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Abstract 

This paper proposes a novel weakly supervised approach 

for anomaly detection, which begins with a relation-aware 

feature extractor to capture the multi-scale convolutional 

neural network (CNN) features from a video. Afterwards, 

self-attention is integrated with conditional random fields 

(CRFs), the core of the network, to make use of the ability 

of self-attention in capturing the short-range correlations 

of the features and the ability of CRFs in learning the inter- 

dependencies of these features. Such a framework can learn 

not only the spatio-temporal interactions among the actors 

which are important for detecting complex movements, but 

also their short- and long-term dependencies across frames. 

Also, to deal with both local and non-local relationships 

of the features, a new variant of self-attention is developed 

by taking into consideration a set of cliques with different 

temporal localities. Moreover, a contrastive multi-instance 

learning scheme is considered to broaden the gap between 

the normal and abnormal instances, resulting in more accu- 

rate abnormal discrimination. Simulations reveal that the 

new method provides superior performance to the state-of- 

the-art works on the widespread UCF-Crime and Shang- 

haiTech datasets. 

1. Introduction 

Anomaly detection seeks to recognize an event that de- 

viates from normal behaviors and identify the instant of the 

abnormal event occurring from a sequence of images. It has 

received growing interests owing to its ubiquitous applica- 

tions like criminal detection [1], intelligent surveillance [2], 

and violent alerting [3], etc . 

Detecting anomalies within real world videos can be de- 

manding for a number of factors like a variety of illumi- 

nations, multiple camera angles, indoor and outdoor condi- 

tions, and inter- and intra- classes variation problem. More- 

over, the abnormal activities often occur in a short period of 

time.

 

Figure 1: Challenges of the anomaly detection: (a) anomaly is 

formed by the spatial-temporal interactions among the actors; (b) 

abnormal behaviors can occur in a short period of time. 

Since many commonly used datasets only provide video- 

level annotations, a plethora of weakly supervised anomaly 

detection algorithms has been considered. For instance, 

Sultani et al. [1] employed a multi-instance learning (MIL), 

which incorporated both normal and abnormal samples with 

weakly labeled annotations to detect the abnormal events. 

Lin et al. [3] used a dual-branch module to learn the context 

information. Also, Zhang et al. [4] considered an inner bag 

loss to minimize the distance between the negative instances 

in each bag. To better learn motion cue information, some 

latest approaches made use of deep motion features [5, 6]. 

For example, Zhu et al. [5] proposed a temporal augmented 

network to model the motion aware feature representation. 

Liu et al. [7] eradicated the effect of the background infor- 

mation to learn the anomalies from specific areas. However, 

[1, 5, 7] focused on the present information and did not fully 

take advantage of the temporal dependencies across frames. 

Recently, Zhong et al. [2] employed a graph convolutional 

network (GCN) to iteratively refine the noisy anomaly la- 

bels. However, this iterative process trades performance for 

complexity. Zaheer et al. [8] proposed a self-reasoning net-
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Figure 2: The overall pipeline of the proposed approach. 

work that invokes binary clustering to mitigate the noisy 

labels of video snippets. Recently, Zaheer et al. [9] used 

a normalcy suppression scheme to prevent the inter-batch 

correlation problem. Wu et al. [10] incorporated the audio- 

visual modality to complement the widely used two-stream 

architectures. 

In light of the importance of adequately modelling the 

spatial-temporal structural relationship across frames, as il- 

lustrated in Fig. 1 (a), where the ‘ robbery ’ event is formed 

by the dynamic interaction between the ‘ cashiers ’ and ‘ rob- 

ber ’ across frames, this paper presents a potent weakly su- 

pervised method for anomaly detection. The new method 

first uses a relation-aware feature extractor to capture the 

multi-scale convolutional neural network (CNN) features 

from a video. This extractor is an extension of the renowned 

temporal relational network (TRN) [11] with multi-scale 

partitions and the use of inner product operation, aiming 

at providing more discriminative global and local features 

and their short-range correlations. Afterwards, central to 

the new network is to integrate self-attention with con- 

ditional random fields (CRFs) to make use of the ability 

of self-attention in learning the short-range correlations of 

the features and the ability of CRFs in learning the inter- 

dependencies of these features. 

The combination of conditional random fields (CRFs) 

and self-attention is inspired by [12]. However, there are 

some crucial differences: i) our problem is weakly su- 

pervised learning, while [12] is supervised learning; ii) 

the nodes of the constructed spatial-temporal graphs, from 

which we compute the self-attention and conduct CRF in- 

ference, are generated by a new relation-aware feature ex- 

tractor to capture the anomalies in either the global or local 

regions; iii) we jointly learn both of the spatial and temporal 

relationships between the nodes and consider the reasoning 

of multiple actors’ nodes to account for their diverse rela- 

tionships, while [12] modeled the nodes’ spatial and tem- 

poral relationships independently, as depicted in Fig. 3; iv) 

our definition of self-attention is different from [12] by tak- 

ing a set of cliques with different temporal localities to learn 

the complex movements and their short- and long-term de- 

pendencies. Simulations show that the new approach has 

superior performance to the state-of-the-art works on the 

widespread UCF-Crime and ShanghaiTech datasets. 

The main contributions of this paper include: i) we de- 

velop a relation-aware feature extractor, incorporating TRN 

[11] with multi-scale partitions and an inner product op- 

eration to generate salient features; ii) we combine self- 

attention with CRFs to effectively learn the dynamic be- 

haviours of the actors with different temporal localities in 

videos; iii) we devise an effective contrastive MIL scheme 

to broaden the margin between the normal and abnormal 

instances in videos. 

2. Related Work 

Unsupervised Anomaly Detection. One way to capture 

the abnormal events within videos is through unsupervised 

learning schemes such as optimizing one-class classifica- 

tion model, auto-encoder decoder [13, 14], and feature re- 

construction with generative adversarial learning [15]. For 

example, Hasan et al. [14] used an auto-encoder to capture 

abnormal events using reconstruction error. Yu et al. [13] 

proposed an adversarial event prediction to detect anoma- 

lies based on the chronological event predictions. However, 

these methods can produce more false alarm due to the de- 

ficiency of the variations of normal samples [14]. 

Temporal Reasoning. Temporal reasoning, learning the in- 

formation from the past data to benefit the current detection 

and future prediction, has been of importance in computer 

vision [16, 17]. Santoro et al. [16] used a relation network 

to exploit the foreknowledge information in visual question- 

answering tasks. Also, Sermanet et al. [17] considered a 

time contrast network, generating the relational features of 

the objects and actors, to conduct self-supervised learning 

in action recognition. 

Attention Mechanism. With its effective learning capa- 

bility, attention mechanism has been widely employed in a 

variety of applications [18, 19]. Zhao et al. [18] proposed a 

feature attention module to boost the low-level spatial fea- 

tures and high-level context for saliency detection. Zhang 

et al. [20] combined generative adversarial networks with 

an attention network to localize some specific attributes in 

face images. Purwanto et al. [21] employed self-attention 

to better extract the long-term temporal dependencies of the 

actions in low-resolution videos. 

Graphical Models. The graphical models have received 

lots of attention in recent years [22, 23]. For instance, Si et 

al. [23] employed an attention augmented graph convolu-
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Figure 3: An illustration of the key difference of the spatial- 

temporal graphs between [12] and our work: (a) [12] models the 

spatial and temporal relationships between nodes independently; 

(b) ours jointly learn them. 

tional LSTM network to capture the actions from skeleton 

data. Li et al. [24] combined deep relational modelling and 

feature learning to detect people from a low-dimensional 

feature representation. 

3. Proposed Method 

3.1. Overall Methodology 

For reference, an overview of the proposed work is de- 

picted in Fig. 2, which encompasses three main building 

blocks: relation-aware feature extractor in Sec. 3.2, self- 

attention CRF in Sec. 3.3, and a contrastive MIL scheme in 

Sec. 3.4. The first block, relation-aware feature extractor, is 

employed to capture the multi-scale CNN features that are 

essential to detecting global or local anomalous behavior 

in each frame. The second block is the self-attention CRF, 

where self-attention is used to capture the short-range corre- 

lations of the features, while CRF is employed to model the 

inter-dependencies of these features. Finally, as the prob- 

lem is weakly supervised learning, the third block combines 

MIL with the contrastive loss to widen the gap between nor- 

mal and abnormal instances, resulting in more accurate de- 

tection. 

3.2. Feature Extraction 

This section considers a new feature extractor, an exten- 

sion of the TRN in [11]. TRN can well learn and reason 

the temporal dependencies across frames at multiple time 

scales and has been employed in a variety of computer vi- 

sion tasks [11]. However, the input to TRN is the whole 

frame, for which either the foreground or the background 

are treated equally. Thereby, it is inadequate to reason some 

objects appearing within specific regions, which is benefi- 

cial for anomaly detection problems [25, 26]. 

To resolve this dilemma, we modify TRN in two aspects: 

First, we partition every frame into multiple scales; each 

of the partitioned image is referred to as an image patch. 

Depending on the partitioned scale, an image patch corre- 

sponds to either global or local features, which provide con- 

text and fine-grained appearance information, respectively. 

Specifically, from the output of the convolutional blocks, 

we can obtain the global features, which correspond to the 

whole frame representation, and the local features that are 

based on the multiple-scale grid partitions. This multi-scale 

image patches allow the network to better learn the anoma- 

lous patterns in some specific regions [25]. 

Second, to fully exploit the connections between the ob- 

jects within neighboring frames where the anomalies can be 

similar, we make use of the inner-product operation [27], an 

effective scheme to encode a sequence of data [23, 19], to 

unleash the short-range correlations of the image patches. 

More specifically, let the intermediate feature maps of the 

network be D ∈ RK × W × H × C , where K is the length of 

the video, C is the dimension of the channel, and W and H 

denote the width and height of the features maps, respec- 

tively. The inner-product, γ ( a, a′) = ψ1( da)
T ψ2( d′ 

a) , is 

now used to decide the short-term dependencies between 

the positions a and a′ in the feature maps in the neigh- 

boring frames, where da 

, d′ 

a 

∈ D denote the features at 

positions a and a′, respectively, and ψ1 

and ψ2 

are linear 

embedding layers. Collecting all of these dependencies at 

position a yields [ γ ( a, 1) , · · · , γ ( a, K W H )] , which is con- 

catenated with the intermediate feature maps and then trans- 

formed into a scalar attention weight at the corresponding 

position by multiplying with a trainable weight to re-weigh 

the output of the convolutional blocks. 

To reduce the complexity, we apply the global average 

pooling to image patches. These features are then concate- 

nated into B = [ b1 , 1 

, · · · , bK ,G] , where bi,j 

denotes the 

feature of image patch i in frame j , and G is the total num- 

ber of image patches in each frame. As a results, the cor- 

responding image patches’ features can produce a fruitful 

semantic information about the abnormal activities. 

3.3. Self-Attention Conditional Random Field 

3.3.1 Spatial-Temporal Graph Model 

Spatio-temporal graphs are an effective approach to model- 

ing the long-term dependencies among the objects to encap- 

sulate their dynamic interactions [28, 29, 30], and learning 

the short-term dependencies to capture the abnormal events 

occurring in a short-time interval, as illustrated in Fig. 1. 

For a temporal window of K frames, say frames 1 to K , 

with G image patches in each frame, we can establish a 

fully-connected graph G = {V , E } , where V = { ( i, j ) | i ∈ 

{ 1 , · · · , G } , j ∈ { 1 , · · · , K }} is the set of nodes, each of 

which corresponds to an image patch; E is the set of edges 

that connect each pair of node in the graphs. Each node 

( i, j ) is related to a feature bi,j 

∈ B derived from the 

relation-aware feature extractor in Sec. 3.2. As an illus- 

tration in Fig. 4, a spatial-temporal graph is established, 

where the partition scale is 3, leading to 14 image patches 

in each frame.
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Figure 4: An illustration of a spatio-temporal graph, where the 

partition scale is 3, resulting in 14 image patches in each frame. 

The weight of the edge connecting node ( i, j ) with node 

( i′ , j 

′) , p ( bi,j 

, bi′ ,j 

′) , is now assigned by the pairwise sim- 

ilarity between the corresponding nodes’ features:

  \label {eq:similarity} p({\bf b}_{i,j},{\bf b}_{i',j'}) = \mathrm {exp}\bigl (\theta _{1}({\bf b}_{i,j})^{T} \theta _{2}({\bf b}_{i',j'})\bigr ), 





 




 

(1) 

where θ1 

and θ2 

are linear embedding functions. With 

this function, two nearby objects which closely interact 

with each other such as ‘ robber ’ and ‘ cashier ’ will have a 

stronger relation than those that are not related to each other 

like ‘ robber ’ and ‘ foodstuff cabinet ’. 

3.3.2 Conditional Random Fields 

As an anomaly can be formed by spatio-temporal interac- 

tions among several objects, understanding the intrinsic re- 

lationships among the objects in the neighboring frames is 

thus of importance for anomaly detection [25]. Thereby, 

CRFs, which possess the advantages of graphical modeling 

and discriminative classification, is invoked here to model 

the interactions among the global and local features across 

frames to capture their context relationships. 

Consider a set of node labels X = { 0 , 1 } , in which 0 

denotes the label for normal patterns while 1 the abnormal 

ones, and a set of random variables z = { z1 , 1 

, · · · , zG,K 

} , 

where zi,j 

is a random variable associated with node ( i, j ) 

and is assigned with a label in X . The graph can be 

learnt by CRFs conditioned on all nodes’ features B , which 

can be characterized by the Gibbs distribution P ( z | B ) = 

1

 

n ( B )exp( − E ( z | B )) , in which E ( z | B ) denotes the energy 

of the label assignment and n ( B ) is the partition function 

[31]. For a fully-connected CRF model, the total energy 

can be written as [32]

E({\bf z}|{\bf B}) =& \sum _{i,j} \phi _{u}(z_{i,j}|{\bf b}_{i,j}) \nonumber \\ + & \mbox {}\sum _{i,j} \sum _{(i',j')\neq (i,j)} \phi _{p}(z_{{i,j}}, z_{i',j'}|{\bf b}_{i,j},{\bf b}_{i',j'}), \label {equation:energy_function}

































 

where ϕu( zi,j 

| bi,j) is the unary energy, the cost of assign- 

ing a label to node ( i, j ) ; ϕp( zi,j 

, zi′ ,j 

′ | bi,j 

, bi′ ,j 

′) is the 

pairwise energy, the cost of assigning labels to node ( i, j ) 

by considering its relationship with node ( i′ , j 

′) . However, 

the conventional CRFs are not easy to be amalgamated with 

CNN networks [33]. Moreover, the non-local dependencies 

among the nodes is not fully leveraged, resulting in inaccu- 

rate detection when the abnormal events involve many ob- 

jects, such as in the crowded scenarios. To overcome these 

setbacks, we resort to self-attention to be discussed next. 

3.3.3 New Self-Attention 

Compared with convolutional networks or RNNs, self- 

attention can attend the response at each position with other 

distant positions directly without encountering vanishing 

gradients. Additionally, self-attention can render faster 

computations compared to RNNs [34] with even fewer pa- 

rameters. As such, we make use of self-attention to model 

the relationships of the nodes, local or non-local, in the 

spatio-temporal graphs described in Sec. 3.3.1. 

To deal with both short- and long-term relationships of 

the features, we consider a set of complete sub-graphs, 

cliques, with different temporal localities. A clique C 

τ 

j 

is 

said to be with a temporal locality τ if it is constructed by 

connecting every pair of nodes in frame j and its ( τ − 1) 

adjacent frames. Note that C 

τ 

j 

amounts to a ( τ G )-clique 

[35], both of which consist of τ G nodes. While a clique 

with a small temporal locality is intended to underscore the 

short-term dependencies between the neighboring frames, a 

large one can highlight the non-local connections between 

the nodes. Thereby, if we apply the self-attention mecha- 

nism to relate node ( i, j ) with the other nodes in C 

τ 

j 

, we 

can obtain the self-attention output with temporal locality 

τ , h̄τ 

i,j 

∈ R1 × F , given by [27] 

h̄τ 

i,j 

= 

∑ 

∀ ( i′ ,j 

′) ∈C 

τ 

j 

p ( bi,j 

, bi′ ,j 

′) θ3( bi,j) , (3) 

where p ( · ) is the pairwise similarity function defined in (1) 

and θ3 

is a linear embedding layer [27]. 

To exploit various non-local relationships of the fea- 

tures, the resulting self-attention output of node ( i, j ) , hi,j 

is defined as a superposition of the self-attention outputs of 

h̄τ 

i,j 

, τ ∈ K , and can be expressed as

  {\bf h}_{i,j} = \sum _{\tau \in {\cal K}} w_{\tau } {\bar {\bf h}}^{\tau }_{i,j},\;\;\; \label {equation:sa} 
















 

(4) 

where K is a prescribed set of temporal localities, and wτ 

is the trainable scalar weight. The self-attention output of 

all of the nodes in these K consecutive frames can then be 

represented as H = [ h1 , 1 

, · · · , hG,K ] ∈ RK G × C . 

3.3.4 Conditional Random Fields with Self-Attention 

In light of the advantage of self-attention discussed above, 

we utilize it to offset the deficiencies of CRFs described
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in Sec. 3.3.2 in modelling the non-local relationships of 

the nodes, where self-attention is employed to calculate the 

total energy of the label assignment in (2). 

As [33], the unary energy of assigning the label zi,j 

∈ z 

to node ( i, j ) can be determined by invoking a linear feed- 

forward classifier, fu( · ) , to the node features bi,j 

derived 

from the relation-aware feature extractor in Sec. 3.2

  {e}^{u}_{i,j} = f_{u}({\bf b}_{i,j}). \label {eq: unary_energy} 







 

(5) 

For a more compact representation, the unary energy of 

all nodes, Eu 

= [ eu 

i,j 

, · · · , eu 

G,K ] , can be computed by Eu 

= 

fu( B ) . 

Likewise, in light of the relational reasoning of graphs 

based on feature similarity in [22, 32], the total pairwise 

energy of assigning the same label to node ( i, j ) based 

on its correlations with all of the other nodes, ep 

i,j 

=∑ 

( i′ ,j 

′) ̸ =( i,j ) 

ϕp( zi,j 

, zi′ ,j 

′ | bi,j 

, bi′ ,j 

′) , can be modelled by 

applying the self-attention mechanism to the cliques with 

different temporal localities as follows

  {e}^{p}_{i,j} = \sum _{(i',j') \neq (i,j)} u(z_{{i,j}}, z_{i',j'}) {\hat p}({\bf b}_{i,j},{\bf b}_{i',j'}) f_{p}(e_{3}({\bf b}_{i,j})), \label {eq: pairwise_energy1} 























 

(6) 

where fp 

is a linear feed-forward layer [32] that transforms 

the node representation into a label prediction; u ( zi,j 

, zi′ ,j 

′) 

is the compatibility function which, as [33, 36], can be 

decided by the Potts model, where u ( zi,j 

, zi′ ,j 

′) = 1 if 

zi,j 

̸ = zi′ ,j 

′ and equal 0, otherwise; we have also used the 

fact that ˆ p ( bi,j 

, bi′ ,j 

′) = 

∑ 

τ ∈K 

∑ 

i′ ∈C 

τ 

j 

wτ 

p ( bi,j 

, bi′ ,j 

′) 

[37]. To mitigate the computational overhead in (6), we 

have also confined the estimation of pairwise energy based 

on a prescribed set of cliques. 

Again, the total pairwise energy of all nodes, Ep 

= 

[ ϵp 

1 , 1 

, · · · , ϵp 

G,K ] , can be compactly represented as

{\bf E}_{p} = f_{p} ({\bf H}) {\bf U}, \label {eq: pairwise_energy}



 

 

where H is the self-attention outputs of all nodes and U is 

a symmetric matrix that can be trained to provide the data- 

dependent penalty [33], so it can incur low cost for assign- 

ing the same label to a pair of nodes with similar properties. 

The minimization of the total energy of the labelling can be 

conducted by the mean-field inference. 

3.3.5 Mean-Field Inference 

Next, we approximate the Gibbs distribution of the labels 

via the mean-field inference using a product of independent 

marginal distributions of all nodes, W ( z ) = 

∏ 

i,j 

Wzi,j , 

where Wzi,j 

is determined by the unary and pairwise energy 

given by [37]:

  W_{z_{i,j}} = \frac {1}{Z_{i,j}} \mathrm {exp} \Bigl (-\bigl ({e}^{u}_{i,j} + {e}^{p}_{i,j} \bigr ) \Bigr ), \label {eq: update_spa} 


























 

(8)

 

Algorithm 1 Mean-field inference of the self-attention CRF

 

Input: B , max _ iter

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

nodes features, number of iterations 

Output: Ê

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

marginal distribution of all nodes 

1: l = 0 

2: Eu 

← fu( B )

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

Computation of the unary energy 

3: E ← 

1

 

Zi,j 

exp( − Eu)

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

initialize the marginal distribution by the unary energy 

4: Ê ← softmax( E ) 

5: while l ≤ max _ iter do 

6: Ep 

← fp( H )

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

computation of pairwise energy 

7: Ep 

← EpU

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

compatibility transform 

8: E ← Ê − Ep

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

unary addition 

9: E ← 

1

 

Zi,j 

( E )

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

normalization of the marginal distribution 

10: Ê ← softmax( E )

\@sym \triangleright \math_sym_Bin:Nn \mg@OML {2E}



 

update of the marginal distribution 

11: l ← l + 1 

12: end while

 

where Zi,j 

is the normalization constant [37]. Unlike the 

common inference scheme that stacks CNN kernels to re- 

vise the marginal distributions [33, 36, 38], here we con- 

sider a new mean-field inference algorithm which learns the 

non-local relationships of the nodes with self-attention by 

cast the the mean-field inference as a self-attention network. 

The overall iterations in the new mean-field inference are 

summarized in Algorithm 1, where the marginal distribu- 

tion Ê is first initialized by the unary energy Eu 

in Step 3, 

whose element eu 

i,j 

is derived by passing every node fea- 

ture bi,j 

through a linear transformation fu( · ) by (5). At 

each iteration, the pairwise energy Ep 

is attained by mes- 

sage passing in Step 6, which applies the linear transfor- 

mation fp( · ) to the self-attention outputs H derived in Sec. 

3.3.4. Thereafter, in Step 7, the compatibility transform is 

conducted by post-multiplying Ep 

by U where U is a train- 

able matrix that is employed to learn the correlation of the 

binary label assignment of different nodes. Subsequently, 

the marginal distribution is refined by subtracting the unary 

energy in Step 8 and then taking normalization in Step 9. 

Lastly, the marginal distribution is obtained by using a soft- 

max layer [33] in Step 10. The resulting Ê after conver- 

gence is taken as the final marginal distribution. 

3.4. Contrastive Multi-Instance Learning 

Since most of the commonly used benchmarks are only 

with video level annotations, we take advantage of MIL, 

which has been shown to be effective to learn the anomaly- 

norm from normal and abnormal bags in weakly-supervised 

manner [39]. To train an MIL model, we use the vectors in 

H , hi,j , each of which corresponds to either a normal or 

an abnormal sample. Next, the normal and abnormal sam- 

ples are congregated as negative and positive bags, Bn 

and 

Bp, respectively. An MIL model fs 

is then trained with a re- 

gression neural network to generate the anomaly score, vi,j , 

for each hi,j 

by vi,j 

= fs( hi,j) . However, the traditional 

MIL [1] has two main limitations in this problem: i) it does 

not take account of the underlying temporal contexts of the
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abnormal events; ii) most videos are composed of normal 

events while the anomalies occur only in few segments, re- 

sulting in an inaccurate detection [5]. 

In light of this, we consider a new loss function, which 

incorporates the contrastive loss with the conventional MIL 

[1]. Instead of only calculating the hinge loss, which has 

some limitations discussed above, the new loss function is 

given by

  {\cal L}_{total} = {\cal L}_{bn} + \alpha _{1} {\cal L}_{sp} + \alpha _{2} {\cal L}_{ts} + {\cal L}_{cs}, 

















 

(9) 

where Lbn 

is the binary cross entropy loss [7] based on 

the marginal distribution of all samples Ê obtained by the 

mean-field inference in Sec. 3.3.5; Lsp 

and Lts 

denote, re- 

spectively, the sparsity and temporal smoothness losses [1], 

employed based on the assumption that the anomalies rarely 

occur within a video to smooth out the anomaly scores be- 

tween the adjacent video segments, and α1, α2 

are the bal- 

ancing parameters. 

The last term Lcs 

is a contrastive loss. In contrast to [40] 

that is based on complex data augmentation to effectively 

learn various image representation, our contrastive loss is 

aiming at broadening the distance between the embedding 

of Bn 

and Bp, and can be expressed as

  {\cal L}_{cs} = \frac {1}{(|B_{p}|.|B_{n}|)^{2}} \sum _{(i,j) \in {\cal B}_{p}, (i',j') \in {\cal B}_{{n}}} ||\mathbf {h}_{i,j} - \mathbf {h}_{i',j'}||^{2}_{2} , \label {eq:loss_cons} 

































 

(10) 

where | Bp 

| and | Bn 

| denote the cardinality of the positive 

and negative bags, respectively, and || hi,j 

− hi′ ,j 

′ ||2 

is the 

Euclidean distance between the two samples hi,j 

and hi′ ,j 

′ . 

4. Experimental Results 

4.1. Datasets and Evaluation Metric 

UCF-Crime [1]. This dataset is the large-scale anomaly 

detection dataset that contains 1,900 videos with 13 types 

of anomaly events captured by CCTV camera indoors and 

outdoors during day and night scenarios. The activities con- 

sist of Abuse , Arrest , Assaults , Shooting , Arson , Stealing , 

Explosion , Road Accidents , Shoplifting , Fighting , Robbery , 

Vandalism , and Burglary . 

ShanghaiTech [41]. It comprises of 437 videos, ranging 

in duration from 15 seconds to more than a minute in a va- 

riety of circumstances and illuminations, such as complex 

lighting conditions and multiple camera angles, recorded by 

CCTV camera in an outdoor location. 

Evaluation Metrics. The simulations mainly follow the 

protocols provided by UCF-Crime [1] and ShanghaiTech 

[2]. We quantify the detection performance in terms of 

the area under the curve (AUC) of the corresponding frame 

based on the receiver operating characteristic curves [42]. 

Moreover, we utilize the false alarm rate (FAR) as another 

metric in which the model is tested only on normal videos 

with the threshold of 0.5% [1].

 

Figure 5: Visualization of the heatmaps (a) before and (b) after 

employing the new self-attention CRF. 

4.2. Implementation Details 

We use TRN [11] with a pretrained ResNet-50 model 

[43] as our backbone architecture with the momentum, the 

weight decay, and the base learning rate being set as 0 . 9 , 

0 . 0005 , and 0 . 0001 , respectively. The SGD optimizer is 

used to optimize this network. For UCF-Crime, the warm- 

ing up learning rate in [44] is used for the first 10 epochs 

and linearly increases to the base learning rate to handle the 

over-fitting problem. The dropout is set as 0 . 8 and the par- 

tial batch normalization strategy [45] is invoked to train the 

models. The models are trained for 100 and 225 epochs 

for UCF-Crime and ShanghaiTech, respectively. The batch 

size is set as 18 and 16 for UCF-Crime and ShanghaiTech, 

respectively. The partition scale is set as 3, implying a to- 

tal of G = 14 image patches in each frame and the global 

max pooling is applied to each of it to reduce the complex- 

ity in constructing the graph model. The dynamic halting 

is employed to decided an appropriate number of iterations 

for each video in the mean-field inference. The contrastive 

MIL is trained with Adam optimiser with a weight decay of 

0 . 00001 and a batch size of 32 for 50 epochs. The learn- 

ing rate is set as 0 . 0001 . α1 

and α2 

are set as 8 e− 5. For 

UCF-Crime, we mainly follow the evaluation protocols pro- 

vided by [1] while for ShanghaiTech, we adopt the binary- 

classification split-set provided by [2]. 

4.3. Ablation Studies 

Impact of Each Module. We investigate the detection 

performance using different combinations of modules, as 

shown in Table 1, from which we can see that the proposed 

relation-aware network surpasses TRN by 1% and 0.42% 

on the UCF-Crime and ShanghaiTech datasets, respectively. 

This is because the new relation-aware feature extractor can 

learn the fine-grained information, which is essential to de- 

tecting the abnormal behaviours of small objects. We can
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Table 1: Comparison with different combinations of modules. 

The best results are bold-faced.

 

TRN 

Relation-aware 

network 

Self-Attention 

CRF 

Contrastive 

Loss

 

Datasets

 

UCF-Crime ShanghaiTech

 

✓ - - -

 

81.52 95.01

 

- ✓ - -

 

82.43 95.43

 

- ✓ ✓ -

 

83.89 96.67

 

- ✓ ✓ ✓

 

85.00 96.85

 

Table 2: Performance comparison using different sets of cliques 

in deciding the new self-attention. The best results are bold-faced.

 

Number of 

Cliques

 

Datasets

 

UCF-Crime ShanghaiTech

 

{1}

 

83.03 95.32

 

{1,2}

 

83.42 95.84

 

{1,2,4}

 

84.06 96.36

 

{1,2,4,6}

 

84.98 96.83

 

{1,2,4,6,8}

 

85.00 96.85

 

also notice that by employing our self-attention CRF to 

model the dynamic behaviours of the global and local ab- 

normal features with multiple scales of temporal locality, 

the detection performance can be further enhanced by 1.4% 

and 1.1% on UCF-Crime and ShanghaiTech, respectively. 

Finally, with the use of the new contrastive loss, the per- 

formance can be further boosted by 0.18% to 1.01% due to 

its capability to broaden the gap between the normal and 

abnormal samples in weakly supervised training. 

To further demonstrate the effectiveness of the combina- 

tion of self-attention and CRF, we also provide the heatmaps 

before and after employing this new scheme, as shown in 

Fig. 5, from which we can see that by employing the pro- 

posed self-attention CRF, dynamic behaviours of the mul- 

tiple actors involving in anomaly events can be more pre- 

cisely identified. 

Impact of the New Self-Attention. Next, we examine the 

performance of the proposed method using different sets of 

cliques, C 

τ 

j 

, in the computation of the new self-attention, 

as shown in Table 2, from which we can note that the per- 

formance improves incrementally by using a set contain- 

ing more cliques. This is because with more cliques the 

self-attention can more substantially highlight the local and 

non-local relations between the two actors to render more 

precise detection performance. 

4.4. Performance Analysis 

To provide further insights into our approach, we also 

provide some successful and failure detection results, as 

shown in Figs. 6 and 7, respectively. For UCF-Crime, 

which contains more involved action scenarios, we can 

see from Fig. 6(a) that our approach can well detect hu- 

man anomaly activity such as ‘ Shoplifting ’. However, our 

method cannot well distinguish a man approaching the car 

from the incidence of the arson, as shown in Fig. 7(a). This 

is because the dark situation resulting in a substantial loss of 

visual information. For ShanghaiTech, which mostly con- 

tains small objects in outdoor scenarios, we can observe 

Table 3: Comparison with the state-of-the-art works on the UCF- 

Crime dataset. The best results are bold-faced. 

† indicates use op- 

tical flow, 

⋄ uses two-stream network, while others only use RGB.

 

Supervision

 

Method

 

Source Backbone

 

Performance

 

AUC FAR

 

Unsupervised

 

Hasan et al. [14]

 

CVPR16 -

 

50.6 27.2

 

Sun et al. [46]

 

MM20 TCN

 

72.7 -

 

Yu et al.⋄ [13]

 

TNLSS21 3DCNN

 

81.84 -

 

Fully supervised

 

Liu et al. [7]

 

MM19 NLN

 

82 -

 

Weakly 

supervised

 

Sultani et al. [1]

 

CVPR18 C3D

 

75.41 1.9

 

Lin et al. [3]

 

AVSS19 C3D

 

78.28 -

 

Hao et al. [6]⋄

 

SCN20 ResNet

 

78.51 -

 

Zhang et al. [4]

 

ICIP19 TCN

 

78.66 -

 

Zhu et al. [5]†

 

BMVC19 I3D

 

79 -

 

Zaheer et al. [8]

 

SPL21 C3D

 

79.54 -

 

Zhong et al. [2]

 

CVPR19 TSN

 

82.12 0.1

 

Wu et al. [10]

 

ECCV20 I3D

 

82.44 -

 

Zaheer et al. [9]

 

ECCV20 C3D

 

83.03 -

 

Ours

 

Relation-aware

 

85.00 0.024

 

Table 4: Comparison with the state-of-the-art works on the 

ShanghaiTech dataset. The best results are bold-faced. 

⋄ uses two- 

stream network, while others only use RGB.

 

Supervision

 

Method

 

Source Backbone

 

Performance

 

AUC FAR

 

Unsupervised

 

Hasan et al. [14]

 

CVPR16 -

 

60.85 -

 

Gong et al. [15]

 

ICCV19 -

 

71.2 -

 

Yu et al. [47]⋄

 

MM20 -

 

74.48 -

 

Weakly 

supervised

 

Zhang et al. [4]

 

ICIP19 TCN

 

83.5 0.1

 

Zaheer et al. [8]

 

SPL21 C3D

 

84.16 -

 

Zhong et al. [2]

 

CVPR19 TSN

 

84.44 -

 

Zaheer et al. [9]

 

ECCV20 C3D

 

89.67 -

 

Wan et al. [48]

 

ICME20 I3D

 

91.24 0.27

 

Hao et al. [6]⋄

 

SCN20 ResNet

 

94.2 -

 

Ours

 

Relation-aware

 

96.85 0.004

 

from Fig. 6(b) that the ‘ car is passing ’ can be well de- 

tected. On the other hand, as shown in Fig. 7(b), since 

the motorbike is located far from the surveillance camera at 

the beginning of the video, the appearance becomes unclear 

and thus the proposed method can only detect the anomaly 

activity when the motorbike is passing nearby the camera. 

4.5. Comparison with the State-of-the-Art Works 

This subsection compares the proposed approach with 

the main state-of-the-art works in terms of AUC and FAR 

on the UCF-Crime and ShanghaiTech datasets. For UCF- 

Crime, our comparison is as shown in Table 3, from which 

we can see that except [13], the unsupervised-based meth- 

ods, [14, 46] in general provide inferior performance due 

to a lack of a variety of training data. The performance 

of [13] is boosted by using chronological data that learn 

both of the past and future frames extracted by a 3DCNN 

model. [7], a fully supervised method, provides better per- 

formance by using an anomaly-guided network to learn the 

abnormal patterns. For weakly supervised approaches, we 

can note that [3] attains better performance than [1] by em- 

ploying a dual-branch network to effectively learn seman- 

tic information across video frames. Similarly, [6] obtains 

slight improvement by considering a two-stream network 

to better learn the motion cue information. [4] and [5]
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Figure 6: Successful cases on the (a) UCF-Crime and (b) ShanghaiTech datasets. The red block indicates the ground truth of the anomalies 

while the blue lines indicate the anomaly scores across time.

 

Figure 7: Failure cases on the (a) UCF-Crime and (b) ShanghaiTech datasets. The red block indicates the ground truth of the anomalies 

while the blue lines indicate the anomaly scores across time. 

can obtain slightly better detection performance by mod- 

elling the motion aware features. [8] can boost the perfor- 

mance of [4, 5] by utilizing a self-reasoning network to mit- 

igate the noisy labels from anomaly data. A considerable 

gain is obtained in [2] by using a graph convolutional net- 

work to iteratively refine the output detection labels. [10], 

which exploits the long-term temporal dependencies by a 

holistic module, can slightly enhance the detection perfor- 

mance. Further improvement is achieved in [9] by employ- 

ing a clustering scheme with a normalcy suppression mod- 

ule to maximize the distance between normal and abnormal 

data. Our method excels the above methods by modelling 

the global and local feature representation with a new self- 

attention strengthened CRF. Also, we can the note that our 

new method achieves the lowest FAR compared with other 

baselines which report this performance, as our method can 

minimize the outliers that lead to false detection in the nor- 

mal samples through the contrastive loss. 

Our comparison on ShanghaiTech is shown in Table 4, 

from which we can note that [15], augmenting the auto- 

encoder with a memory module, attains better detection 

compared with [14], in which the convolutional feed for- 

ward auto-encoder is considered. A substantial gain is 

achieved in [47] by exploiting the spatial information and 

motion cues to localize anomalous region. [2] surpasses 

[8, 4] by invoking self-reasoning during the network train- 

ing. Impressive result is achieved in [9] that refines the 

noisy label with a deep clustering-based mechanism. [48] 

provides substantial improvement by using a dynamic loss 

incorporated with a regression network to yield more dis- 

criminative anomalous features. [6] attains better perfor- 

mance with a two-stream architecture to better model spa- 

tial and motion information. The new approach again out- 

performs the other methods by reasoning short- and long- 

term temporal dependencies across video frames using a 

self-attention CRF. Again, we can see that our method 

yields the lowest FAR compared with the state-of-the-art 

works. 

5. Conclusions 

This paper has developed a new network for weakly su- 

pervised anomaly detection. The network starts with learn- 

ing the multi-scale features with a new relation-aware fea- 

ture extractor. Afterwards, a CRF is employed to model 

the relationships of the global and local features with a 

newly devised self-attention. With such a combination, not 

only the anomalous patterns can be well identified, but the 

short- and long-term temporal dependencies across video 

frames can also be effectively learned. Moreover, a con- 

trastive multi-instance learning scheme is considered to fur- 

ther boost the performance. Conducted experiments reveal 

the superiority of the new method on two popular anomaly 

detection datasets. 
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