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Abstract

Vision-and-Language Navigation (VLN) requires an
agent to find a path to a remote location on the basis of
natural-language instructions and a set of photo-realistic
panoramas. Most existing methods take the words in the
instructions and the discrete views of each panorama as
the minimal unit of encoding. However, this requires a
model to match different nouns (e.g., TV, table) against
the same input view feature. In this work, we propose an
object-informed sequential BERT to encode visual percep-
tions and linguistic instructions at the same fine-grained
level, namely objects and words. Our sequential BERT
also enables the visual-textual clues to be interpreted in
light of the temporal context, which is crucial to multi-
round VLN tasks. Additionally, we enable the model to
identify the relative direction (e.g., left/right/front/back)
of each navigable location and the room type (e.g., bed-
room, kitchen) of its current and final navigation goal, as
such information is widely mentioned in instructions im-
plying the desired next and final locations. We thus en-
able the model to know-where the objects lie in the im-
ages, and to know-where they stand in the scene. Exten-
sive experiments demonstrate the effectiveness compared
against several state-of-the-art methods on three indoor
VLN tasks: REVERIE, NDH, and R2R. Project repository:
https://github.com/YuankaiQi/ORIST

1. Introduction
Vision-and-Language Navigation (VLN) offers the ap-

pealing prospect of more flexible interactions with robotic
applications including domestic robots and personal assis-
tants. One of the first VLN tasks to appear was Room-to-
Room navigation (R2R) [4]. This task saw an agent ini-
tialised at a random location within a simulated environ-
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... Walk past the coffee table and couch and stop by the pool table. 

... Go to the front of the couch towards the billiard table, and stop. 

... Walk in front of the fireplace ... stop once you reach the pool table. 
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Figure 1. Objects, rooms, and directions are important clues that
can be inferred from visiolinguistic information. Our Object-and-
Room Informed Sequential BERT (ORIST) is designed to learn
to navigate by leveraging this information.

ment rendered from real images, and required it to navi-
gate to a remote goal location according to natural-language
instructions, such as “Leave the bedroom, and enter the
kitchen. Walk forward, and take a left at the couch. Stop in
front of the window.” The actions available to the agent at
each step are to investigate the current panorama, to move to
a neighbouring navigable location/viewpoint, or to stop. An
interactive version of the problem is introduced in [25, 33],
while REVERIE [28] extends it to identifying remote ob-
jects, and TOUCHDOWN [8] introduces outdoor environ-
ments.

Numerous methods have been proposed to address in-
door VLN tasks. Ma et al. [22] propose to learn textual-
visual co-grounding to enhance the understanding of in-
structions completed in the past and the instruction to be
executed next. Heuristic search algorithms for exploration
and back-tracking are introduced in [16, 23]. Qi et al. [27]
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propose to disentangle object- and action-related instruc-
tion chunks for more accurate visual-textual matching. An-
other line of work exploits data augmentation to improve
the generalisation ability in unseen environments. In [10],
a speaker model is proposed to generate instructions for
newly sampled trajectories, and in [32] visual information
of seen scenarios is randomly dropped to mimic unseen sce-
narios. Most recently, it has been empirically demonstrated
that hard example sampling and auxiliary losses [11, 41] are
helpful for navigating unseen environments.

Although significant advances have been made, these
methods take words in instructions and each discrete view
of a panorama as the minimal unit for encoding, which
limits the ability to learn the relationships between lan-
guage elements and fine-grained visual entities. This is be-
cause the view feature, generally obtained by ResNet [13]
which is trained for whole-image classification, mainly rep-
resents one salient object but it needs to be matched to many
different natural-language landmarks mentioned in crowd-
sourced navigation instructions. Figure 1 shows an example
where the coffee table, couch, and fireplace are used as nav-
igation landmarks in different instructions, but they need to
match to the same input view feature in most existing VLN
methods.

Motivated by the success of BERT-like models (Bidirec-
tional Encoder Representations from Transformers) [9, 21,
30] in joint textual and visual understanding, we propose an
object-and-room informed sequential BERT to encode in-
structions and visual perceptions at the same fine-grained
level, namely words and object regions. This enables the
model to better “know where” the objects referred to lie.
We also introduce temporal context into our BERT-based
model, which allows the model to be aware of completed
parts of instructions and seen environments, resulting in
more accurate next action prediction.

Relative directions (i.e., left, right, front, and back) and
room types (e.g., living room, bedroom) are important clues
for VLN tasks as they provide strong directional guidance
and semantic-visual information for action selection. To
take advantage of such information we incorporate a direc-
tion loss and two room-type losses into the proposed model.
These predict the relative direction of navigable viewpoints,
the type of room that need to be reached next, as well as the
type of room at the final goal location. The relative direction
is predictable from each viewpoint’s orientation description
(i.e., heading and elevation angles), and the room types are
identifiable through the presence of specific objects, such
as a couch indicating living room or a microwave indicat-
ing kitchen. This provides the model with opportunity to
“know where” it is, and where it is going.

To demonstrate the generalisation ability of our model,
we evaluate on three different indoor VLN tasks: remote
object grounding (REVERIE) [28], visual dialog navigation

(NDH) [33] and room-to-room navigation (R2R) [4]. Our
method achieves state-of-the-art results on all of the listed
tasks: 18.97 SPL (9.28 RGSPL) on the REVERIE task, 3.17
GP on the NDH task, and 52% SPL on the R2R task.

2. Related Work
In this section, we briefly review closely related VLN

methods and vision-and-language BERT-based works.
Vision-and-Language Navigation. A large number of
existing works have focused on cross-modality matching
and generalisation from seen to unseen environments. For
cross-modality matching, Ma et al. [22] propose a visual-
textual co-grounding module and a progress monitor to dis-
tinguish completed instructions from those yet to be exe-
cuted. In [38], a local navigation distance reward and a
global instruction-trajectory matching reward are employed
for reinforcement learning. Qi et al. [27] propose a multi-
module framework to separately learn matching between
action-related words and candidate orientations, and be-
tween landmark-related words and candidate visual fea-
tures. In NvEM [1], visual features of navigable locations
are adaptively enhanced by neighbor views leading to bet-
ter visual-textual matching. To improve generalisation, data
augmentation is introduced in [10] and [32] to generate new
data from seen environments. Fu et al. propose to mine hard
training samples via adversarial learning in [11]. In [37], re-
inforcement learning based on adaptively learned rewards is
utilised to enhance generalisation. On the other hand, active
exploration is designed in [36] to learn when, where, and
what information to explore so as to form a robust agent.

In contrast to these methods, which take words and dis-
crete images within each panorama as the minimal unit for
encoding, our model is designed to handle fine-grained in-
puts, namely objects and words, to facilitate coordinated
textual and visual understanding.
Vision-Language BERTs. VL-BERTs have been widely
adopted to learn joint visual and textual models [30, 21, 31,
9, 18] for Vision-and-Language tasks, such as Visual Ques-
tion Answering [5], Visual Commonsense Reasoning [40]
and Referring Expressions [15]. In VLN, Majumdar et
al. [24] predict whether a trajectory matches an instruction
using a transformer. However, this method does not pre-
dict navigation actions. On the other hand, as pointed out
in [12], most existing VL-BERTs learn to match textual and
visual elements without considering their relationship to the
actions available. To solve the problem, Hao et al. [12]
propose a model that is pre-trained with image-text-action
triplets generated from the R2R dataset. However, the pre-
trained model only acts as an instruction encoder and there-
fore represents a pre-processing step for other VLN meth-
ods. R-VLNBERT [14] enhances existing VLBERTs for
VLN by representing agent states with the built-in [CLS]
token, while it learns word-image level relationship.
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Figure 2. An unrolled illustration of the proposed Object-and-Room Informed Sequential BERT (ORIST), which is composed of three
main parts: the object-level initial embedding module (Section 3.2), the sequential BERT module (Section 3.3), and the room-and-direction
multi-task module (Section 3.4). Note that all modules are reused between steps.

One of the key distinguishing features of the model pro-
posed here is that, unlike most of existing VL-BERTs that
are designed for one-round decision tasks (e.g., VQA), our
model is endowed with temporal context and thus is suitable
for partially observed Markov decision processes.

3. Proposed Method
In VLN tasks, a robot agent is given a natural language

instruction X = {x1, x2, · · · , xL}, where L is the length
of the instruction and xi is a single word token. At each
step, the agent is provided with a panoramic RGB image,
which is divided into 36 discrete views V = {vt,i}36i=1

(12 horizontal by 3 vertical). A navigable location falls
in one of these views and it has an orientation Dt,i =
⟨sin θt,i, cos θt,i, sinϕt,i, cosϕt,i⟩, where θ and ϕ are mea-
sured relative to the current heading and elevation. At each
step, the agent predicts the next navigation action by select-
ing from a candidate set of navigable locations (including
the current location). The agent stops if the current location
is selected or it reaches the maximum number of steps.

3.1. Overview

Figure 2 shows an unrolled illustration of the proposed
Object-and-Room Informed Sequential BERT (ORIST).
The ORIST is mainly composed of three parts: an object-
level initial embedding module, a sequential BERT mod-
ule and a room-and-direction multi-task module. All these
modules are reused between steps. At step t, the initial em-
bedding module takes as inputs an instruction X , features
of object regions Ot, and navigable orientations Dt. Then
its outputs are fed into transformer layers of the sequential
BERT module to adaptively fuse information from individ-
ual words and visual objects as well as each orientation via
the self-attention mechanism. Finally, the fused features

Ht,U are sent to two branches. One branch is the room-
and-direction multi-task module, which predicts the room
type Rn,t and Rg,t, the direction Dt, the next navigating
action at, and the navigation progress pt. Another branch
is the LSTM of the sequtial BERT module, which produces
a new temporal context ht and connects to the next naviga-
tion step. The whole model is trained end-to-end.

3.2. Object-level Initial Embedding Module

Existing VLN methods typically use ResNet [13] fea-
tures of each discrete view to represent visual information.
However, this may weaken vision-and-language matching
because the ResNet is trained for image classification which
may represent only one salient object, leading to the same
image feature being matched to a variety of different ob-
jects mentioned in instructions (e.g., laptop and table). To
address this issue, we introduce an object-based representa-
tion to facilitate object-level cross-modality matching. The
bounding boxes are adopted from REVERIE [28].

When designing the embedding module, we take into ac-
count the following three considerations. (I) The distinct
characteristics of natural-language instructions and visual
objects, e.g., word tokens vs. object regions, word order vs.
object position. (II) The type of an input token (e.g., a vi-
sual or textual input). (III) The characteristic of VLN tasks,
e.g., the orientation feature of each navigable location. To
this end, for an instruction X and a candidate location in
view vt,i composed of N i objects Ot,i = {o1t,i, · · · , oN

i

t,i },
we obtain the initial embedding via

Et,w = Emb(xtok) + Emb(xpos) + Emb(xtype),

Ei
t,o = FC(ofea

t,i ) + FC(opos
t,i ) + Emb(otype

t,i ),

Ei
t,d = FC(dt,i), (1)

where Et,w ∈ R(L+2)×dh denotes the embedding of the
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expanded instruction xtok = {[CLS],X , [SEP]}. In ad-
dition, xpos = [0, 1, · · · ] is zero-based token position;
Ei

t,o ∈ RNi×dh denotes an embedding of N i object re-
gions; ofea

t,i ∈ RNi×2048 represents objects’ features ex-
tracted using FasterRCNN as described in [3]; and opos

t,i ∈
RNi×7 is the position feature of N object regions, of which
each row is composed of the x, y location of the top-left
and bottom-right points, and the region’s height, width, and
area. In Eq. (1), xtype = 0 and otype

t,i = 1 are token
type vectors, and Ei

t,d ∈ R1×dh denotes the embedding of
the candidate location’s orientation dt,i ∈ R1×4 = Dt,i.
Emb(·) is a projection layer that embeds tokens to feature
vectors. FC(·) is a fully-connected layer.

For each candidate location i, we obtain its initial em-
bedding matrix Hi

t,0 = [Et,w,E
i
t,o,E

i
t,d] ∈ RCt×dh , where

Ct is the maximum number of tokens at step t across all
candidates. The subscript 0 in Hi

t,0 denotes it is an ini-
tialisation before going through the sequential BERT mod-
ule (detailed in the next section). The concatenation of
all Gt candidates at step t constructs the initial embedding
Ht,0 = [H1

t,0; · · · ;H
Gt
t,0] ∈ RGt×Ct×dh .

3.3. Sequential BERT Module

BERT-like models have demonstrated their effectiveness
in learning textual-visual entity matching [9, 30]. How-
ever, most of them are designed for one-round decision
tasks (e.g., VQA). VLN, as a multi-round task and partially
observed Markov decision process, requires a model to be
aware of which parts of an instruction have been completed
and which parts have yet to be executed. As such, a direct
application of BERTs to VLN does not perform well due to
the loss of temporal context. To address these problems, in
this work we propose a sequential BERT module.

The light blue panel in Figure 2 shows an unrolled il-
lustration of our sequential BERT at step t and t + 1,
which consists of two main components: transformer layers
and an LSTM. Each transformer layer Fj is a basic trans-
former [34], which is a multi-head self-attention

Ht,j = Fj(Ht,j−1,Mt), (2)

where Ht,j−1 ∈ RGt×Ct×dh is the output from a previous
transformer layer, Mt is a mask matrix indicating whether
a token can be attended, and Ht,j = [At,j,1, · · · ,At,j,n] is
a concatenation of outputs of n attention heads. Concretely,
the k-th head’s output At,j,k is obtained by

At,j,k = softmax(
Q⊤K√
dj,k

+Mt)V
⊤,

Q = WQ
j H⊤

t,j−1,K = WK
j H⊤

t,j−1,V = WV
j H⊤

t,j−1, (3)

where W∗
j is a learnable parameter matrix, and dj,k is

the embedding dimension of At,j,k. Assume we have U

transformer layers in total, as was demonstrated experi-
mentally in [6, 9, 21], then the embedding of the first to-
ken (i.e., [CLS]) of the last transformer layer, denoted as
Ht,U [0] ∈ RGt×dh , is able to represent fused mutually at-
tended information from textual and visual inputs.

To enable these transformer layers to model temporal
context, an intuitive solution is to use a collection of object
entities observed along the navigation path. In this way,
one can expect that previously observed objects might be
matched to completed instruction parts, and new visual per-
ceptions could be matched to instruction parts to be exe-
cuted. However, this will involve a huge computation cost
(e.g., GPU memory and computation time) as the agent nav-
igates. To tackle this problem, we propose to employ an
LSTM to adaptively learn how to summarise seen instruc-
tions and visual perceptions as the agent navigates. Specif-
ically, we first encode Ht,U [0], which contains mutually at-
tended instruction and visual information, to get a deeper
representation Et ∈ RGt×dh via

Et = Tanh(WeHt,U [0]). (4)

Then, we aggregate surrounding information from all the
Gt candidates via It = AvgPool(Et). Next, we obtain the
new temporal context ht by

ht, ct = LSTM(It,ht−1, ct−1), (5)

where ht−1 and ct−1 represents previous temporal context
and LSTM cell state, respectively. h0 and c0 are initialised
with zeros. Thus, ht contains the accumulated temporal
context along the navigation and it is passed to the next nav-
igation step as shown by the right panel of Figure 2.

3.4. Room-and-Direction Multi-task Module

Room types and directions can be useful information for
navigation as they are often mentioned in instructions and
provide strong navigation guidance. We note that a certain
room type can usually be characterised by the presence of
specific objects, such as bed for bedroom, TV/couch for liv-
ing room, oven/microwave for kitchen. As our model takes
objects as inputs, it is thus able to predict which room the
agent should go to according to the current visual percep-
tion and instruction. Furthermore, it is also important for
agents to understand the room that constitutes its final goal.
This can help the agent make decisions based on the long-
term goal. Additionally, we enable an agent to recognise
the relative direction (i.e., left/right/front/back) of each can-
didate in order to better align with key direction cues (e.g.,
“turn left/right”) in instructions. The progress monitor [41]
is also adopted to further facilitate analysis of progress. We

1658



use MLP layers to implement the above goals:

Dt = MLP(Et),

Rn,t = MLP(It), Rg,t = MLP(It),

at = MLP(Et), pt = MLP(It), (6)

where Dt,Rn,t,Rg,t,at,pt denote the relative direc-
tion prediction for each candidate (we evenly divide
the surrounding 360◦ into four directions representing
left/right/front/back), the room type prediction for the next
step and the goal location, the action logit, and the navi-
gation progress, respectively. The ground truth room types
are extracted from the Matterport3D dataset [7]. Et is com-
posed of embeddings of all candidate and It is the fused
embedding of all candidates as described in Section 3.3.

Loss Function. Similar to [32], we adopt the training
strategy of mixed Imitation Learning (IL) and Reinforce-
ment Learning (RL). Based on the above-mentioned tasks,
for imitation learning we have the following losses:

LIL = LD + λ1LRn + λ2LRg + La + Lp, (7)

where LD, LRn , LRg , La are cross-entropy losses for the
relative direction prediction Dt, the room type of the next
step Rn,t, the room type of the goal location Rg,t, and the
navigating action at, respectively. λ1 and λ2 are trade-off
factors. Lp is the progress loss adopted from [41], which is
a BCELoss Lp =

∑
t −p∗t log(pt) where p∗t is the teacher

progress at each time step t. As in [32], the A2C reinforce-
ment learning method is adopted with the loss function

LRL = −
∑
t

a∗t log(pa∗
t
)Zt, (8)

where a∗t is a sampled navigation action, pa∗
t

is its proba-
bility and Zt = FC(It) is an estimated reward. Finally, the
total loss is

L = LRL + λ3LIL, (9)

where λ3 manages the trade-off between RL and IL.

4. Experiments and Analysis
In this section, we present extensive experimental evalu-

ations on three VLN tasks: REVERIE [28], NDH [33], and
R2R [4]. We first give a brief introduction to these tasks
and the evaluation protocols, and then present two sets of
experimental results: one is a comparison against several
state-of-the-art VLN methods, and the other one is an abla-
tion study on the proposed model.

4.1. Evaluation Tasks

REVERIE. This task [28] requires an agent to localise
a remote target object within a photo-realistic indoor envi-
ronment on the basis of concise human instructions, such

as “Go to the massage room with the bamboo plant and
cover the diamond shaped window”. REVERIE contains
two sub-tasks: (I) Vision-Language Navigation, where the
agent needs to navigate to the target room; (II) Referring
Expression Grounding, where the agent must identify the
target object of an interaction from a provided set of objects
(the interaction is not required). Here we compare primar-
ily against the navigation sub-task, as our model has been
developed for navigation rather than grounding.

NDH. The Navigation from Dialog History (NDH) task
is derived from the Cooperative Vision-and-Dialogue Nav-
igation (CVDN) dataset [33]. Specifically, each item of the
CVDN dataset is a trajectory paired with a navigation di-
alogue between an Oracle and a Navigator, where the Ora-
cle provides additional instruction towards navigating to the
goal location when Navigator requests help. Each round
of dialogue (together with previous dialogue if it exists)
in CVDN is extracted, and forms an item within the NDH
dataset. Based on which path is selected as the ground-truth,
NDH has three settings: (I) the Oracle setting, which uses
the shortest path observed by the Oracle; (II) the Navigator
setting, which uses the path taken by Navigator; and (III)
the Mixed setting, which takes the path of Navigator if it
visits the target location, or the shortest path if not.

R2R. This task [4] requires an agent to follow natural lan-
guage instructions to navigate from one room to a remote
goal room in a photo-realistic indoor environment. Instruc-
tions in R2R contain rich linguistic information about the
navigation trajectory, such as “Walk through the kitchen.
Go past the sink and stove, stand in front of the dining table
on the bench side.”

4.2. Implementation details

We set parameters λ1 and λ2 to 0.2 to keep the associated
losses at the same level with others, and set λ3 to 0.2 fol-
lowing [32]. We use U = 12 transformers in our sequential
BERT module. To take advantage of existing BERT-based
works, we initialise the transformers in our model with the
weights of UNITER [9]. UNITER is originally trained on
four image-text datasets (COCO [19], Visual Genome [17],
Conceptual Captions [29], and SBU Captions [26]) for joint
visual and textual understanding. Note that these datasets
have no overlap with the VLN data.

Our model is trained separately for each task. We use
the AdamW [20] optimiser with a learning rate of 1× 10−6

and the model is trained on 8 Nvidia V100 GPUs. For the
R2R task, following common practice, augmentation data
from Envdrop [32] are used. For the REVERIE and NDH
tasks, only the original training data are used. It is worth
noticing that although Thomason et al. [33] show that using
the complete dialogue leads to much better results on the
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Methods
Val Seen Val UnSeen Test

Navigation RGS↑ RGSPL↑ Navigation RGS↑ RGSPL↑ Navigation RGS↑ RGSPL↑SR↑ OSR↑ SPL↑ TL↓ SR↑ OSR↑ SPL↑ TL↓ SR↑ OSR↑ SPL↑ TL↓
RCM [38] 23.33 29.44 21.82 10.70 16.23 15.36 9.29 14.23 6.97 11.98 4.89 3.89 7.84 11.68 6.67 10.60 3.67 3.14
SM [22] 41.25 43.29 39.61 7.54 30.07 28.98 8.15 11.28 6.44 9.07 4.54 3.61 5.80 8.39 4.53 9.23 3.10 2.39
FAST-Short [16] 45.12 49.68 40.18 13.22 31.41 28.11 10.08 20.48 6.17 29.70 6.24 3.97 14.18 23.36 8.74 30.69 7.07 4.52
Nav-Pointer [28] 50.53 55.17 45.50 16.35 31.97 29.66 14.40 28.20 7.19 45.28 7.84 4.67 19.88 30.63 11.61 39.05 11.28 6.08
ORIST 45.19 49.12 42.21 10.73 29.87 27.77 16.84 25.02 15.14 10.90 8.52 7.58 22.19 29.20 18.97 11.38 10.68 9.28

Table 1. Results on the REVERIE dataset. MAttNet [39] is adopted for object grounding. The top two results are highlighted in red bold
and blue italic fonts, respectively.

NDH task (rather than using just the oracle’s answer), here
we choose the oracle’s answer as instruction to avoid the
additional computation cost, and we achieve the best results
documented, as is demonstrated later.

4.3. Evaluation Metrics

Metrics for REVERIE. Trajectory Length (TL), Success
Rate (SR), Success weighted by Path Length (SPL) and Or-
acle Success Rate (OSR) are commonly used metrics for
the navigation sub-task. Navigation is considered success-
ful if the target object can be observed at the agent’s final
location, and considered as oracle-successful if the target
object can be observed at one of its passed locations. TL is
the average length of agent’s navigation trajectories. SR is
the percentage of successful tasks. SPL is the main metric
for navigation [2], which represents a trade-off between SR
and TL. Higher SPL indicates better navigation efficiency.
Additionally, REVERIE uses Remote Grounding Success
rate (RGS) and RGS weighted by Path Length (RGSPL) as
whole-task performance metrics to measure the percentage
of tasks that correctly locate the target object.

Metrics for NDH. Goal Progress (GP) is the main met-
ric [33], which measures how much progress (in meters)
the agent has made towards the target. A higher GP denotes
a better performance.

Metrics for R2R. TL, SR, SPL and Navigation Error
(NE) are four widely adopted metrics. A navigation is con-
sidered as successful if the agent stops within 3 meters to
the target. NE is the average distance between the agent’s
final location and the target.

4.4. Comparison to State-of-the-Art Methods

Results on REVERIE. REVERIE is a newly proposed
VLN task [28]. We evaluate our method against three base-
lines and a state-of-the-art model provided in [28]. Our
method first performs navigation and then conducts object
grounding as in [28] after the agent stops.

Table 1 presents the evaluation results. The proposed
ORIST method achieves the best performance on both the
Val UnSeen and Test splits. Particularly, our ORIST ob-
tains nearly double the previous best performance in terms
of the main SPL and RGSPL metrics on the Val UnSeen
split. On the test split, it also achieves approximately 7%
and 3% absolute improvement in terms of the navigation

Agent Val Unseen Test Unseen
Oracle Navigator Mixed Oracle Navigator Mixed

Random 1.09 1.09 1.09 0.83 0.83 0.83
Skyline 8.36 7.99 9.58 8.06 8.48 9.76
Seq2Seq [4] 1.23 1.98 2.10 1.25 2.11 2.35
CMN [42] 2.68 2.28 2.97 2.69 2.26 2.95
PREVALENT [12] 2.58 2.99 3.15 1.67 2.39 2.44
ORIST 3.30 3.29 3.55 2.78 3.17 3.15

Table 2. Results of the proposed method on the NDH datasets com-
pared against state-of-the-art methods. Note that PREVALENT is
pre-trained on a large scale augmented VLN dataset while ours
not. The top two results are highlighted in red bold and blue italic
fonts, respectively.

Agent Val Unseen Test
TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑

FAST [16] 21.17 4.97 56 43 22.08 5.14 54 41
SM [22] 17.09 - 43 29 18.04 5.67 48 35
EnvDrop [32] 10.70 5.22 52 48 11.66 5.23 51 47
AuxRN [41] - 5.28 55 50 - 5.15 55 51
OAAM [27] 9.95 - 54 50 10.40 5.30 53 50
SERL [37] - 4.74 56 48 12.13 5.63 53 49
AVIG [36] 20.60 4.36 58 40 21.60 4.33 60 41
PREVALENT[12] 10.19 4.71 58 53 10.51 5.30 54 51
ORIST 10.90 4.72 57 51 11.31 5.10 57 52

Table 3. Single run results on the R2R dataset compared against
state-of-the-art methods. The top two results are highlighted in
red bold and blue italic fonts, respectively.

metric SPL and the remote object grounding metric RGSPL,
respectively. As analysed later in the ablation study, this
mainly arises from the sequential design for the base BERT
model and the direction loss. We also note that its naviga-
tion performance on the Val Seen split ranks second, which
indicates our ORIST still has room to further learn from the
training data.

Results on NDH. NDH is a recently proposed VLN task.
We compare against CMN [42] and PREVELANT [12]. We
also compare against Seq2Seq [4], the baseline proposed
along with the NDH dataset.

Table 2 presents the navigation results using GP as the
metric in three settings. The results show that our ORIST
method achieves the best performance on both Val Un-
seen and Test Unseen splits under all settings. Specifically,
ORIST achieves about 0.9 meters absolute improvement
(about 40% relative improvement) under the “Navigator”
setting on the Test Unseen split. As shown later in the abla-
tion study, both our sequential design and new losses con-
tribute to the final success.
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Module NDH Val Seen NDH Val Unseen REVERIE Val Seen REVERIE Val Unseen
S LD LRn LRg GP↑ GP↑ SR↑ OSR↑ SPL↑ TL↓ SR↑ OSR↑ SPL↑ TL↓

#1 4.00 2.42 41.9 47.1 39.5 10.83 9.50 23.9 7.7 12.43
#2 ✓ 3.80 2.86 41.4 44.9 40.1 10.95 15.1 21.7 13.3 11.23
#3 ✓ ✓ 3.88 3.09 41.5 44.3 39.5 10.64 18.6 24.0 16.9 10.41
#4 ✓ ✓ ✓ 4.12 3.15 42.9 46.9 40.3 10.96 17.1 24.3 14.9 12.24
#5 ✓ ✓ ✓ ✓ 4.21 3.30 45.2 49.1 42.2 10.73 16.8 25.0 15.1 10.90

Table 4. Ablation study of our model. Symbols S, LD,LRn ,LRg denotes our sequential design, direction loss, room-type loss for the next
step, and room-type loss for the goal location, respectively.

Results on R2R. We compare our model against eight
state-of-the-art navigation methods, including FAST [16],
SelfMonitor [22], EnvDrop [32], AuxRN [41], OAAM [27],
SERL [37], AVIG [36], and PREVALENT [12]. PREVA-
LENT [12] is pre-trained on a large scale augmented
VLN dataset, and hence is not directly equivalent. VLN-
BERT [24] is not compared because it needs to obtain a set
of candidate paths via extra VLN methods. Table 3 presents
the comparison of navigation results. Our ORIST method
achieves favorable results on the Test split in terms of the
main metric SPL, even taking PREVALENT into consider-
ation.

4.5. Ablation Study

In this section, we evaluate the impact of the key com-
ponents of our model: the sequential design for BERT and
the newly proposed three loss functions. The evaluations
are conducted on the NDH and REVERIE datasets. NDH
utilises detailed navigation instructions as in the R2R task,
while REVERIE utilises much shorter and high level in-
structions. The results are shown in Table 4, where the sym-
bols S, LD,LRn , and LRg denote the sequential design for
BERT, direction loss, room-type loss for the next step, and
room-type loss for the goal location, respectively.

Effectiveness of the Sequential Design. To evaluate the
effectiveness of the proposed sequential design, we com-
pare against its variant which is a direct application of
BERT (i.e., without the connection from step t to step t+1).
Both are initialised from UNITER. The results are presented
in rows 1 and 2 of Table 4. They show that: (I) For Val Un-
seen splits, our sequential design achieves significant im-
provements: 0.44 meters absolute improvement (18% rela-
tive improvement) for NDH task and 6% absolute improve-
ment (73% relative improvement) for REVERIE task. (II)
For Val Seen splits, a slight performance regression is ob-
served for the NDH task and a slight improvement appears
on the REVERIE task. These results show that our sequen-
tial design effectively enhances the generalization ability
and may reduce over-fitting in seen environments.

Effectiveness of Direction and Room-type Losses. By
comparing the results in rows 2 and 3 of Table 4, we ob-
serve that the direction loss LD brings consistent perfor-

mance improvement on all four splits (in terms of SR for
REVERIE), and particularly on the unseen splits. This
might be attributed to that the direction information in-
creases the distinguishability of navigation candidates and
is easily generalized to unseen scenarios. Regarding the
room-type losses (rows 3, 4, and 5), we find that for the
NDH task both losses boost the performance (e.g., from
3.88 to 4.21 on Val Seen, and from 3.09 to 3.3 on Val Un-
seen); for the REVERIE task, both losses improve perfor-
mance on the Val Seen split (the SPL score increases from
39.5 to 42.2, SR from 41.5 to 45.2) while the next-room
type loss LRn harms on Val Unseen split. This might be
caused by the fact that there is no next room mentioned
in REVERIE. In contrast, its improvement on the Val Seen
split could arise from over-fitting to some seen scenarios.

4.6. Qualitative Results

In Figure 3, we visualise one navigation trajectory on
the R2R task to give an intuitive example of how our agent
navigates. The visualisation is based on the attention visu-
alisation tool BertViz [35]. The left panel shows the process
of attention shifting as the agent navigates. Navigable loca-
tions at each step are marked using blue cylinders and the
perceived views for each navigable location are bounded us-
ing an indexed rectangle. The green rectangle denotes the
view associated with the next step predicted by our model.
Objects in each view are marked with red bounding boxes.
As shown in the left panel, the attention on the instruction
shifts intuitively as the agent navigates. Concretely, at the
first step, the agent focuses on “exit the room” and it goes
forward to the door. Next, the agent becomes aware of “turn
left” and performs the correct action. Then, at steps 3∼5,
the attention is updated from “the left room” to “proceed
through the room”, and the agent behaves accordingly. At
the last two steps, the attention focuses on the end of the
instruction and the agent recognises the bathroom by virtue
of the presence of the sink. Hence, it chooses the correct
viewpoint and finally decides to stop.

To illustrate that the agent is on the road to “know
where”, we take the decision progress of step 6 as an ex-
ample and show details in the right panel. Specifically, the
right panel shows two kinds of attention distributions un-
der each navigation candidate: 1) Attention on the instruc-

1661



Figure 3. Visualisation of a navigation trajectory. The left panel depicts the whole trajectory, and the right panel shows attention distribu-
tions of a specific step (see Section 4.6 for details). Object tokens are indicated by “[ ]”, and “[ORI]” denotes the orientation token.

tion. As shown by the pink color on the left column words
(the darker the larger), the “bathroom” is focused on. 2)
Self-attention on all tokens. In particular, the right column
shows attention distribution of “bathroom” on all tokens.
We can see “bathroom” is strongly connected to the ob-
ject “[drawer#sink#table]” (a darker line between two to-
kens denotes a stronger connection). The 12 kinds of colors
denote attention computed from 12 attention heads. Ad-
ditionally, at the bottom of the right panel, we present the
progress prediction, the next room and goal room type pre-
diction, and the direction of each navigable viewpoint. The
agent successfully infers these clues from the instruction
and visual perceptions. All of these information assist the
agent making the correct navigation decision.

5. Conclusion

We have proposed a novel unified sequential BERT
model for general indoor VLN tasks. The sequential char-

acteristic enables the BERT to be better applied to several
VLN tasks. By taking object-level and word-level inputs,
our model is able to learn fine-grained relationships across
textual and visual modalities for VLN. Moreover, we de-
sign a new direction loss and two room-type losses to fa-
cilitate the model to predict more accurate navigation ac-
tions. Extensive experimental evaluations on three VLN
tasks demonstrate the effectiveness and generalisation abil-
ity of the proposed method.

As our sequential BERT is able to directly predict navi-
gation actions, it enables us to combine the multi-task VLN
pre-training and downstream task fine-tuning. We leave this
as a future work.
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