
Extending Neural P-frame Codecs for B-frame Coding

Reza Pourreza and Taco Cohen
Qualcomm AI Research*

{pourreza,tacos}@qti.qualcomm.com

Abstract

While most neural video codecs address P-frame coding
(predicting each frame from past ones), in this paper we
address B-frame compression (predicting frames using both
past and future reference frames). Our B-frame solution is
based on the existing P-frame methods. As a result, B-frame
coding capability can easily be added to an existing neural
codec. The basic idea of our B-frame coding method is to
interpolate the two reference frames to generate a single
reference frame and then use it together with an existing P-
frame codec to encode the input B-frame. Our studies show
that the interpolated frame is a much better reference for
the P-frame codec compared to using the previous frame as
is usually done. Our results show that using the proposed
method with an existing P-frame codec can lead to 28.5%
saving in bit-rate on the UVG dataset compared to the P-
frame codec while generating the same video quality.

1. Introduction

There are two types of frames in the video cod-
ing domain, Intra-frames and Inter-frames. Intra-frames
(I-frames) are encoded/decoded independently of other
frames. I-frame coding is equivalent of image compres-
sion. Inter-frames are encoded using motion compensation
followed by residuals i.e. a prediction of an input frame is
initially devised by moving pixels or blocks of one or mul-
tiple reference frames and then the prediction is corrected
using residuals. Prediction is an essential task in inter-
coding, for it is the primary way in which temporal redun-
dancy is exploited. In the traditional paradigm of video cod-
ing [34, 41], motion vectors are used to model the motion
of blocks of pixels between a reference and an input im-
age [34]. In the neural video coding domain, dense optical
flow is usually used to model individual pixels movements.
In both cases, a warping is performed on references using
motion vectors or optical flow to generate the prediction.

*Qualcomm AI Research is an initiative of Qualcomm Technologies,
Inc.

F
ra

m
e

In
te

rp
o

la
ti

o
n

������

������

�����

P
-F

ra
m

e
C

o
d

ec

��

���

B-Frame Codec 34.5

35.5

36.5

37.5

38.5

0.025 0.075 0.125 0.175 0.225

P
S

N
R

 (
d

B
)

Rate (bits per pixel)

P-frame codec
B-frame codec

Figure 1. (a) the general idea of this work i.e. extending an ex-
isting P-frame codec to a B-frame codec by adding an interpo-
lation block, (b) the rate-distortion improvements on the UVG
dataset [38] where the P-frame [2] and the B-frame codecs are
trained on the Vimeo-90k dataset [46] for the same number of iter-
ations. The improvement is equivalent of 28.5% saving in bit-rate
measured by BD-rate gain [6].

Inter-frames are further divided into Predicted (P) frames
and Bi-directional predicted (B) frames. P-frame coding,
which is suitable for low-latency applications such as video
conferencing, uses only past decoded frames as references
to generate a prediction. Most of the available literature on
neural inter coding falls under this category and the meth-
ods often use a single past decoded frame as reference [23]
(see Fig. 2.b). On the other hand, B-frame coding, which is
suitable for applications such as on-demand video stream-
ing, uses both past and future decoded frames as references.
Future references provide rich motion information that fa-
cilitate frame prediction and eventually lead to better cod-
ing efficiency. The number of neural video codecs that ad-
dress B-frame coding is limited [11, 13, 16, 43]. They use
two references and generate a prediction either by bidirec-
tional optical flow estimation and warping or by performing
frame interpolation. The reported results show that these
approaches, despite relative success in video coding, do not
fully exploit the motion information provided by two refer-
ences as the results are not competitive with state-of-the-art
P-frame codecs [2].

For a given input frame, when references from both past
and future are available, under a linear motion assump-
tion, one can come up with a rough prediction of the in-
put frame by linearly interpolating the two references. This

6680

Object location

Prediction

Motion vector

Prediction error

Interpolation

Interpolation guide����� ��� ������ ��� �����	
������ ��� �����	 ������ ��� �����	

(a) (b) (c) (d) (e)

��

Figure 2. Prediction in inter-frame coding. xt, x̃t, and x̂ref denote an input frame, the corresponding prediction and the reference, respec-
tively. (a) Actual object location. (b) P-Frame prediction, a motion vector with respect to a single reference is transmitted. (c) B-frame
prediction based on bidirectional flow/warp, two motion vectors with respect to two references are transmitted. (d) B-frame prediction
based on frame interpolation, the interpolation result is treated as the prediction. No motion information is transmitted. (e) Our B-frame
prediction approach, the interpolation result is corrected using a unidirectional motion vector similar to P-frame.

prediction does not need to be coded since the two ref-
erences are already available to the receiver. The neu-
ral B-frame coding methods that work based on bidirec-
tional flow/warping [13], do not use this useful informa-
tion and send the optical flows with respect to both refer-
ences (see Fig. 2.c). On the other hand, the interpolation
outcome is only accurate under linear motion assumption.
So in the neural B-frame models that rely on frame inter-
polation [11, 43], the prediction is likely to not exactly be
aligned with the input frame (see Fig. 2.d). Even when a
non-linear frame interpolator is employed [45], misalign-
ment could still occur. In these situations, the codec solely
relies on residuals to compensate for the misalignment. As
a result, coding efficiency could be significantly lower com-
pared to a scenario where the misalignment is mitigated
via some inexpensive side-information first before applying
residual coding.

In this work, we address this issue by introducing a new
approach for neural B-frame coding, which despite its sim-
plicity, is proven very effective. The method involves inter-
polating two reference frames to obtain a single reference
frame, which is then used by a P-frame model to predict the
current frame (see Fig. 1 and Fig. 2.e). A residual is applied
to this prediction.

Our method takes advantage of the rich motion informa-
tion available to the receiver by performing frame interpo-
lation and does not suffer from the residual penalty due to
misalignment. Since our B-frame coding solution operates
based on a P-frame codec, an existing P-frame codec can
be used to code B-frames. In fact, the same network can
learn to do both P-frame coding as well as contributing to
B-frame compression. In other words, by adding a frame in-
terpolator to a P-frame codec, the codec is able to code both
P-frames and B-frames. One can freely choose an existing
interpolation and P-frame method when implementing our
technique.

In video coding, videos are split into groups of pictures
(GoP) for coding. The neural video codec that we develop
in this work B-EPIC (B-Frame compression through Ex-
tended P-frame & Interpolation Codec) supports all frame

types. Given that different frame types yield different cod-
ing efficiencies, it is crucial to choose the right frame type
for the individual frames in a GoP. In this work, we look
closely into GoP structure.

Our main contributions and findings are as follows:
• We introduce a novel B-frame coding approach based on

existing P-frame codecs and frame interpolation,
• A single P-frame network is used for both P-frame and

B-frame coding through weight-sharing,
• A thorough analysis of the effect of GoP structure on per-

formance is provided,
• The proposed solution outperforms existing neural video

codecs by a significant margin and achieves new state-of-
the-art results.

2. Related work

I-frame/Image coding: Great progress has been made
in the development of neural image codecs. Research has
focused on various aspects of neural coding, such as archi-
tecture [3, 26, 30, 37], quantization [1], priors [5, 26], and
multi-rate coding [12, 25, 36]. Recently, a hierarchical hy-
perprior model [4, 5] has been widely adopted in the neural
coding field and there are multiple variants including some
equipped with autoregressive models [27, 28] and attention
mechanisms [10].

P-frame coding: Most of the existing neural video
codecs fall under this category where unidirectional mo-
tion estimation/compensation is followed by residual cor-
rection [21, 22, 31]. Lu et al. introduced DVC [23], a basic
P-frame codec which is later upgraded in [24]. While mo-
tion is often modelled using spatial optical flow, Agustsson
et al. introduced scale-space flow [2] to address uncertain-
ties in motion estimation via a blur field which is further
enhanced in [47]. Recent works have introduced more so-
phisticated components, e.g. Golinski et al. [15] added re
currency to capture longer frame dependencies, Lin et al.
look at multiple previous frames to generate a prediction in
M-LVC [19], Liu et al. perform multi-scale warping in fea-

6681

������

������

Bidir

Warp

Flow

Interpolation

�	
→�, �	
→
��
→�

��
→
�
→�

��→
 �����

��

������
�

������
�

FlowNet Warp RefineNet

Figure 3. Frame interpolation method based on Super-SloMo [17]. FlowNet and RefineNet are trainable while FlowInterpolation,
Warp, and BidirWarp are non-trainable operators. See section 3.1 for details.

ture space in NVC [20], and Chen et al. [9] replaced optical
flow and warping by displaced frame differences.

B-frame coding: Wu et al. [43] introduced one of
the pioneering neural video codecs via frame interpolation
that was facilitated by context information. Chang et al.
[11] improved the idea through adding a residual correction.
Habibian et al. [16] provided an implicit multi-frame cod-
ing solution based on 3D convolutions. Djelouah et al. [13]
employed bidirectional optical flow and warping feature do-
main residuals for B-frame coding. A recent work [29] pro-
vides a multi-reference video codec that could be applied to
both P-frame and B-frame coding.

3. Method
We develop a neural video codec B-EPIC that consists

of an I-frame codec, a P-frame codec, and a frame interpola-
tor. The I-frame codec (Fig. 4.a) encodes individual frames
xt independently to produce a reconstruction x̂t. The P-
frame codec applies a warp to a reference frame x̂ref to pro-
duce a prediction x̃t of xt, which is then corrected by a
residual to obtain the reconstruction x̂t (see Fig. 4.b). The
frame interpolator takes two reference frames x̂ref0 and x̂ref1
and produces an interpolation x̂ref (see Fig. 3).

Our novel B-frame codec (Fig. 1) works by using the
frame interpolator on references x̂ref0 and x̂ref1 to produce
a single reference x̂ref, which is then used by the P-frame
codec to encode xt. The resulting system thus supports I-
frames, P-frames and B-frames in a flexible manner.

Although our general method can be implemented
using any frame interpolator and P-frame codec, in
this work we develop a specific codec that uses the
Super-SloMo [17] frame interpolator and the Scale-Space
Flow (SSF) codec [2]. The SSF P-codec is used within our
video codec in a stand-alone fashion as well as in a B-frame
codec when bundled with Super-SloMo, while the two in-
stances share weights. In the following subsections we dis-
cuss Super-SloMo and SSF, as well as the GoP structure
and loss function in more detail.

3.1. Frame interpolation

In the frame interpolation block, the goal is to interpolate
two references whose time indices are normalized to 0 and
1, i.e. x̂ref0 and x̂ref1 , to time t where 0 < t < 1. Since in

B-frame coding, xt could be anywhere between x̂ref0 and
x̂ref1 , an important factor in choosing Super-SloMo over
other competitors is that Super-SloMo supports an arbitrary
t : 0 < t < 1 while many other methods assume t = 0.5.
The latter can be still used within our model, though they
will impose restrictions on the GoP size. See section 3.3 for
more details.

The block diagram of Super-SloMo is depicted in
Fig. 3. Super-SloMo consists of two trainable compo-
nents i.e. FlowNet and RefineNet as well as non-trainable
FlowInterpolation, Warp, and BidirWarp blocks. Optical
flow between x̂ref0 and x̂ref1 in the forward and backward di-
rections, i.e. f0→1 and f1→0 where f0→1 denotes the optical
flow from x̂ref0 to x̂ref1 , are initially calculated in FlowNet
and then interpolated at time t in FlowInterpolation using
linear interpolation:

f̃t→0 = −
(
1− t

)
t f0→1 + t2 f1→0

f̃t→1 =
(
1− t

)2
f0→1 − t

(
1− t

)
f1→0

(1)

x̂ref0 and x̂ref1 are then warped using the interpolated
optical-flows f̃t→0 and f̃t→1. The two warped references
together with the original references and the interpolated
optical flows are given to RefineNet for further adjustment
of the bidirectional optical flows i.e. f̂t→0, f̂t→1, and gener-
ating a mask m̂. The interpolation result is finally generated
using bidirectional warping:

x̂ref =Warp
(
x̂ref0 , f̂t→0

)
⊙ m̂+

Warp
(
x̂ref1 , f̂t→1

)
⊙

(
1− m̂

) (2)

where ⊙ denotes element-wise multiplication.
In this work, FlowNet and RefineNet are implemented

using a PWC-Net [35] and a U-Net [32], respectively.
See Appendix A for a more detailed illustration of the
RefineNet architecture.

3.2. I-/P-frame codecs

Our I-frame and P-frame codecs are depicted in Fig. 4.
While the I-frame codec consists of a single autoencoder
Image-AE that compresses xt to a reconstruction x̂t, the
P-frame codec first generates a prediction x̃t of xt through
motion estimation via Flow-AE and motion compensa-
tion via Warp and then corrects x̃t using residuals via
Residual-AE to reconstruct x̂t

6682

�����

���
Warp

��

���

F
lo

w
 A

E

R
es

id
u

al
 A

E

P
-F

ra
m

e
C

o
d

ec

�	�

-

+

��

�

Im
ag

e
A

E

��

���

I-
F

ra
m

e
C

o
d

ec

(a) (b)

Figure 4. Block diagrams of (a) I-frame and (b) P-frame codecs,
both based on SSF [2]. See section 3.2 for more details.

f̂t = Flow-AE
(
xt, x̂ref

)
, x̃t = Warp

(
x̂ref, f̂t

)
rt = xt − x̃t, r̂t = Residual-AE

(
rt
)

(3)
x̂t = x̃t + r̂t

where f̂t, rt, and r̂t denote optical flow, encoder residual,
and decoder residual, respectively.

In SSF, f̂t consists of spatial and scale displacement
maps and Warp is a trilinear interpolation operator on a blur
stack of x̂ref. While SSF uses Gaussian filters to generate
a blur stack and uses scale to non-linearly point to the blur
stack, we generate the blur stack using a Gaussian pyramid
followed by bilinearly upsampling all pyramid scales to the
original resolution and use scale to linearly point to the blur
stack.

All the above autoencoders i.e. Image-AE, Flow-AE,
and Residual-AE, have the same architecture (with-
out weight sharing) based on the mean-scale hyperprior
model [5] that consists of a main autoencoder (an encoder
and a decoder) and a hyperprior (a hyper-encoder, a mean
hyper-decoder and a scale hyper-decoder) where all the
components are parameterized via convolutional neural net-
works. The quantized latent variables z are broken down
into a latent and a hyper-latent where the latent has a Gaus-
sian prior whose probabilities are conditioned on the hyper-

GoP 1 GoP 2 …

Type I … B … I … B … I …

Ref …

GoP 1 GoP 2 …

Type I … B … P … B … P …

Ref …

(a)

(b)

Figure 5. Frame type selection2, the first reference of a video is
always coded as I-frame. (a) In the IBI configuration, the subse-
quent references are coded as I-frame as well while (b) in the IBP
configuration, they are coded as P-frame. The arrows show the
references used in inter-coding.

GoP

Type Ref B B B … … … … Ref

Order 1 2 3 4 1

Ref

GoP

Type Ref B B B B B B B Ref

Order 1 4 3 4 2 4 3 4 1

Ref

(a)

(b)

Figure 6. B-frames order, (a) sequential, (b) hierarchical.

latent and the hyper-latent has a data-independent factorized
prior. See Appendix A for more details about the architec-
ture.

3.3. GoP structure

3.3.1 Frame type selection

I-frame is the least efficient frame type in terms of coding
efficiency, next is P-frame, and finally B-frame delivers the
best performance. Since B-EPIC supports all three frame
types, it is important to use the right frame type to improve
the overall coding efficiency.

In neural video coding, reference frames are often in-
serted at GoP boundaries. A common practice is to code
reference frames as intra and use them as references to code
the other frames as inter. In this work, we call this configu-
ration IBI where GoP boundaries are coded as I-frames and
the middle frames are coded as B-frames. See Fig. 5.a for
an illustration. On the other hand, given that I-frames are
the least efficient among the three frame types, we can code
some references as P-frames to improve the performance.
Here, we call this configuration IBP as shown in Fig. 5.b
where the first reference is coded as an I-frame and the sub-
sequent references are coded as P-frames [33] .

3.3.2 B-frames order

Once a B-frame is coded, it can be used as a reference for
the next B-frames. It is thus very important to code the B-
frames in a GoP in the optimal order to i) maximally exploit
the information available through the available references
and ii) derive good references for the next B-frames.

Here, we present two ways to traverse the B-frames in a
GoP, sequential and hierarchical [33] as shown in Fig. 6.
We assume that for each given GoP, the boundary frames
are references that are already available (decoded) and the
middle frames are B-frames.

In the sequential order, we start from one end of GoP
and code one B-frame at a time until we reach the other end

2What we show as GoP in this figure is related to a structure of pictures
(SoP), but we use GoP liberally because it is more intuitive [42]

6683

while in the hierarchical order, we always code the mid-
dle frame of two references as the next B-frame. The plain
hierarchical order only supports GoP sizes that are a power
of 2 plus 1 e.g. 9, 17, 33. However, we devised an algorithm
based on bisection to traverse a GoP with an arbitrary size
in the hierarchical order as shown in Algorithm 1.

3.4. Loss function

We assume that the training is done on GoPs of N frames
whose boundaries are references. The loss function for the
IBP configuration is defined as a rate-distortion tradeoff as
follows:

N−1∑
t=0

D
(
xt, x̂t

)
+ β

[
H
(
zi0) +

N−1∑
t=1

(
H
(
zft
)
+H

(
zrt
))]

(4)

where H(·) represents the entropy estimate of a latent in
terms of bits-per-pixel which corresponds to the expected
size in the bitstream, zi0 denotes the latent of the I-frame
codec’s Image-AE, zft and zrt represent the latents of the P-
frame codec’s Flow-AE and Residual-AE, D(·, ·) denotes
distortion in terms of MSE or MS-SSIM [40], and β is a
hyperparameter that controls the balance between rate and
distortion. The loss function for IBI is similar.

4. Experiments & Results
4.1. Training setup

Dataset: We used Vimeo-90k as training dataset [46]. It
consists of 89, 800 7-frame sequences in RGB format.

Trained models: We trained models at various
rate-distortion tradeoffs (β values), using both MSE

Algorithm 1: Traversing an arbitrary size GoP in
hierarchical order.

Assumption: Given a GoP of size N , suppose x̂0 and
x̂N−1 are available as references. ;

Initialize an empty stack ;
push (imin, imax) = (0, N − 1) to stack ;
while stack is not empty do

pop stack to retrieve (imin, imax) ;
Define new index i = floor((imin + imax)/2) ;
Encode xi as a B-frame to generate x̂i. Use x̂imin and
x̂imax as references ;

if i− imin > 1 then
push (imin, i) to stack

end
if imax − i > 1 then

push (i, imax) to stack
end

end

and MS-SSIM as distortion losses. The MSE mod-
els B-EPIC(MSE) were trained on β = 2γ ×
10−4 : γ ∈

{
0, 1, ..., 7

}
and the MS-SSIM models

B-EPIC(MS-SSIM) were trained on β = 2γ × 10−2 :
γ ∈

{
0, 1, ..., 7

}
, where both MSE and MS-SSIM were

measured in the RGB color space.
Training plan: we followed the exact schedule provided

in SSF [2] to train the MSE and MS-SSIM models to facil-
itate comparison. Specifically, we initially trained all mod-
els for 1,000,000 gradient updates on MSE, then trained
the MS-SSIM models for extra 200,000 gradient updates on
MS-SSIM, and finally fine-tuned all the models for 50,000
gradient updates.

In both training and fine-tuning steps, we employed the
Adam optimizer [18], used batch size of 8, and trained the
network on 4-frame sequences, so the training GoP struc-
ture was IBBI and IBBP for the IBI and IBP models,
respectively. The training step took about 10 days on an
Nvidia V100 GPU. We tried other training GoP lengths as
well. Longer GoP lengths, despite dramatically slowing
down the training, did not improve the performance sig-
nificantly. In the training step, we set the learning-rate to
10−4 and used randomly extracted 256 × 256 patches. In
the fine-tuning step, we reduced the learning-rate to 10−5

and increased the patch size to 256× 384.
We started all the components in our network from ran-

dom weights except FlowNet in the interpolation block
where a pretrained PWC-Net with frozen weights was em-
ployed. The gradient from B-frame codecs was stopped
from propagating to the I-frame and P-frame codecs for
more stable training [2].

4.2. Evaluation setup

We evaluated B-EPIC on the UVG [38], MCL-
JCV [39], and HEVC [7] datasets, all of which are widely
used in the neural video codec literature. All these datasets
are available in YUV420. We used FFMPEG [14] to con-
vert the videos to RGB that is acceptable by B-EPIC (and
almost all other neural codecs). See Appendix B for the
FFMPEG commands details.

As shown in section 4.5, the hierarchical B-frame order
together with the IBP GoP structure generate our best re-
sults. The results we report in the rest of this section are
based on these settings as well as an evaluation GoP size of
12 for consistency with other works [24, 43].

We report video quality in terms of PSNR and
MS-SSIM where both are first calculated per-frame in the
RGB color space, then averaged over all the frames of each
video, and finally averaged over all the videos of a dataset.
Due to the network architecture, our codec accepts inputs
whose spatial dimensions are a multiple of 64. Whenever
there is a size incompatibility, we pad the frame to the near-
est multiple of 64 before feeding to the encoder, and crop

6684

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

32

33

34

35

36

37

38

39

40

41
PS

NR
 (d

B)
UVG - PSNR

B-EPIC(MSE)
SSF(MSE) retrained
SSF(MSE) [2]
M-LVC [19]
DVC_Pro(MSE) [24]
H.265
H.264

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
S-

SS
IM

UVG - MS-SSIM

B-EPIC(MS-SSIM)
SSF(MS-SSIM) retrained
SSF(MS-SSIM) [2]
M-LVC [19]
DVC(MS-SSIM) [24]
Habibian et al [16]
Golinski et al [15]
Wu et al [43]
H.265
H.264

Figure 7. Rate-distortion comparison on the UVG dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

32

33

34

35

36

37

38

39

40

41

PS
NR

 (d
B)

MCL-JCV - PSNR

B-EPIC(MSE)
SSF(MSE) retrained
SSF(MSE) [2]
H.265
H.264

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
S-

SS
IM

MCL-JCV - MS-SSIM

B-EPIC(MS-SSIM)
SSF(MS-SSIM) retrained
SSF(MS-SSIM) [2]
H.265
H.264

Figure 8. Rate-distortion comparison on the MCL-JCV dataset.

the decoded frame to compensate for padding. This issue,
which may be fixable, could lead to a coding inefficiency
depending on the number of pixels that have to be padded.

4.3. Compared methods

We compared our results with several neural video
codecs including SSF [2], DVC [24], M-LVC [19], Golin-
ski et al. [15], Wu et al. [43], and Habibian et al. [16].
We reimplemented and trained SSF, and here provide both
the original results reported in the paper as well as the re-
produced results. The results in the original paper where
obtained with GoP size of infinity i.e. only the first frame of
a sequence is an I-frame and the rest are all P-frames while
we report the performance on GoP of 12.

The standard codecs that we compare with are
H. 264 [41] and H. 265 [34]. We generated the results for
both using FFMPEG where GoP size of 12 was used with
all the other default settings. This is unlike the other pa-
pers that limit the FFMPEG performance by not allowing
B-frames, or changing the preset to fast or superfast.
See Appendix B for the FFMPEG commands details.

4.4. Results & Discussion

Rate-distortion: the rate-distortion comparisons on the
UVG, MCL-JCV, and HEVC datasets are shown in Figs. 7,
8, 9, respectively.

When evaluated in terms of MS-SSIM,
B-EPIC(MS-SSIM) outperforms all the compared
methods on all the datasets across all bit-rates.

When evaluated in terms of PSNR, as can be observed
from Figs. 7 and 8, B-EPIC(MSE) significantly outper-
forms all the competing neural codecs as well as H. 264
across all bit-rates on both UVG and MCL-JCV datasets.
Compared to H. 265, B-EPIC(MSE) maintains a large
margin in the average and high bit-rates and is roughly on-
par in extremely low bit-rate cases. On the HEVC dataset,
the results are similarly favorable on HEVC class-B and
class-E. On class-C, the standard codecs outperform all
neural methods, and on class-D B-EPIC(MSE) performs
poorly. This is most likely due to the fact that the class-
D videos have to be padded from 240 × 416 to the nearest
multiple of 64, i.e. 256 × 448, before it can be fed to our
encoder. This means our method in its current form has to
encode 15% more pixels, all of which are discarded on the
decoder side. It is worth noting that HEVC class-D is al-
ready removed in the common test conditions of the most
recent standard video codec H. 266 [8] due to very small
resolution.

B-EPIC can be thought of as a B-frame equivalent of
SSF and as can be observed from the rate-distortion com-
parisons, outperforms SSF significantly across all bit-rates
on all the datasets. This proves the effectiveness of our B-

6685

0.0 0.1 0.2 0.3 0.4 0.5 0.6
31

32

33

34

35

36

37

PS
NR

 (d
B)

HEVC-B

B-EPIC(MSE)
SSF(MSE) retrained
M-LVC [19]
DVC_Pro(MSE) [24]
H.264
H.265

0.0 0.1 0.2 0.3 0.4 0.5 0.6

26

28

30

32

34

36

HEVC-C

B-EPIC(MSE)
SSF(MSE) retrained
DVC_Pro(MSE) [24]
H.264
H.265

0.0 0.1 0.2 0.3 0.4 0.5 0.6
24

26

28

30

32

34

36
HEVC-D

B-EPIC(MSE)
SSF(MSE) retrained
M-LVC [19]
DVC_Pro(MSE) [24]
H.264
H.265

0.00 0.05 0.10 0.15 0.20 0.25 0.30

32

34

36

38

40

42

HEVC-E

B-EPIC(MSE)
SSF(MSE) retrained
DVC_Pro(MSE) [24]
H.264
H.265

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
S-

SS
IM

B-EPIC(MS-SSIM)
SSF(MS-SSIM) retrained
M-LVC [19]
DVC(MS-SSIM) [24]
H.264
H.265

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

B-EPIC(MS-SSIM)
SSF(MS-SSIM) retrained
DVC(MS-SSIM) [24]
H.264
H.265

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rate (bits per pixel)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

B-EPIC(MS-SSIM)
SSF(MS-SSIM) retrained
M-LVC [19]
DVC(MS-SSIM) [24]
H.264
H.265

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Rate (bits per pixel)

0.970

0.975

0.980

0.985

0.990

0.995

B-EPIC(MS-SSIM)
SSF(MS-SSIM) retrained
DVC(MS-SSIM) [24]
H.264
H.265

Figure 9. Rate-distortion comparison on the HEVC dataset.

29 01 16 21 17 30 28 08 07 14 02 26 22 23 11 05 04 09 27 12 13 10 19 06 03 15 18 24 25 20
0

50

100

150

Fi
le

 si
ze

 ra
tio

 (%
) x265

SSF(MSE) [2]
B-EPIC(MSE)

29 28 30 16 01 06 08 21 07 17 13 05 14 26 23 11 03 04 02 18 22 09 24 15 27 12 19 10 25 20
Video index

0

50

100

150

Fi
le

 si
ze

 ra
tio

 (%
) x265

SSF(MS-SSIM) [2]
B-EPIC(MS-SSIM)

Figure 10. File sizes generated by H. 265, SSF, and B-EPIC relative to H. 264 on the MCL-JCV dataset, measured by PSNR (top) and
MS-SSIM (bottom) BD-rate gain. A value of 100% translates to equal sizes and no bit-rate savings. Smaller values are preferable.

frame approach when applied to an existing P-frame codec.
Bjøntegaard delta rate (BD-rate): in this section, we

report BD-rate [6] gains versus H. 264. Table 1 lists the av-
erage BD-rate gains versus H. 264 on the UVG, MCL-JCV,
and HEVC datasets in terms of both PSNR and MS-SSIM.
Here, the numbers show how much a method can save
on bit-rate compared to H. 264 while generating the same
video quality. B-EPIC yields the highest MS-SSIM BD-
rate gains and performs relatively well in terms of PSNR
BD-rate gains.

Furthermore, in Fig 10 we show the file sizes of the in-
dividual MCL-JCV videos encoded using B-EPIC, SSF,
and H. 265 compared to H. 264, estimated by BD-rate. As
observed here, B-EPIC delivers better results compared to
SSF across the board. Compared to H. 265, it performs sig-
nificantly better on the majority of the videos, specially in
terms of MS-SSIM. The under-performance on the last se-

PSNR BD-rate gain (%) MS-SSIM BD-rate gain (%)
Dataset H. 265 SSF B-EPIC H. 265 SSF B-EPIC

(MSE) (MSE) (MS-SSIM) (MS-SSIM)
UVG -28.66 -25.71 -47.89 -24.03 -41.05 -50.79

MCL-JCV -20.86 -15.90 -31.91 -18.22 -43.25 -52.12
HEVC-B -25.0 -16.28 -35.68 -19.70 -48.23 -55.19
HEVC-C -19.51 47.69 11.22 -15.80 -27.32 -41.53
HEVC-D -16.25 82.89 29.05 -11.86 -20.79 -43.98
HEVC-E -32.53 -24.35 -53.87 -30.45 -47.81 -61.32

HEVC-Avg -23.32 22.49 -12.32 -19.46 -36.04 -50.50
Table 1. Average BD-rate gain versus H. 264 on different datasets.

quences of the figure is potentially because they are ani-
mated movies, while our training dataset Vimeo-90k is only
comprised of natural videos, as pointed out in [2] as well.

Qualitative results: Fig. 11 shows a sample qualita-
tive result where an input sequence together with the de-
coded frames, optical flow maps, and residuals for SSF
and B-EPIC are visualized. B-EPIC relies on much

6686

���

���

���

B
-E

P
I
C

����, PSNR: 37.28 dB, 39.67 Kb ���� , 30.25 Kb ����
	

, ����
��
��

, 9.42 Kb

����, PSNR: 37.49 dB, 128.46 Kb

S
S

F

���� , 103.08 Kb ����
	

, ����
��
��

, 25.38 Kb

Figure 11. Qualitative results on frame 44 of Tango video from Netflix Tango in Netflix El Fuente4 [44]. x43, x44, and x45 are an input
sequence. In SSF, x44 is coded as a P-frame with x̂43 used as reference. In B-EPIC, x44 is coded as a B-frame with both x̂43 and x̂45

used as references. The interpolation block delivers an accurate baseline frame used in the P-frame codec as reference. As a result, both
flow and residual are less detailed and consume fewer bits compared to SSF.

1 3 5 7 9 11
GoP Frame Index

0.05

0.10

0.15

0.20

Ra
te

 (b
its

 p
er

 p
ix

el
)

1 3 5 7 9 11
GoP Frame Index

36.4

36.6

36.8

37.0

PS
NR

 (d
B)

I-frame
P-frame
B-frame - Hierarchical
B-frame - Sequential

Figure 12. Average per-frame results across a GoP of 12 for the
sequential and hierarchical B-frames orders on the UVG dataset.
The first frame of each sequence is coded I, the last frame of each
GoP is coded P, and the rest are coded B.

less detailed optical flow and residuals due to the frame-
interpolation outcome being used as reference, and as a re-
sult, generates a lot less bits compared to SSF at a similar
PSNR.

Per-frame performance: Fig. 12 shows how B-EPIC
performs on average across a GoP of 12 frames when us-
ing the sequential and hierarchical B-frames orders on the
UVG dataset. As expected, as the gap between the two
references closes (by newly coded B-frames used as refer-
ence), PSNR improves and Rate drops.

4.5. Ablation studies

We studied the effectiveness of different components of
our codec including: GoP structure (IBI vs IBP), B-frames
order (sequential vs hierarchical), pretraining PWC-Net,
and removing Flow-AE for the P-frame codec and rely-
ing only on Residual-AE. The last configuration where
Flow-AE is removed, is similar to the B-frame codecs
that use interpolation followed by residual correction [11].
These ablation studies are shown in Fig. 13.a. Moreover,
we studied the effect of the training GoP on the perfor-

0.05 0.10 0.15
Rate (bits per pixel)

(a)

34

35

36

37

38
PS

NR
 (d

B)

Full model - IBP - Hier.
Full model - IBI - Hier.
Full model - IBP - Seq.
w/o Flow-AE - IBI - Hier.
non-pretrained
 PWC-Net - IBP - Hier.

0.05 0.10 0.15
Rate (bits per pixel)

(b)

34

35

36

37

38

4 skipped frames
7 consecutive frame
4 consecutive frames

Figure 13. Ablations studies on the UVG dataset, (a) effec-
tiveness of each component, (b) effect of the training sequence
length/shape on the performance.

mance by finetuning our model on different sequences in-
cluding: 4 consecutive frames, 7 consecutive frames, and 4
frames where consecutive frames are two frames apart. All
the studied configurations delivered similar rate-distortion
results on the UVG datasets. So, we proceeded with 4 con-
secutive frames as it is the most memory efficient and fastest
to train.

5. Conclusion
In this paper, we proposed a method to add B-frame cod-

ing capability to an existing neural P-frame codec by adding
an interpolation block. It significantly improves the per-
formance of the P-frame codec and delivers state-of-the-art
neural video coding results on multiple datasets. Since the
prototype we developed in this work is based on 2-reference
B-frames and 1-reference P-frame codecs, as a future direc-
tion, this idea can be extended to the cases where more that
2 references are available to B-frames and/or with multi-
frame P-frame codecs

4Video produced by Netflix, with CC BY-NC-ND 4.0 license:
https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt

6687

References
[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V
Gool. Soft-to-hard vector quantization for end-to-end learn-
ing compressible representations. In Advances in Neural
Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017.

[2] Eirikur Agustsson, David Minnen, Nick Johnston, Johannes
Balle, Sung Jin Hwang, and George Toderici. Scale-space
flow for end-to-end optimized video compression. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[3] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.
Density modeling of images using a generalized normaliza-
tion transformation. Jan. 2016. 4th International Conference
on Learning Representations, ICLR 2016.

[4] J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end opti-
mization of nonlinear transform codes for perceptual quality.
In 2016 Picture Coding Symposium (PCS), pages 1–5, 2016.

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compres-
sion with a scale hyperprior. In International Conference
on Learning Representations, 2018.

[6] Gisle Bjøntegaard. Calculation of average PSNR differences
between RD-curves. Doc. VCEG-M33. ITU-T SG16/Q6
VCEG, Austin, TX, USA, July 2001.

[7] Frank Bossen. Common test conditions and software refer-
ence configurations. JCTVC-F900, 2011.

[8] B. Bross, J. Chen, S. Liu, and Y.-K. Wang. Versatile video
coding (draft 10). Output document JVET-S2001, July 2020.

[9] Meixu Chen, Todd Goodall, Anjul Patney, and Alan C.
Bovik. Learning to compress videos without computing mo-
tion, 2020.

[10] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang. End-
to-end learnt image compression via non-local attention op-
timization and improved context modeling. IEEE Transac-
tions on Image Processing, 30:3179–3191, 2021.

[11] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learning image and video compression through
spatial-temporal energy compaction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[12] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable
rate deep image compression with a conditional autoencoder.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019.

[13] Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-
Meyer, and Christopher Schroers. Neural inter-frame com-
pression for video coding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Octo-
ber 2019.

[14] ffmpeg Developers. ffmpeg. http://ffmpeg.org/.
Accessed: 2020-02-21.

[15] Adam Golinski, Reza Pourreza, Yang Yang, Guillaume
Sautiere, and Taco S. Cohen. Feedback recurrent autoen-
coder for video compression. In Proceedings of the Asian
Conference on Computer Vision (ACCV), November 2020.

[16] Amirhossein Habibian, Ties van Rozendaal, Jakub M. Tom-
czak, and Taco S. Cohen. Video compression with rate-
distortion autoencoders. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Octo-
ber 2019.

[17] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super slomo:
High quality estimation of multiple intermediate frames for
video interpolation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2018.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2015. International Conference for
Learning Representations, San Diego, 2015.

[19] Jianping Lin, Dong Liu, Houqiang Li, and Feng Wu. M-
LVC: Multiple frames prediction for learned video compres-
sion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

[20] H. Liu, M. Lu, Z. Ma, F. Wang, Z. Xie, X. Cao, and Y. Wang.
Neural video coding using multiscale motion compensation
and spatiotemporal context model. IEEE Transactions on
Circuits and Systems for Video Technology, pages 1–1, 2020.

[21] Haojie Liu, Han Shen, Lichao Huang, Ming Lu, Tong Chen,
and Zhan Ma. Learned video compression via joint spatial-
temporal correlation exploration. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(07):11580–11587,
Apr. 2020.

[22] Salvator Lombardo, Jun Han, Christopher Schroers, and
Stephan Mandt. Deep generative video compression. In
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

[23] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chun-
lei Cai, and Zhiyong Gao. DVC: An end-to-end deep video
compression framework. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[24] G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao, and D. Xu.
An end-to-end learning framework for video compression.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

[25] Yadong Lu, Yinhao Zhu, Yang Yang, Amir Said, and Taco S
Cohen. Progressive neural image compression with nested
quantization and latent ordering, 2021.

[26] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,
Radu Timofte, and Luc Van Gool. Conditional probability
models for deep image compression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018.

[27] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

[28] David Minnen and Saurabh Singh. Channel-wise autoregres-
sive entropy models for learned image compression. In IEEE
International Conference on Image Processing (ICIP), 2020.

6688

[29] W. Park and M. Kim. Deep predictive video compression us-
ing mode-selective uni- and bi-directional predictions based
on multi-frame hypothesis. IEEE Access, 9:72–85, 2021.

[30] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-
age compression. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages 2922–
2930, 06–11 Aug 2017.

[31] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G. Anderson, and Lubomir Bourdev. Learned
video compression. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), October
2019.

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, pages 234–241, Cham, 2015.
Springer International Publishing.

[33] H. Schwarz, D. Marpe, and T. Wiegand. Analysis of hierar-
chical b pictures and mctf. In 2006 IEEE International Con-
ference on Multimedia and Expo, pages 1929–1932, 2006.

[34] G J Sullivan, J R Ohm, W J Han, and T Wiegand. Overview
of the High Efficiency Video Coding (HEVC) Standard.
IEEE Trans. Circuits Syst. Video Technol., 22(12):1649–
1668, Dec. 2012.

[35] D. Sun, X. Yang, M. Liu, and J. Kautz. PWC-Net: Cnns
for optical flow using pyramid, warping, and cost volume.
In 2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8934–8943, 2018.

[36] George Toderici, Sean M. O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja, Michele
Covell, and Rahul Sukthankar. Variable rate image compres-
sion with recurrent neural networks. CoRR, abs/1511.06085,
2015.

[37] George Toderici, Damien Vincent, Nick Johnston, Sung
Jin Hwang, David Minnen, Joel Shor, and Michele Covell.
Full resolution image compression with recurrent neural net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[38] Ultra Video Group. UVG test sequences. http://
ultravideo.cs.tut.fi/. Accessed: 2020-02-21.

[39] H. Wang, W. Gan, S. Hu, J. Y. Lin, L. Jin, L. Song, P. Wang,
I. Katsavounidis, A. Aaron, and C. . J. Kuo. Mcl-jcv: A jnd-
based h.264/avc video quality assessment dataset. In 2016
IEEE International Conference on Image Processing (ICIP),
pages 1509–1513, 2016.

[40] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-
celli, et al. Image quality assessment: from error visibility
to structural similarity. IEEE Trans. on Image Processing,
13(4):600–612, 2004.

[41] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra.
Overview of the H.264/AVC video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology,
13(7):560–576, July 2003.

[42] Mathias Wien. High Efficiency Video Coding: Coding Tools
and Specification. Springer Publishing Company, Incorpo-
rated, 2014.

[43] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), September 2018.

[44] Xiph.org. Xiph.org video test media [derf’s collec-
tion]. https://media.xiph.org/video/derf/.
Accessed: 2020-02-21.

[45] Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic video interpolation. In Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[46] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV),
127(8):1106–1125, 2019.

[47] Ruihan Yang, Yibo Yang, Joseph Marino, and Stephan
Mandt. Hierarchical autoregressive modeling for neural
video compression. In International Conference on Learning
Representations, 2021.

6689

