utilize and fuse multi-
sensor information, learning the feature representation from
these sensors and their mutual combinations. An overview
of the approach is shown in Figure 2. In 4D-Net, we con-
sider the point clouds in time (i.e., a sequence of point
clouds) and the RGB information, also in time (a sequence
of images). We first describe how to handle the raw 3D
point clouds and RGB input information streaming in time
(Section 3.1) and then describe our main 4D-Net architec-
tures which learn to combine information from both sensor
modalities and across dimensions (Section 3.2). We further
offer a multi-stream variant of the 4D-Net which achieves
further performance improvements (Section 3.3).

215436



F

N

P Cp

Z

X
Cp

P

Pseudo-image from PCStacked pillars Learned features

Pillar index

Point cloud Backbone PC Network

Connection Search

3D Boxes

X

Y

C1
X

Y

C2

RGB video feature maps

X

Y

Cv

3D 
Proj

3D 
Proj

3D 
Proj...

T

T

Figure 2. 4D-Net Overview. RGB frames and Point Clouds in time are processed producing features, abstracting some dimensions. A
connection search learns where and how to fuse the modalities’ features together. We use 3D projection to align the PC and RGB features.

3.1. 3D Processing and Processing Data in Time
3.1.1 3D Processing
Our approach uses a learnable pre-processor for the point
cloud data; it is applied to the 3D points and their features
from the LiDAR response to create output features. We
chose to use PointPillars [24] to generate these features, but
other 3D point ‘featurising’ approaches can be used. Point-
Pillars converts a point cloud into a pseudo-image, which
can then be processed by a standard 2D CNN. For clarity,
in the derivations below, we will be using a 3D X ,Y,Z , co-
ordinate system, where the Z direction is forward (aligned
with the car driving), Y is vertical pointing up and X is hor-
izontal, i.e., we use a left-hand coordinate system (this is
the default system used in the Waymo Open Dataset).

Given a point cloud P = {p} where p is a 3D (x, y, z)
point and associated F -dimensional feature vector (e.g., in-
tensity, elongation), the pseudo-image is created as follows.
Each point is processed by a linear layer, batch norm and
ReLU, to obtain a featurized set of 3D points. The points are
grouped into a set of pillars in the X , Z plane based on their
3D location and distances between the points. This gives a
point cloud representation with shape (P,N, F ), where P
is the number of pillars, and N is the maximum number of
points per pillar. Each of the P pillars is associated with a
x0, y0, z0 location that is the pillar center. The idea is then
to further ‘featurize’ information in this (P,N, F ) repre-
sentation and then, using the original coordinates, to ‘dis-
tribute’ back the features along the X , Z plane and produce
a pseudo-image [24], say of size (X,Z,CP ). Specifically,
from (P,N, F ), a feature of size (P,CP ) is obtained via
learnable layers and pooling, to then get (X,Z,CP ). In
effect, PointPillar produces a (X,Z,CP ) feature represen-
tation from a (X,Y, Z, F ) input for a single PC.

3.1.2 Point Clouds in Time
Point clouds and the subsequent feature creation (e.g., as in
Section 3.1.1) are computationally expensive and memory
intensive operations. Given a sequence of T point clouds,

Figure 3. The average point density per voxel illustrates how long-
term temporal aggregation, combined with our subsampling strat-
egy, leads to an increased point density, especially at far ranges.

creating T PointPillar “pseudo-images” and then using a
2D or 3D CNN to process all those frames would be pro-
hibitively expensive [58], limiting its usefulness. Previous
work [21] explored using sparse convolutions with LSTMs
to handle point clouds in time, where a compressed feature
representation is fed recursively to next frame representa-
tions. Instead, we take a simpler approach similar to [8],
which however preserves the original feature representation
per 3D point, together with a sense of time.

First, the original feature representation is directly
merged in the 3D point cloud, together with a feature to in-
dicate its timestamp. Specifically, we use the vehicle pose to
remove the effect of ego-motion and align the point clouds.
Next, we add a time indicator t to the feature of each point:
p = [x, y, z, t]. Then, the PointPillar pseudo-image repre-
sentation is created as before, which also results in a denser
representation. While dynamic motion will obviously cre-
ate a ghost/halo effect, it can in fact be a very useful signal
for learning, and be resolved by the time information. In
some circumstances, it is only through motion that distant
or poorly discernible objects can be detected.

Point Cloud Subsampling. Importantly, when accumu-
lating points from multiple point clouds, the voxelization
step converts all the points into a fixed-sized representation
based on the grid cell size. This results in a tensor with
a fixed size that is padded to N , the maximum number of
points. Thus the amount of subsequent compute remains the
same, regardless of the number of PCs. If the points exceed
N , only N points are randomly sampled (N=128 through-
out). This has the effect of subsampling the accumulated
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Figure 4. Connection architecture search: Each PointPillar
feature is projected into the CNN feature map space based on
the 3D coordinate of each pillar and the given camera matrices.
The feature from the 2D location is extracted from each feature
map. Learned static connection weights (grey boxes) then com-
bine these and concatenate them with the pillar feature to create
the pillar feature map used as input to the next layer. Dynamic
connections, shown in green, are produced for each value which
are controlled by the features from the point clouds, thus they de-
termine how to fuse in the rest of the features generated by the
model at various levels of abstractions. Please see Section 3.2.2.

point cloud, but proportionally more points will be sampled
in sparser areas than in dense ones. By densifying the point
cloud in sparse regions and sparsifying it in dense regions,
we distribute compute more efficiently and provide more
signal for long-range detection by increased point density
at far ranges (e.g. see point density for 16 PCs in Figure 3).
We find this representation to be very effective, resulting in
significant improvements over using a single point cloud (as
seen later in ablation Table 5).

3.1.3 RGB and RGB in Time
While point clouds have become the predominant input
modality for 3D tasks, RGB information is very valuable,
especially at larger distances (e.g., 30+ or 50+ meters)
where objects garner fewer points.

Furthermore, images in time are also highly informative,
and complementary to both a still image and PCiT. In fact,
for challenging detection cases, motion can be a very pow-
erful clue. While motion can be captured in 3D, a purely
PC-based method might miss such signals simply because
of the sensing sparsity.

RGB frames, unlike PCs, represent a dense feature con-
taining color pixel information for everything in view. Here
we take RGB frames as input and use video CNNs to pro-
duce the RGB feature maps. In the video settings, we take
T previous frames as input and predict the object bounding
boxes in the final frame, same as for point clouds in time.
We process a sequence of RGB frames as a video input.
Since runtime is of the essence, we use efficient video repre-
sentations, Tiny Video Networks [33] for processing. More
specifically, by a series of layers, some of which working
in the spatial dimensions, some temporal, a set of feature
representations in the spatial dimension will be learned. As
a result, the feature with shape (X,Y,CV ) is produced, ab-
stracting away the time coordinate in input (X,Y, T, 3).

3.2. 4D-Net: Fusing RGB in Time and PC in Time

To combine RGB information into the 3D Point Cloud
PointPillar representation (both in time), there are two ma-
jor considerations: 1) the two sensors need to be geometri-
cally and spatially aligned and 2) the fusion mechanisms of
the features produced from these modalities should ideally
be learned from the data.

Our 4D-Net entails both projection fusion mechanisms
and connectivity search to learn where and how to fuse fea-
tures (Figure 2). Of note is that both representations have
abstracted away some ‘dimensions’ in their features but still
contain complementary information: the RGB representa-
tion has (X , Y , CV ), whereas the PCiT has (X , Z, CP ).
Since our end goal is 3D object detection, we chose to fuse
from RGB into the point cloud stream, but we note that
these approaches could be used to fuse in the other direction
as well. Section 3.2.1 and Section 3.2.2, provide details.

3.2.1 3D Projection

To fuse the RGB into the point cloud, we need to (approx-
imately) align the 3D points with 2D image points. To do
this, we assume we have calibrated and synchronized sen-
sors and can therefore define accurate projections. Note that
the Waymo Open Dataset provides all calibration and syn-
chronized LiDAR and camera data.

The PointPillar pseudo-image M has shape (X,Z,CP )
and is passed through a backbone network with a ResNet-
like structure. After each residual block, i, the network fea-
ture map Mi has shape (XM

i , ZM
i , CM

i ), where each loca-
tion (in X and Z) corresponds to a pillar. Each pillar p also
has an (x0, y0, z0) coordinate representing its center based
on the accumulated 3D points. This provides a 3D coordi-
nate for each of the non-empty feature map locations.

The RGB network also uses a backbone to process the
video input. Let us assume that after each block, the net-
work produces a feature map Ri with shape (XR

i , Y R
i , CR

i ),
which is a standard image CNN feature map.

Using projections, we can combine the RGB and point
cloud data. Specifically, given a 4× 4 homogeneous extrin-
sic camera matrix E (i.e., the camera location and orienta-
tion in the world) and a 4×4 homogeneous intrinsic camera
matrix K (E and K are part of the dataset), we can project a
3D point p = (x, y, z, 1) to a 2D point as q = K ·(E ·p). For
each point pillar location, we obtain the 2D point q, which
provides an RGB feature for that point as Ri[qx, qy]

1. This
is concatenated to the pillar’s feature, e.g.,

Mi[px, py] = [Mi[px, py]|Ri[K · (E · p)]]p ∈ P (1)

Note that LiDAR data typically covers a full 360 degree
surround view, while individual cameras typically have a

1We tried a spatial crop around the point, but found it to be computa-
tionally expensive. The CNN’s receptive field also provides spatial context.
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quite limited horizontal field of view. To account for this,
we only obtain RGB features for points which are captured
by one of the cameras. For points outside of the image
view, we concatenate a vector of zeros. This approach is
easily applied to settings with multiple RGB cameras cov-
ering different viewpoints – the same RGB CNN is applied
to each view, then the projection is done per-camera, and
added together before concatenation.

3.2.2 Connection Architecture Search in 4D

While the above projection will align the two sensors geo-
metrically, it is not immediately obvious what information
should be extracted from each and how the sensor features
interact for the main task of object detection.

To that end we propose to learn the connections and
fusion of these via a light-weight differentiable one-shot
architecture search. One-shot differentiable architecture
search has been used for strengthening the learned features
for image understanding [29] and for video [37, 38]. In
our case, we are utilizing it for relating information in 4D,
i.e., in 3D and in time, and also connecting related features
across different sensing modalities (the RGB-in-time and
point cloud-in-time streams). Of note is that we learn the
combination of feature representations at various levels of
abstraction for both sensors (Figure 2).

In Figure 4, we illustrate how this architecture search
works. Given a set of RGB feature maps, {Ri|i ∈
[0, 1, . . . , B]} (B being the total number of blocks/feature
maps in the RGB network), we can compute the projection
of each pillar into the 2D space and obtain a feature vec-
tor. This produces a set of feature vectors F = {fi|i ∈
[0, 1, . . . , B]}. We then have a learned weight w, which is a
B-dimensional vector. We apply softmax and then compute∑

w × F to obtain the final feature vector. w learns the
connection weights, i.e. which RGB layer to fuse into the
PointPillars layer. This is done after each block in the Point-
Pillars network, allowing many connections to be learned
(Figure 2).

Dynamic Connections. The above-mentioned mecha-
nism is very powerful as it allows to learn the relations be-
tween different levels of feature abstraction and different
sources of features (e.g., RGB, PC) (Figure 4). Further-
more, as shown in later sections (Section 3.3) it allows for
combining multiple computational towers seamlessly with-
out any additional changes.

However, in the autonomous driving domain it is espe-
cially important to reliably detect objects at highly variable
distances, with modern LiDAR sensors reaching several
hundreds of meters of range [1]. This implies that further-
away objects will appear smaller in the images and the most
valuable features for detecting them will be in earlier lay-
ers, compared to close-by objects. Based on this observa-
tion, we modified the connections to be dynamic, inspired
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Figure 5. Illustration of a multi-stream 4D-Net. It takes point
clouds (in time) and still-image and video as input, computes fea-
tures for them, learns connection weights between the streams.

by self-attention mechanisms. Specifically, instead of w be-
ing a learned weight, we replace w with a linear layer with
B outputs, ω, which is applied to the PointPillar feature
Mi[px, py] and generates weights over the B RGB feature
maps. ω is followed by a softmax activation function. This
allows the network to dynamically select which RGB block
to fuse information from, e.g. taking a higher resolution
feature from an early layer or a low resolution feature from
a later layer (Figure 4). Since this is done for each pillar
individually, the network can learn how and where to select
these features based on the input.

3.3. Multi-Stream 4D-Net

Multipe RGB streams. Building on the dynamic con-
nection learning, we propose a Multi-Stream (MS) version
of 4D-Net. While the 4D-Net itself already learns to com-
bine the information from two streams – the sparse 3D
PCiT and camera input – we can have more than one RGB
input stream (Figure 5). One advantage of the proposed
(dynamic) connection learning between features of differ-
ent modalities is that it is applicable to many input feature
sources and is agnostic to where they originate from. For
example, we can add a separate tower for processing high-
resolution still images, or an additional video tower using a
different backbone or a different temporal resolution. This
enables a more rich set of motion features to be learned
and surfaced for combination with the PC features. Note
that all these are combined with the PC (in time) features in
the same dynamic fusion proposed above, thus allowing the
PCiT stream to dynamically select the RGB features to fuse
from all streams. Similarly, it is also possible to introduce
additional PC streams.

Multiple Resolutions. Empirically, we observe that
adding an RGB stream benefits recognition of far away ob-
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Method AP L1 AP L2 AP 30m AP 30-50m AP 50m+ Runtime

StarNet [31] 53.7 - - - - -
LaserNet [30] 52.1 - 70.9 52.9 29.6 64ms
PointPillars [24], from [21] 57.2 - - - - -
MVF [59] 62.9 - 86.3 60.0 36.0 -
Huang et al [21] (4 PCs) 63.6 - - - - -
PillarMultiView [52] 69.8 - 88.5 66.5 42.9 67ms
PVRCNN [39] 70.3 65.4 91.9 69.2 42.2 300ms

4D-Net (Ours) 73.6 70.6 80.7 74.3 56.8 142 ms (net) + 102 ms (16f voxel)
4D-Net (Ours with Multi-Stream) 74.5 71.2 80.9 74.7 57.6 203 ms (net) + 102 ms (16f voxel)

Table 1. Waymo Open Dataset [46]. 3D detection AP on vehicles @ 0.7 IoU on the validation set. For 4D-Net we report the runtime of the
network and of the pre-processing voxelization step for the point clouds in time.

Figure 6. 4D-Net predictions on a scene in the Waymo Open Dataset [46]. Individual instances are shown in different colors. Red boxes
indicate errors (dashed lines: FN, solid lines: FP). In this example, all predictions are matching the ground-truth except for a false-negative
on the right side (front camera). Note that any misalignments in the camera view are due to projection, not by inaccuracies in the predictions.

jects the most. Distant objects appear smaller than close
objects, suggesting that using higher resolution images will
further improve recognition. Additionally, adding RGB in-
puts at two or more different resolutions will increase the
diversity of features available for connection learning.

Thus in the multi-stream setting, we combine inputs at
different resolutions (see Figure 5 for a schematic). Our
main Multi-Stream 4D-Net uses 1) one single still image
tower at high image resolution (312x312), 2) one video im-
age tower at lower resolution (192x192) with 16 frames and
3) the PCiT which has aggregated 16 point clouds. The
original 4D-Net has the latter two streams only but uses 12
RGB frames. More streams and more resolutions are ex-
plored in the ablations, Section 4.2. Similar to our main
4D-Net, we use a lightweight Tiny Video Network [33], so
that the multi-stream 4D-Net is efficient at inference.

Implementation Details. We train the model to minimize
a standard cross-entropy loss for classification and a L2 re-
gression loss for the residuals between the anchor boxes and

the GT boxes. N = 128 throughout the paper and we use
a 224 × 224 × 1 output grid. Further implementation and
experimental details are included in the sup. material.

4. Experiments
We conduct experiments on the Waymo Open Dataset

[47], following the standard evaluation protocol and evalu-
ation script provided. We report results on vehicles at 0.7
IoU overlap, which is the same setting as in previous work.
We conduct ablation studies which demonstrate the vari-
ous benefits of the proposed approach, and provide analy-
sis with respect to different model and input configurations.
Some of the ablation experiments show additional opportu-
nities for improving performance which are not included in
the main results, e.g., increasing the number of RGB frames
or input resolutions or using stronger backbones.
4.1. Waymo Open Dataset results

Table 1 shows the results of 4D-Net in comparison to
the recent state-of-the-art (SOTA) approaches. As seen, it
outperforms the previous SOTA, e.g. by 3.3 and 4.2 AP,
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Figure 7. Example results on the Waymo Open Dataset. Green boxes are correct detections, and red boxes indicate errors (dashed lines:
FN, solid lines: FP). We observe that the model is more inclined to produce false-negatives, rather than false-positives.

and more importantly, it significantly outperforms when de-
tecting objects at far distances by 14.6 and 15.4 AP. We
also report inference runtimes, split into time to run the 4D-
Net (net) with PC accumulated in time and RGB streams,
and the time for point cloud pre-processing (voxelization).
We observe very competitive runtimes, despite processing
much more information than other methods. Qualitative re-
sults are shown in Figure 6 and Figure 7.

4.2. Ablation Studies

This section presents the ablation studies. We make best
efforts to isolate confounding effects and test components
individually, e.g., by removing multiple PCs, or RGB.

Main Contributions and Fusion Approaches. Ta-
ble 2 shows the main ablation experiments, investigating
key components of the 4D-Net. Starting from the main
4D-Net approach (first line), in the top lines we evaluate
the approach when the key contributions are removed in-
dividually or jointly. As seen, dynamic learning on top of
3D projections is the most beneficial and both are impor-
tant. At the bottom of the table, we show performance of
the approach with different modalities enabled or disabled,
for direct comparison. We notice interesting phenomena:
using multiple PC in time is definitely helpful, but a single
RGB image can boost up the performance of both a single
PC and multiple PCs much more significantly, with the pro-
posed projection and connection learning. Similarly, RGB
in time can boost a single PC variant significantly, too. Thus
a combination of the two sensors, at least one of which is
in time is important. The best result comes from multiple
RGBs and PC in time, i.e., spanning all 4 dimensions. The
supp. material has details of the baselines used in lieu of the
proposed components.

Multi-Stream 4D-Net Variants. Table 3 shows the re-
sults of using a various number of additional input streams

(Figure 5). As seen, various interesting combinations can
be created and learned successfully. Multi-stream models
can also afford to reduce the resolution of the video stream
inputs and obtain equally powerful models. More multi-
stream variants can be explored.

RGB Resolution and Video. In this section we explore
the impact of RGB resolution (Table 42). We observe poten-
tial improvements to the 4D-Net that were not used in the
main method and can be leveraged in future work. Some
improvements are gained at the expense of runtime as seen
to the right of the table. As expected, better image reso-
lution helps, particularly for detection of far-away objects,
e.g., almost 5 and 12 AP improvements for objects beyond
50m when resolution is increased to 512 from 224 and 192.
Another interesting observation is that RGB video helps a
lot. For example, increasing resolution from 224 to 512 im-
proves still-image performance by 1% for close objects, but
keeping the same 224x224 resolution for a video input gets
even higher performance, an improvement by 2.6%. Nat-
urally, higher resolution videos than the ones shown will
improve both metrics at additional latency cost.

Leveraging more powerful video methods is also possi-
ble, although not particularly worthwhile, as they gain only
a little in accuracy, but at high computational cost (see Ta-
ble 4, bottom). Specifically, we compare two of the most
popular video models: the 3D-ResNet [48, 22] and Assem-
bleNet [37]. As seen, they provide more accurate results,
especially the powerful AssembleNet, but are very slow.

Point Clouds in Time. Table 5 shows the effect of us-
ing point clouds in time. As expected, multiple point clouds
improve performance notably. Using 16 PCs, about 1.6 sec-
onds of history, seems to be optimal and also matches ob-
servation that density saturates around 16 frames (Figure 3).

2The AP is lower than the main 4D-Net as we use a single PC and no
dynamic connections, to show the effects of image or video models.
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Components Modalities
Method Proj Conn Dyn PC RGB AP L1 AP L2 AP 30m AP 30-50m AP 50m+

4D-Net X X X PC+T RGB+T 73.6 70.6 80.7 74.3 56.8
X X PC+T RGB+T 73.1 70.1 80.5 73.9 56.2
X PC+T RGB+T 72.6 69.7 79.6 72.8 54.6

PC+T RGB+T 62.5 58.9 70.1 57.8 42.5

X X PC+T RGB 72.6 69.7 79.8 73.6 55.8
X X PC RGB+T 65.4 63.9 77.5 67.4 48.5
X X PC RGB 64.3 63.0 74.9 65.1 47.2
X PC RGB 62.5 61.5 71.5 61.5 41.0

X PC RGB 56.7 53.6 66.2 52.5 37.5
PC+T 60.5 55.7 68.4 57.6 38.1

PC 55.7 52.8 65.0 51.3 35.4
Table 2. Ablation results for the 4D-Net. From the full 4D-Net variant, components are removed one at a time, to demonstrate their effect.
Proj is the proposed projection method, Conn is the connectivity search and Dyn is the dynamic connection method. We also ablate with
using single PC or single RGB input. PC+T denotes Point Clouds in Time, RGB+T is RGB frames in time. 16 PCiT and 16 RGB of
224x224 size are used (except the top two with 12 RGB of 192x192). This is a single 4D-Net. See Table 3 for multi-stream 4D-Nets.

Method AP 30m 30-50m 50m+ Runtime

4D-Net (192x192 12f video) 73.6 80.7 74.3 56.8 142 ms
4D-Net MS (192x192 16f video + 312x312 image) 74.5 80.9 74.7 57.6 203 ms

4D-Net MS-1 (192x192 16f video + 224x224 image) 73.4 81.2 72.5 56.5 162 ms
4D-Net MS-2 (224x224 16f video + 224x224 image) 73.8 80.5 73.7 56.9 171 ms
4D-Net MS-3 (128x128 16f video + 192x192 image + 312x312 image) 74.2 81.5 72.9 57.8 225 ms

Table 3. Ablation results for Multi-Streams (MS) models. AP shown. The top portion shows the main 4D-Net and the Multi-Stream version
from Table 1. MS-1 and MS-2 include an additional image stream but at different resolutions. MS-3 has two additional image streams. It
shows one can significantly reduce the input video resolution achieving top results. All video models use 16 frames except 4D-Net which
has 12. Voxel pre-processing is not included in runtime as in Table 1.

Image resolutions AP 30m 30-50m 50m+ Time

192x192 1 fr. 60.8 73.6 60.7 40.4 82
224x224 1 fr. 64.3 74.9 65.1 47.2 97
312x312 1 fr. 67.3 75.7 66.4 49.5 142
512x512 1 fr. 68.2 75.9 67.5 52.4 297

192x192 12-fr. 64.2 75.2 65.3 46.2 109
224x224 16-fr. 65.4 77.5 67.4 48.5 115

224x224 3DRes 66.4 77.8 68.6 49.5 254
224x224 Assm 66.8 79.1 69.2 50.7 502

Table 4. Ablations for input image resolutions for a single frame
RGB tower and a single point cloud. AP (L1) shown. For compar-
ison, models with 12-frame and 16-frame video input are given,
as well as, stronger but much slower methods 3DResNet [48] and
AssembleNet [37], both with 32 frames. All are with a single point
cloud, which reduces compute, as well. Time is in ms.

5. Conclusions and Future Work
We present 4D-Net, which proposes a new approach to

combine underutilized RGB streams with Point-Cloud-in-
time information. We demonstrate improved state-of-the-
art performance and competitive inference runtimes, despite

Number of PC AP AP 30m AP 30-50m AP 50m+

1 PC 55.7 65.0 51.3 35.4
2 PC 56.3 66.1 52.5 36.4
4 PC 57.8 66.9 54.6 36.7
8 PC 59.4 67.6 56.4 37.8
16 PC 60.5 68.4 57.6 38.1
32 PC 60.3 67.4 56.4 38.4

Table 5. Ablations for Point Clouds (PC) in time. No RGB inputs
are used. One PC (top row) is effectively the PointPillar model.

using 4D sensing and both modalities in time. Without
loss of generality, the same approach can be extended to
other streams of RGB images, e.g., the side cameras pro-
viding critical information for highly occluded objects, or
to diverse learnable feature representations for PC or im-
ages, or to other sensors.While this work is demonstrated
for the challenging problem of aligning different sensors
for autonomous driving which span the 4D, the proposed
approach can be used for various related modalities which
capture different aspects of the same domain: aligning au-
dio and video data or text and imagery.
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