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Abstract

Synthetic data is emerging as a promising solution
to the scalability issue of supervised deep learning, espe-
cially when real data are difficult to acquire or hard to
annotate. Synthetic data generation, however, can itself
be prohibitively expensive when domain experts have to
manually and painstakingly oversee the process. More-
over, neural networks trained on synthetic data often
do not perform well on real data because of the domain
gap. To solve these challenges, we propose Sim2SG,
a self-supervised automatic scene generation technique
for matching the distribution of real data. Importantly,
Sim2SG does not require supervision from the real-world
dataset, thus making it applicable in situations for which
such annotations are difficult to obtain. Sim2SG is de-
signed to bridge both the content and appearance gaps,
by matching the content of real data, and by matching
the features in the source and target domains. We select
scene graph (SG) generation as the downstream task,
due to the limited availability of labeled datasets. Ex-
periments demonstrate significant improvements over
leading baselines in reducing the domain gap both quali-
tatively and quantitatively, on several synthetic datasets
as well as the real-world KITTI dataset.

1. Introduction

Synthetic data, for which annotations can be auto-
matically generated, is a promising solution to overcome
the well-known supervised learning bottleneck of label-
ing real data. For this approach to succeed, such syn-
thetic data must look like real data, in both appearance
and content. Differences in appearance and content
together comprise the so-called “domain gap” between
synthetic and real data [55, 27]. Appearance refers to
aspects like color, texture, shape, and lighting, whereas
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Figure 1. We present Sim2SG, a self-supervised real-to-sim
scene generation technique that matches the distribution
of real data, for the purpose of training a network to infer
scene graphs. Sim2SG does not require costly supervision
from the real-world dataset. (Only one tree is shown in the
graph to avoid clutter.)

content refers to the number, position, and orientation
of objects in the scene, as well as their relationships to
one another.

At one extreme, synthetic scenes can be created
manually by domain experts to reduce these gaps, but
such solutions are expensive and therefore do not scale
well [61, 47, 45, 18]. At the opposite extreme, domain
randomization intentionally leverages these gaps to facil-
itate sim-to-real transfer [54, 41, 56]; these approaches,
however, fail to capture the complexity and distribu-
tion of real scenes, thus fundamentally limiting their
performance.

Recent approaches such as Meta-Sim [27], Meta-
Sim2 [14], and SceneGen [52] attempt to reduce the
content gap by automatically learning to generate syn-
thetic data that matches the distribution of real data.
However, Meta-Sim can only learn the position and
orientation of objects, and therefore cannot align the

16044



structure of the synthetic scenes (e.g., number and types
of objects in a scene) to real data. Similarly, Meta-Sim2
only learns the distribution of one type of object (cars),
and thus cannot match the surrounding context. Both
Meta-Sim and Meta-Sim2 rely on a complex, realistic
simulator designed on a set of hand-crafted heuristic
rules to ensure that data are generated properly. Scene-
Gen addresses these limitations but requires access to
a large amount of labeled real data, which undermines
the underlying purpose of synthetic data. None of these
approaches addresses the appearance gap.

In this paper, we address both the content and ap-
pearance gaps, and we do so in a self-supervised manner
that requires no real-world labels. Given an unlabeled
real dataset, our method aims to automatically generate
synthetic data that matches the distribution of the real
data. See Figure 1. We propose Sim2SG (Simulation to
Scene Graph), a synthesis-by-analysis framework, that
generates scenes via self-learning [72] loop comprising of
two alternating stages: synthesis and analysis. During
the synthesis stage we leverage a synthetic data genera-
tor to create scenes. By ensuring that the number of
objects, as well as their type and placement, are similar,
the synthesized data resembles the real data, and there-
fore the content gap is reduced. During the analysis
stage, we use the generated synthetic data for training.
To further reduce both the content and appearance
gaps, the corresponding latent and output distributions
are aligned via Gradient Reversal Layers [19].

We show the effectiveness of our method in the scene
graph generation task [11, 65, 66]. A scene graph (SG)
summarizes entities in the scene and plausible relation-
ships among them. The difficulty of hand-labeling scene
graphs has limited the community to a small number
of datasets [36, 29]. We experimentally demonstrate
our method in three distinct environments: synthetic
CLEVR [25], synthetic Dining-Sim, and real KITTI [20].
We nearly close the domain gap in the CLEVR environ-
ment and show significant improvements over respective
baselines in Dining-Sim and KITTI. Through ablations,
we validate our contributions regarding appearance and
content gaps.

Contributions: Our contributions are three-fold:
(1) To the best of our knowledge, we are first to do self-
supervised aligned scene generation. (2) We propose a
novel synthesis-by-analysis framework that addresses
both the content and appearance gaps without using any
real labels. (3) Experimentally, we show that Sim2SG
obtains significant improvements on downstream tasks
over baselines in all three scenarios: CLEVR, Dining-
Sim, and KITTI. We also present ablations to illustrate
the effectiveness of our technique.

2. Related Work

Synthetic Data has been used for many tasks in-
cluding, but not limited to, object detection [27, 41, 56],
semantic segmentation [45, 47, 58], optical flow model-
ing [4, 16], scene flow [38], classification [1, 3], stereo
[43, 67], 3D keypoint extraction [50], object pose es-
timation [40, 57] and 3D reconstruction [39]. There
are also several simulators [15, 12, 28, 53, 10, 13, 63]
available for generating synthetic data. However, to
the best of our knowledge, synthetic data has not been
applied to scene graph generation.

Domain Gap is the performance gap when the
network is trained on a synthetic source domain and
evaluated on real target data. Most prior work addresses
the appearance gap by image translations [8, 17, 23, 24,
32, 71], clever feature alignment [7, 34, 37, 48, 64, 30]
and domain randomization [41, 54, 56]. There are few
works which handle the content gap [2, 35, 51, 68]
by addressing the label shift between the two domains.
However, they do not exploit the unlabeled images from
the target domain. We, on the other hand, leverage the
images from the target domain to reduce the domain gap
further. To this end, we exploit a scene graph generation
task which is more complex than classification and relies
on self-training [72]. The idea of self-training with
pseudo labels is used in [34, 51] to learn models from
the target distribution. However, the labels predicted
by the model on the target are often inaccurate because
of the domain gap [69]. We instead propose to rely on
a synthetic data generator to produce accurate labels.
Some approaches [6, 49] similar to ours also train their
task model on top of domain invariant features for image
classification and image segmentation. However, they
do not address the content gap.

Scene Generation has been used in several ma-
chine learning driven approaches. For instance, some
methods propose ways to learn how to synthesize in-
door scenes [59, 70, 42, 31]. LayoutVAE [26] generates
scenes conditioned on label sets. Deep priors and mod-
els [60, 46] synthesize scenes by sequentially placing
objects. A few techniques [70, 59] also represent scenes
as scene graphs with relationships among objects in
the same way as our approach. SceneGen [52] learns
to generate traffic scenes by modeling the attributes of
all objects. However, all these methods either do not
address the content gap with real data or use labeled
real data for supervision. Meta-Sim [27] learns the
distribution of position and rotation of objects in the
scene and also requires small labeled real data. Meta-
Sim2 [14] additionally learns the distribution of number
and type of objects in the scene without needing labeled
real data. However, it does not match the distribution
of context. Both Meta-Sim and Meta-Sim2 rely on a
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simulator designed on handcrafted rules. Unlike Meta-
Sim and Meta-Sim2, our method captures relationships
among objects and therefore generates more accurate
scenes.

3. Reducing the domain gap

Let 〈xr, yr〉 ∼ q(x, y) be the real data and labels
(where the labels yr are not known). Our goal is to
generate synthetic data 〈xs, ys〉 ∼ p(x, y) such that the
distributions p and q match (i.e., p ≈ q). We assume
that both real and synthetic domains share the same
categories of objects as well as scenario (e.g ., both are
driving scenes). The difference between p and q is the
domain gap.

We now study this domain gap between synthetic
and real domains. Let φ be a network that encodes
an input image x into a latent representation z ∈ Z,
and let h be a network that estimates some desired
quantity from z. (In our case, h infers a scene graph.)
We consider as in [62] that the task error in the real
domain, εr(φ, h), is a function of three terms:

εr(φ, h) =

∫
q(z)er dz

=

∫
p(z)esdz︸ ︷︷ ︸
εs(φ,h)

+

∫
q(z)(er − es)dz︸ ︷︷ ︸

εc(φ,h)

+

∫
(q(z)− p(z))esdz︸ ︷︷ ︸

εa(φ,h)

(1)

where er ≡ |h(φ(xr))−yr| is the real risk, and similarly
es ≡ |h(φ(xs)) − ys| is the synthetic risk; and where
the distributions of shared features for synthetic and
real domains are denoted by p(z) and q(z), respectively.
In this equation, εs(φ, h) is the training error on the
synthetic domain, εc(φ, h) is the risk gap between the
domains, and εa(φ, h) is the feature gap between the
two domains. In the following, we drop the terms φ, h
for notational simplicity.

If the error εr reduces to zero on the target domain,
we have closed the domain gap. To reduce this error,
we must reduce both εc and εa. We call the former the
content gap because it refers to the difference in the
distributions of the two domains regarding the number
of objects and their class, placement, pose and scale.
The difficulty of minimizing the content gap is that
computing it is intractable since we do not have access
to labels yr from the real domain, and hence er cannot
be computed. We call the gap εa the appearance gap
because it refers to differences in texture, color, lighting,
and reflectance of the scene. Recent work [21] also shows
that latent representations z frequently account for
appearance. In the following, we describe our approach
to reduce both the content and appearance gaps.

Algorithm 1 Pseudocode for Sim2SG training
1: Given: generator, Xr . Data generator, real images
2: while not converged do
3: . Synthesis
4: G← {h (φ(xr)) : xr ∈ Xr} . Scene graphs
5: Xs, Ys ← generator(G) . Generate aligned synthetic data
6: . Analysis
7: loss← 0
8: for (xs, ys;xr) ∈ (Xs, Ys;Xr) do
9: loss += La(φ(xs), φ(xr)) . Appearance gap
10: loss += Lc(h(φ(xs)), h(φ(xr))) . Prediction gap
11: loss += task(xs, ys) . SG prediction task loss
12: φ, h← optimize(φ, h, loss) . SGD step
13: end for
14: end while

4. Simulation to Scene Graph (Sim2SG)

Figure 2 illustrates our proposed Sim2SG pipeline,
which comprises two alternating steps. During synthesis
(real-to-sim), synthetic data is generated to match the
distribution of the unlabeled real data. During analysis
(sim-to-real), a scene graph (SG) prediction network [65]
is trained using the ground truth labels of the synthetic
data. This is analogous to Expectation-Maximization,
where synthesis is like the E-step, and analysis is like
the M-step. Results from different iterations of this
self-learning loop, which is initialized using synthetic
data generated by structured domain randomization
(SDR) [41], are shown in Figure 3.

We now describe the synthesis and analysis steps.
Algorithm 1 illustrates the pseudocode of both steps.

4.1. Synthesis Step

In this step, we aim to generate synthetic data that
matches the distribution of unlabeled real data, thereby
reducing the content gap. As mentioned previously,
minimizing εc in the current form is not tractable. Nev-
ertheless, a sufficient condition for εc to be zero is for
ys = yr and h(φ(xr)) = h(φ(xs)). This leads to split-
ting the content gap into two terms:

εc =

∫
q(z)(er − es)dz

'
∫
q(z)(ys − yr)dz︸ ︷︷ ︸

εc,label

+

∫
q(z)(h(φ(xr))− h(φ(xs))dz︸ ︷︷ ︸

εc,pred

(2)

where εc,label refers to the gap between the ground truth
labels of synthetic and real data, and where εc,pred refers
to the gap between the output of the network h trained
on synthetic and real data.

Since we do not have access to the labels yr of the
target (real) domain, we propose to estimate yr through
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Figure 2. Overview of Sim2SG, a self-supervised synthesis-by-analysis framework that generates synthetic data in a loop
comprising of two alternating stages: synthesis and analysis. During synthesis (real-to-sim), we infer scene graphs from real
data to generate synthetic data that matches the distribution of real data, thus bridging the content label gap, εc,label. During
analysis (sim-to-real), we train a scene graph prediction network (φ, h) using the synthetic data. Additionally, Gradient
Reversal Layers (GRLs) are used to align the latent features z and output features h(z) to bridge the appearance εa and
content prediction εc,pred gap, respectively.

Initialization First epoch Third epoch Target
Figure 3. As the self-learning loop progresses, synthetic data increasingly matches the content of the target image. From left
to right: synthetic data initialized by SDR [41], after first and third epochs, and corresponding real KITTI target images.

a self-supervised method that infers scene graphs from
the target data. Our scene graphs consist of nodes and
edges. Each node oi = 〈bi, ci〉 consists of a bounding box
bi = {ui, vi, wi, hi} (center, width, and height of the 2D
box) and category ci (such as car, pedestrian, building,
etc.). Each edge captures a relationship ri = 〈oi, p, oj〉
where p is a predicate (such as behind, left, on, etc.).
Using known camera parameters and a flat ground
plane assumption, the scene graph can be mapped to
a full 3D scene. Some parameters (e.g ., texture or
pose) and some context (ground, sky, lighting), that
are not part of the scene graph are randomized. One
advantage of generating synthetic data is that we can
augment the relationships of the inferred scene graph
by adding new relationships, simply by reasoning in the
3D representation. A synthetic data generator is then
used to render the 3D scenes. Note that the weights of
our networks (φ, h) remain unchanged during this step.

4.2. Analysis Step

In this step, we train the encoder φ and predictor h of
our scene graph (SG) generation model on the synthetic
data generated by the preceding step. The task loss
function is from Yang et al. [65], which includes cross
entropy loss for object classification and relationship
classification, and `1 loss for bounding boxes.

Although using synthetic data aligns the content
label gap εc,label, it does not align the appearance gap
εa nor content prediction gap εc,pred. To address the
appearance gap, we align the feature distributions p(z)
and q(z), since p(z) = q(z) is a sufficient condition
for εa to be zero [62]. To do this, during training z is
passed through a Gradient Reversal Layer (GRL) [19, 7],
followed by a domain classifier Da that learns to classify
the input as synthetic or real. The GRL acts as an
identity function during forward propagation, but flips
the sign of the gradients during back propagation. The
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classifierDa provides an additional loss term for training
φ. We minimize Da’s loss w.r.t. its own parameters
while maximizing w.r.t. the network parameters of φ.
The loss function for training is as follows:

La = −
∑
x

[
di logD

a(φ(x))+(1−di) log(1−Da(φ(x)))
]

(3)
where x ∈ xs, xr, di = 0 for synthetic images xs and
di = 1 for real images xr.

Similarly, we seek to minimize the content prediction
gap εc,pred by matching the distributions of the outputs
h(φ(xs)) and h(φ(xr)) using the same GRL-based tech-
nique. This is based on the observation that the output
of the scene graph generation model should be similar
for corresponding inputs from the synthetic and real
domains. During training, the output h(z) is passed
through a GRL, followed by a domain classifier Dc. The
classifier provides an additional loss term for training
both φ and h. The loss function is computed as:

Lc = −
∑
z

[
di logD

c(h(z))+(1−di) log(1−Dc(h(z)))
]

(4)
where z ∈ φ(xs), φ(xr). Fully matching the source
and target appearance distributions without regard to
content may cause detrimental results [48, 62]. We intro-
duce a warm-up period during which content is aligned
without regard to appearance or content prediction.

5. Experiments

We evaluate Sim2SG in three different environments
with increasing complexity: CLEVR [25], our own
Dining-Sim using ShapeNet [5], and KITTI [20]. In each
environment we have a fully labeled synthetic domain
and unlabeled target domain with labeled test data.
We use scene graph (SG) generation as the downstream
task and implement the encoder φ using ResNet-101 [22]
and the predictor h using Graph R-CNN [65].

Quantitative evaluation metrics include detection
mAP (mean average precision) @0.5 IoU (Intersection
over Union in 2D) and relationship triplet recall @20 or
@50 [29]. Note that relationship triplet recall implicitly
includes object detection recall. All the mean and stan-
dard deviations are based on five runs, and all results
are reported after saturation. Details of the environ-
ments, training parameters, and hyperparameters are
in the appendix.

For notational simplicity, we use σc,label to refer to
our synthesis step (whose purpose is to reduce the
content label gap εc,label), σa to refer to the first GRL
(whose purpose is to reduce the appearance gap εa), and
σc,pred to refer to the second GRL (whose purpose is to

Method mAP@0.5 IoU Recall@20

SDR [41] 0.723 ±0.053 0.356 ±0.047

Ours (σc,label) 0.832 ±0.046 0.493 ±0.064
Ours (σa) 0.821 ±0.048 0.815 ±0.026

Ours (σa, σc,label) 0.892 ±0.024 0.888 ±0.018

Table 1. Results of Sim2SG on the CLEVR target domain.
Aligning both appearance and content yields the best results.

reduce the content prediction gap εc,pred). Similarly, we
use σc to refer to the combination of σc,label and σc,pred,
whose collective purpose is to reduce the content gap.

5.1. Experiments on the CLEVR dataset

The goal of the experiments on the CLEVR envi-
ronment [25] is to show that Sim2SG can address the
domain gap in a simple controlled environment. There
are three classes of objects: cube, sphere and cylinder;
and four relationships: front, behind, left and right.
The source and target domains were generated using
disjoint object colors, object materials, margin between
objects, and number of objects, to ensure a significant
domain gap. Furthermore, the target images have more
complex texture via application of a style transfer net-
work. We use 1000 labeled images for source domain,
1000 unlabeled images for target domain for training,
and 200 labeled source and target images for evaluation.

Results: Quantitative evaluation of Sim2SG is re-
ported in Table 1. Compared with the baseline using
SDR [41], our techniques for label alignment σc,label and
appearance alignment σa drastically reduce the domain
gap. The best results are achieved by combining these
two ideas. With such a simple environment, however,
we found σc,pred to have negligible effect, and therefore
it is not reported. Qualitative results of scene graph
recall are shown in first row of Figure 4.

Ablations: We conduct two ablation experiments
on the CLEVR dataset to confirm that appearance
alignment σa and label alignment σc,label work as in-
tended. In the first experiment, the source and target
domains are created with the same color and texture
but different number and placement of objects. Thus,
there is a content gap, but no appearance gap. We
observe that label alignment σc,label closes the domain
gap from 0.76 to 0.996 for Recall@20, whereas σa leads
to performance degradation. In the second experiment,
the source and target domains have the same number
of objects and placement but use different color and
texture. Thus, there is an appearance gap, but no con-
tent gap. We observe that appearance alignment σa
reduces the domain gap, achieving 0.938 versus 0.339
for Recall@20 for the baseline, whereas label alignment
σc,label fails to have significant improvement on rela-
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Figure 4. Qualitative results of Sim2SG on the target domain for CLEVR (top row), Dining Sim (middle row) and KITTI
environments (bottom row). Objects are color coded. For better visibility, we only show partial scene graph for KITTI.

Method mAP@0.5 IoU Recall@50

SDR [41] 0.584 ±0.049 0.331 ±0.064

Ours (σc,label) 0.713 ±0.038 0.501 ±0.044
Ours (σc, σa) 0.729 ±0.015 0.547 ±0.015

Table 2. Results of Sim2SG on the Dining-Sim target domain.
In the last row, σc includes both σc,label and σc,pred.

tionship triplet recall. These experiments show that
our label alignment procedure σc,label reduces the con-
tent gap, while appearance alignment σa addresses the
appearance gap.

5.2. Experiments on Dining-Sim

We created a dataset that we call Dining-Sim by plac-
ing objects created from ShapeNet objects [5] in realistic
arrangements, with more complex textures and realistic
lighting. This dataset has three classes of objects: chair,
table and laptop; and there are five relationships: front,
behind, left, right, and on. Quantitative results, shown
in Table 2, agree with the findings of the previous sec-
tion. Since this data is more complex, the warm-up
period mentioned earlier is necessary, and therefore the
label alignment σc,label must be performed first. This
label alignment drastically improves performance on
the target domain, and the combination of label align-
ment σc,label, appearance alignment σa, and prediction
alignment σc,pred achieve the best results. For reference,
the oracle performance on the target domain is 0.904
mAP@0.5 IoU and 0.846 Recall@50. Qualitative results
are illustrated in the second row of Figure 4.

5.3. Real-world experiments on KITTI

In this section, we validate our approach on the
real-world KITTI dataset [20]. For the synthetic do-
main, we implemented from scratch a simplified version
of SDR [41], with a fixed camera, a subset of object
classes, no post processing, and without curved road
splines, all for faster data generation. The number of
lanes, sidewalks, and various objects, along with their
positions, pose, color, texture, as well as lighting set-
tings are randomly selected. Note that, unlike SDR,
heuristic rules are not used to avoid collisions or en-
sure realistic placement, which further demonstrates
the power of our proposed method in automatically
generating useful training data. We use four object
classes: car, pedestrian, vegetation, house, and four
relationships: front, left, right, behind. Relationships
are constrained so that at least one node is a car, e.g.,
car behind car, vegetation left car, and so on. Although
we have shown the ‘on’ relationship to work in the
Dining-Sim environment, such relationships are trivial
to predict in this driving environment because they are
always true: cars are always on the road, pedestrians
are on the sidewalk, and so forth. Therefore, we did
not include them in the experiments.

A subset of the real KITTI data [20] from the 2D
object detection suite are used as the target domain. We
use 6000 unlabeled KITTI images for training, and 550
labeled KITTI images for evaluation. The latter images
include not only the provided annotations for cars and
pedestrians, but also annotations that we added for
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SDR [41] Meta-Sim [27] Sim2SG (ours)

Figure 5. Qualitative results of objects detected on three different KITTI images. Left: SDR fails to detect many objects and
yields a large number of false positives (mislabels), leading to poor scene graphs (not shown). Middle: Meta-Sim improves on
false-positives, but still fails to detect some objects. Right: Our method detects objects correctly with fewer false positives,
thus generating more accurate scene graphs. (Cars in green, vegetation in yellow, buildings in purple.)

vegetation and houses, along with relationships.1 For
training, we used 6000 labeled synthetic images, and
another 1000 labeled synthetic images for validation.

Baselines: We compare against methods for which
code is publicly available. In particular, we compare
against unsupervised scene-generation methods, includ-
ing structured domain randomization (SDR) [41] and
Meta-Sim [27]. We also compare against a popular
self-learning method based on pseudo labels extracted
by training directly on the real KITTI data after pre-
training on SDR synthetic data [72]. Furthermore, we
compare against unsupervised domain adaptation meth-
ods for object detection, which are based on aligning
features from the source and target domains: DA Faster
R-CNN [7], GPA [64], and SAPNet [30]. According to
a recent survey paper [33], the latter two are state-of-
the-art leading techniques. All baselines are trained
on 6000 images from SDR, using the hyperparameters
provided by the original authors.

Results: We evaluate these baselines, along with
our method, on three KITTI evaluation modes for 2D
object detection: easy, moderate and hard, which are
based on object size, occlusion and truncation. For all
three modes, our method yields significantly improved
results over the baselines. Table 3 shows the object
detection and scene graph generation results for KITTI
hard; other results are in the appendix. The last three
rows of the table show that most improvements come
from label alignment σc,label and appearance alignment
σa. The combination of all three, σc,label, σa and σc,pred,
achieves the best results overall. Note that σc,label alone
is able to beat most baselines, thus demonstrating the

1Our annotations are publicly available at https://research.
nvidia.com/publication/2021-08_Sim2SG

efficacy of our synthesis step at automatically generating
realistic training data without heuristics. Qualitative
results are illustrated in the third row of Figure 4.

Insight as to why our method outperforms SDR [41]
and Meta-Sim [27] can be gained by viewing the im-
ages generated by the various methods, shown in Fig-
ure 6. Our method generates synthetic data that better
matches the distribution of the real data, because SDR
lacks access to the object distributions in KITTI, and
because Meta-Sim cannot align the structure of the
scenes (e.g., the number of objects) and lacks the no-
tion of relationships in its scene graphs. (Note that
Meta-Sim2 [14] also lacks relationships, but code is not
publicly available.) Furthermore, our method scales
better with scene complexity compared with Meta-Sim,
which requires passing expensive numerical gradients
through a renderer. As a result, our training time is 12
hours on a single NVIDIA V100 GPU, compared with
72 hours for Meta-Sim. Figure 5 compares our method
on the downstream task with SDR and Meta-Sim.

The reason our method outperforms domain adapta-
tion techniques [7, 64, 30] is because feature alignment
without content alignment is not effective, as we dis-
cussed briefly at the end of Section 3. Nevertheless, it
may be possible to combine our label alignment tech-
nique σc,label with domain adaptation methods, which
we leave for future work. Our method always produces
proper ground truth for the scene via synthetic data gen-
erator, even if the scene is not generated exactly accord-
ing to the corresponding real image. Self-learning [72]
methods based on pseudolabels from KITTI, on the
other hand, can have errors in the ground truth due
to incorrectly classified objects or imprecise bounding
boxes, as explained in [69].
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Method Car Pedestrian House Vegetation mAP@0.5IoU Recall@50

SDR [41] 0.382 ±0.029 0.168 ±0.017 0.211 ±0.023 0.174 ±0.010 0.234 ±0.006 0.070 ±0.007
Meta-Sim [27] 0.413 ±0.009 0.197 ±0.027 0.236 ±0.009 0.164 ±0.023 0.253 ±0.003 0.075 ±0.005
Self-learning [72] 0.312 ±0.006 0.167 ±0.015 0.191 ±0.003 0.263 ±0.006 0.233 ±0.004 0.062 ±0.003
DA Faster R-CNN [7] 0.424 ±0.028 0.170 ±0.029 0.200 ±0.041 0.169 ±0.014 0.241 ±0.014 0.074 ±0.015
GPA [64] 0.174 ±0.040 0.011 ±0.016 0.106 ±0.031 0.059 ±0.027 0.087 ±0.020 0.015 ±0.005
SAPNet [30] 0.362 ±0.054 0.085 ±0.051 0.116 ±0.021 0.067 ±0.022 0.157 ±0.024 –
Ours (σc,label) 0.410 ±0.009 0.262 ±0.025 0.240 ±0.010 0.229 ±0.036 0.285 ±0.003 0.104 ±0.006
Ours (σc,label, σa) 0.493 ±0.004 0.252 ±0.014 0.247 ±0.012 0.253 ±0.020 0.311 ±0.311 0.127 ±0.004
Ours (σc,label, σa, σc,pred) 0.501 ±0.006 0.241 ±0.018 0.254 ±0.010 0.269 ±0.014 0.316 ±0.004 0.139 ±0.004

Table 3. Results on KITTI hard after training on labeled synthetic data and unlabeled real data. The class specific AP values
for 2D object detection are reported at 0.5 IoU. The last column shows relationship triplet recall for scene graph generation.

Figure 6. Synthetic images generated by Sim2SG (ours), Meta-Sim [27], and SDR [41] with the corresponding KITTI samples.
Our method aligns the number and placement of both cars and context (vegetation, houses) better than other methods.

Note in Table 3 that the detection accuracy of the
pedestrian category does not improve with σa and
σc,pred. The reason for this limitation is that pedestri-
ans are an under-represented class in KITTI, not to
mention small and hard to detect. While our Sim2SG
method can align the label distribution, it cannot ad-
dress class imbalance in the target domain. Neverthe-
less, our method is not restricted to the types or number
of relations. Given a simulator to generate scenarios
such that objects and their relations are detectable, our
method should extend to handle them.

Ablations: As briefly discussed at the end of Sec-
tion 3, we run the label alignment σc,label before ap-
pearance alignment σa and prediction alignment σc,pred
to address the fact that feature alignment can be detri-
mental if the content of both domains are not already
aligned. We indeed found that performance drops sig-
nificantly when we train Sim2SG without σc,label and
evaluate in the same setting as Table 3. Sim2SG with σa
and σc,pred gives a 0.246 mAP@0.5 IoU for detection and

0.076 Recall@50 for relationship triplets, while adding
σc,label yields a significant boost of 0.316 mAP@0.5
IoU for detection and 0.139 Recall@50 for relationship
triplets on KITTI Hard. These results confirm the ef-
fectiveness of σc,label and therefore the importance of
the entire Sim2SG framework.

6. Conclusion

In this work, we have proposed Sim2SG, a self-
supervised real-to-sim automatic scene generation tech-
nique that matches the distribution of real data, for
the purpose of training a network to infer scene graphs.
The method bridges both the content and appearance
gap with real data without requiring any costly su-
pervision on the real-world dataset. The approach
achieves significant improvements over baselines in all
three environments for which we tested: CLEVR, a
Dining-Sim dataset, and real KITTI data. The latter of
these demonstrates the ability of our method to perform
sim-to-real transfer.
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