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Abstract

The crux of self-supervised video representation learning
is to build general features from unlabeled videos. How-
ever, most recent works have mainly focused on high-level
semantics and neglected lower-level representations and
their temporal relationship which are crucial for general
video understanding. To address these challenges, this pa-
per proposes a multi-level feature optimization framework
to improve the generalization and temporal modeling abil-
ity of learned video representations. Concretely, high-level
features obtained from naive and prototypical contrastive
learning are utilized to build distribution graphs, guid-
ing the process of low-level and mid-level feature learn-
ing. We also devise a simple temporal modeling module
from multi-level features to enhance motion pattern learn-
ing. Experiments demonstrate that multi-level feature opti-
mization with the graph constraint and temporal modeling
can greatly improve the representation ability in video un-
derstanding. Code is available here.

1. Introduction

Video representation learning has been a fundamental
problem in computer vision to solve a series of video anal-
ysis tasks, e.g., action recognition and detection [11, 72, 7,
18, 39, 79], video retrieval [40, 45], video caption [60, 48],
and etc. To address this problem, some large-scale hu-
man annotated datasets, e.g., Kinetics [11], ActivityNet [7],
YouTube-8M [1], are developed to facilitate video under-
standing in specific downstream tasks. However, human la-
beling on videos is expensive, and fully-supervised methods
fail to leverage massive unlabeled video data. Therefore, it
is significant to develop unsupervised video representation
learning without resorting to manual labeling.
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Figure 1. Graph presentation of four conditions. The nodes de-
note different samples, the edges present sample-wise relation-
ships, and different colors indicate different characteristics, e.g.,
appearance, motion and semantic. Fig. 1(a) one hot label in In-
foNCE loss, we use self-loop to present only the instance with its
augmented view are regarded as positive. Fig. 1(b) instance-wise
similarity distribution, measured by cosine similarity in embed-
ding space1. We use arrows to show the samples with similarity
above threshold. Fig. 1(c) semantic-wise distribution, we connect
samples of the same category. Fig. 1(d) comprehensive distribu-
tion formulated by the intersection of the former two. Note that
we omit self-loops in the last three for concise presentation.

To achieve this goal, early works designed various pre-
text tasks to uncover effective supervision from video se-
quences [6, 46, 33, 31, 74, 63]. Recently, contrastive
learning has shown to be powerful in image representation
learning [28, 47, 55, 12, 26, 77]. It encourages augmen-
tation invariant representations by leveraging instance dis-
crimination to attract augmented samples of the same in-
stance and repel those of different instances. Later, beyond
naive instance discrimination, inter-image relationships and
semantic structures are proved helpful for learning high-
quality representations [36, 67]. To expand this pipeline to
video domain, diverse spatiotemporal augmentation tech-
niques are proposed to construct contrastive pairs and en-
hance motion modeling [17, 50, 64, 75, 14]. Some works
used contrastive learning to form temporal cycle or make fu-
ture prediction to boost dense spatiotemporal feature mod-

1The instance-wise similarity distribution is asymmetric due to the nor-
malization, it is a directed graph.
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eling [30, 23].
However, there are obvious limitations in these works.

Firstly, previous works only explore either instance-wise or
semantic-wise distribution [17, 50, 36], lacking a compre-
hensive perspective over both sides. Secondly, less effort
has been placed on low-level features than high-level repre-
sentations, while the former is proven critical for knowledge
transfer [80]. Third, directly performing temporal augmen-
tations, e.g., shuffle and reverse, at input level instead of
feature level could impair feature learning [4].

To address these challenges, we propose a novel frame-
work that explicitly optimizes features from a unified multi-
level view to achieve more general representations. The
representations from different levels of deep neural net-
works show different generalization and abstraction proper-
ties. Specifically, it is of common view that high-level fea-
tures are more representative towards instances or seman-
tics but less feasible towards cross-task transfer. In contrast,
low-level features are transfer-friendly but lack structural
information over samples, and are particularly sensitive to
temporal statistics.

This consideration is particularly meaningful from dif-
ferent perspectives. In a high-level sense, we optimize the
deep representation from two aspects: 1) instance discrim-
ination with conventional InfoNCE loss; 2) semantic struc-
ture modeling with a prototypical branch. In this way,
the high-level representations can procure structural rela-
tionship among samples by formulating both instance- and
semantic-wise relationships into distribution graphs as de-
picted in Fig. 1. In a low-level sense, these distribution
graphs serve as reliable cues to aggregate samples that share
similar semantics and instance characteristics (e.g., appear-
ance, motion) for better optimization in multiple shallower
feature spaces. Through this, low-level features are im-
posed with high-level relation knowledge while keeping
good cross-task generalization ability.

Since low-level representation is sensitive to input tem-
poral sequences, we replace the previous data-level tem-
poral augmentation methods with a multi-level solution to
enhance the temporal modeling of the pretrained represen-
tation. First, we apply temporal augmentation on multi-
level features to construct contrastive pairs that have differ-
ent motion patterns with the objective designed to distin-
guish the augmented samples and original ones. Second, a
retrieval task is proposed to match the features in short and
long time spans based on their semantic consistency. Com-
pared with previous data-level solutions, our method avoids
forcing the backbone model to adapt to unnatural sequences
which corrupts spatiotemporal statistics. Experimental re-
sults reveal that our proposed simple temporal modeling is
more general and suits different network backbones, while
the conventional augmentation technique is somewhat lim-
ited to two-pathway networks like SlowFast [16].

In brief, our contributions can be summarized as:

• We propose a multi-level feature optimization frame-
work for unsupervised video representation learning.
Both instance- and semantic-wise knowledge learned
from high-level features are leveraged to form a more
reliable self-supervisory signal, which is employed to
optimize low-level feature distributions thereby en-
hancing transferability.

• We develop a simple but effective temporal modeling
module with a multi-level augmentation scheme for
more robust temporal analysis.

• Our method achieves state-of-the-art performance on
two downstream tasks, action recognition and video
retrieval, across two datasets, UCF-101 and HMDB-
51. Ablation studies demonstrate the efficacy of multi-
level feature optimization as well as the new temporal
modeling strategy.

2. Related Work
2.1. Contrastive Representation Learning

Contrastive learning aims to discriminate instances by
attracting the positive pairs and repelling the negative
pairs [20, 19, 70]. A line of works have adopted this
approach for self-supervised representation learning [28,
47, 55, 12, 26, 77]. But there exits one main drawback
of the one-hot labels in InfoNCE loss, i.e. it only re-
gards the augmentation of the query as positive, and con-
siders all other samples as equally negative. To address
this problem, [68, 15] employed the similarity distribu-
tion in the embedding space to guide contrastive learning
in another view. Further, [69, 71, 67, 21, 36] demon-
strated that the semantic-wise relationships between differ-
ent samples could improve the high-level representation.
To better extract the latent semantics in unlabelled data,
[10, 2, 3, 51] leveraged Sinkhorn-Knopp algorithm [13]
to generate uniformly distributed clusters as pseudo labels
for pretraining. However, [80] demonstrated only uti-
lizing instance discrimination or semantic label is not the
optimal solution to establish transferable representations.
Therefore, we propose to jointly consider the instance-
and semantic-wise similarity distribution to form a reliable
self-supervision signal, which simultaneously maintains the
learned instance-wise unique information and filters out
hard negatives.

2.2. Multi-level Feature Analysis

The features of different layers in the deep neural net-
work tend to possess different attributes, e.g., lower-level
features contain more information of object shapes and
are more transferable, while higher-level features contain
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more texture cues and are more specific to certain seman-
tics [29, 83, 78, 80]. [80] demonstrated that it is the low-
level and mid-level features that majorly transfer from pre-
trained networks to downstream tasks. However, most ex-
isting works on self-supervised representation learning only
focus on high-level features. Though [73] attempted to op-
timize intermediate feature vectors but did not establish re-
lationships between different levels. While in our work, we
use joint constraint of instance- and semantic-wise distribu-
tions inferred from high-level features to explicitly optimize
low-level and mid-level representations, which significantly
facilitates pretrained knowledge transfer.

2.3. Self-supervised Video Representation Learning

In self-supervised video representation learning, a line
of works designed various pretext tasks, e.g., temporal or-
dering [46, 74, 75], spatiotemporal puzzles [33, 63], col-
orization [59], playback speed prediction [31, 6] and tem-
poral cycle-consistency [66, 30, 37]. Some works proposed
to predict future frames from the given sequence to learn
feature embeddings [58, 57, 43, 5]. Recently, inspired by
the success of contrastive learning in static image, a line of
works expanded contrastive learning pipeline to video do-
main [17, 50, 44, 64, 41]. Typically, [22, 23] employed In-
foNCE loss for dense future prediction, [34, 24] performed
instance discrimination across different domains to boost
video representation. Though contrastive self-supervised
learning contributes to better representation, the temporal
information in videos is not well leveraged. [4] revealed
that directly applying temporal augmentations on input se-
quences even impairs the performance since these unnatural
sequences could corrupt spatiotemporal statistics. To tackle
this problem, [62, 61] disentangled static appearance and
dynamic motion information but required complex train-
ing procedures. In contrast, we propose a simple yet effec-
tive operation to apply temporal augmentations on extracted
multi-level features. In this way, we manage to embed the
temporal characteristics to the video backbone without en-
forcing the network to adapt to unnatural sequences.

3. Method
In this section, we introduce our proposed multi-level

feature optimization framework as shown in Fig. 2. Con-
cretely, we first present our instance and semantic discrim-
ination on high-level representations. Next, we develop
the instance- and semantic-wise distribution graph to gen-
erate reliable constraint for multi-level feature optimization.
Then, we propose a simple temporal modeling approach to
improve temporal discrimination at different time scales.

3.1. Beyond Instance Discrimination

Recent contrastive learning methods based on instance
discrimination have shown superior performance on self-

supervised representation learning, but the one-hot labels
in InfoNCE loss neglect the relationship between different
samples. Specifically, as shown in Eq. 1,

LNCE = −log h(q,q′)

h(q,q′) +
∑N

i=1 h(q,ki)
, (1)

where h(u,v) = exp(uTv/(τ ||u||2||v||2)) with tempera-
ture τ , given query q with its augmentation q′, and a nega-
tive key list {k1,k2, ...,kN}, the InfoNCE loss only regards
the augmentation of the query as positive and takes all other
samples as equally negative. However, considering that ex-
isting contrastive self-supervised learning pipelines mostly
require large negative pools, there exist some negative sam-
ples that may share similar characteristics, e.g., appearance,
motion or category, with the query. Under this circum-
stance, better instance discrimination would even lead to
performance drop in downstream tasks [56]. To this end,
besides instance-wise discrimination, we explicitly develop
another branch on the projected high-level feature vectors
for inter-sample relationship modeling.

Mathematically, we denote the projected high-level fea-
ture vector of the i-th sample and a-th augmentation view as
zai ∈ RC , where C is the channel dimension. The instance
discrimination learning objective can be formulated as

Lins = −
N∑
i=1

2∑
a=1

log
h(z1i , z

2
i )∑N

j=1 h(zai , z
∗
j )
, (2)

h(zai , z
∗
j ) =

{
h(z1i , z

2
i ) if i = j

h(zai , z
1
j ) + h(zai , z

2
j ) if i 6= j

(3)

where two augmentation views are adopted, and N is the
number of samples within a batch. For inter-sample re-
lationship modeling, we draw motivation from parametric
classification approaches [8, 36] by defining a learnable ma-
trix P ∈ RC×K as prototypes to serve as pseudo cate-
gory centers, where K is the number of prototypes1. We
perform matrix multiplication between zai and the proto-
types P followed with softmax regression to produce the
semantic-wise distribution pa

i ∈ RK . In the absence of cat-
egory annotations, it is intuitive to encourage pi of different
augmentations to be consistent, but it lacks the discrimina-
tion between different semantics, which can lead to feature
space collapse [9]. Inspired by [10, 2, 3] (where clustering
is regarded as an optimal transport problem), we employ
Sinkhorn-Knopp algorithm [13] to transform a set of distri-
butions {pa

1 ,p
a
2 , ...,p

a
N} into soft targets {sa1 , sa2 , ..., saN},

where sai ∈ RK , is uniformly distributed at category level,
indicating that there are around N

K samples per category. In
this way, the generated soft targets explicitly discriminate
samples of different semantic groups and avoids trivial so-

1K is not required to be consistent with the number of semantic classes
in the training set, it can be set to a comparatively large number as shown
in experiments.
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Figure 2. An overview of the multi-level feature optimization framework. We perform instance and semantic discrimination on high-level
representations and infer two similarity distribution graphs Gins and Gsem, which are combined into G, a reliable self-supervisory signal
to guide low-level and mid-level representation learning. Note that we stop the gradient from back-propagating to the inferred distribution.
To exploit multi-level features of different resolutions, we propose a temporal modeling strategy to enhance motion pattern discrimination.

lutions. Therefore, we optimize the model by minimizing
cross-entropy between the soft targets and probability dis-
tributions of different augmentations as in Eq 4:

Lsem = −
N∑
i=1

K∑
k=1

s1i (k)logp2
i (k) + s2i (k)logp1

i (k), (4)

where two augmentation views are adopted. Considering
that K could be larger than batch size, we design a queue to
store the semantic-wise distributions from previous batches
to ensure equal partition into K prototypes, but using only
those from the current batch for gradient back-propagation.
Different from previous methods [26, 10, 67], we store the
inferred distributions in the queue, which would generally
change slower than feature vectors in the training phase.
Therefore, our method could work with small batch sizes
without requiring a slow-progressing momentum encoder.

Finally, we jointly leverage Lins and Lsem to form the
self-supervisory objective for high-level representations:

Lhigh = Lins + Lsem. (5)

This enables the network to simultaneously discriminate the
instances of different characteristics and uncover potential
instance groups that share similar semantics.

3.2. Graph Constraint for Multi-level Features

The instance- and semantic-wise constraints lead to ef-
fective high-level representations, but it is worth noting that
it is the lower-level features that mainly transfer from the
pretrained network to downstream tasks [80]. Therefore,
it is crucial to also pay attention to lower-level represen-
tations. However, directly applying either instance or se-
mantic discrimination to intermediate layers does not bring
improvement [73, 80], hence it remains a challenge to im-
pose reasonable guidance on these features. Since we could
infer instance- and semantic-wise distributions from high-

level features as mentioned in Section 3.1, it is intuitive to
produce an ideal self-supervisory signal by taking these two
distributions into consideration.

Particularly, we denote the instance-wise similarity dis-
tribution as a directed graph Gins, and semantic-wise distri-
bution as an undirected graph Gsem. Both two graphs con-
sist of N nodes representing N different samples within a
batch, andN×N edges indicating the relationship between
each sample. The detailed formulation of the edges E is:

Eins(i, j) =

 W(i, j) if W(i,j)∑N
j=1W(i,j)

≥ η

0 if W(i,j)∑N
j=1W(i,j)

< η
, (6)

Esem(i, j) =

{
1 if argmax(s∗i ) = argmax(s∗j )
0 if argmax(s∗i ) 6= argmax(s∗j )

, (7)

s.t. W(i, j) =

{
h(z1i , z

2
i ) if i = j

h̄(z∗i , z
∗
j ) if i 6= j

, (8)

where two augmentation views are adopted as in Sec-
tion 3.1, and η is a threshold hyper-parameter, h̄(z∗i , z

∗
j ) =

1
4

∑2
m=1

∑2
n=1 h(zmi , z

n
j ), s∗i = s1i + s2i . In this way, Eins

indicates the inferred instance-wise similarity distribution,
which respects inter-sample relationship and is more realis-
tic data distribution than the one-hot encoding. Meanwhile,
to filter out hard negatives that share high similarity in Eins,
we employ Esem to truncate the edges between nodes of dif-
ferent pseudo categories. Under this circumstance, we man-
age to comprehensively utilize unique instance-wise infor-
mation and high-level semantics to generate reliable self-
supervision for low-level and mid-level features. Mathe-
matically, we jointly leverage Gins and Gsem to form the
combined graph G, whose edge weights E serve as the final
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soft targets:

E(i, j) =
Eins(i, j)Esem(i, j)∑N

k=1 Eins(i, k)Esem(i, k)
. (9)

We then calculate cross entropy between E and inferred
similarity distribution to optimize lower-level features, i.e.,

Lmul =−
N∑
i=1

N∑
j=1

2∑
a=1

E(i, j)log
h(zr

a
i , zr

∗
j )∑N

j=1 h(zrai , zr
∗
j )
, (10)

where r indicates the feature level (low-level or mid-level)
and zr is the projected feature vectors of the r-th level. With
this learning objective, we obtain more robust and represen-
tative lower-level features to facilitate knowledge transfer.

3.3. Temporal Modeling

Under the proposed multi-level representation optimiza-
tion framework, it is intuitive to utilize the temporal in-
formation at diverse time scales to enhance motion pattern
modeling since the features at different layers possess dif-
ferent temporal characteristics.

Motivated by previous works in video action recogni-
tion [65, 81, 49], achieving robust temporal modeling en-
tails two aspects: 1) Semantic discrimination between dif-
ferent motion patterns; 2) Semantic consistency under dif-
ferent temporal views. Therefore, we devise two learning
objectives to accomplish this.

First, for motion pattern discrimination, we use general
temporal transformations, e.g., temporal shuffle and reverse,
to augment samples of various motion patterns. However,
since the backbone is learned from scratch, directly apply-
ing augmentations on the input data will force the network
to adapt to unnatural sequences. We develop a simple yet
effective operation to perform temporal augmentation on
multi-level features fr, and then leverage a lightweight mo-
tion excitation module [38] to extract motion enhanced fea-
ture representations. Temporal transformations that result in
semantically inconsistent motion patterns can be regarded
as a negative pair of the original sample and the InfoNCE
loss is used to discriminate these augmented pairs, i.e.,

Laug = −
N∑
i=1

2∑
a=1

log
h(ME(fr

1
i ),ME(fr

2
i ))

h(ME(fr
1
i ),ME(fr

2
i )) + nega

i

,

(11)

s.t. nega
i =

A∑
k=1

h(ME(fr
a
i ),ME(Augk(fr

a
i ))), (12)

where ME is implemented by the Motion Excitation mod-
ule in [38] followed with spatiotemporal average pooling
and a two-layer multi-layer perception (MLP), Augk indi-
cates k-th temporal augmentation operation. In this way,
we embed the ability to discriminate motion patterns into
the backbone network. Second, to boost the consistency
under different temporal views, we propose to match the

feature of a specific timestamp from sequences of differ-
ent lengths. Concretely, for a short sequence vs covering
timestamp [t1, t2] and a long sequence vl covering [t3, t4],
where t3 < t1 < t2 < t4, we aim to retrieve the feature at
each timestamp of vs in the feature set of vl. Similarly, we
also formulate it as a contrastive learning problem, where
the feature of corresponding timestamp in vl serves as the
positive key, while others serve as negatives, i.e.,

Lret = −
∑

tq∈[t1,t2]

log
h(vs(tq), vl(tq))∑

tk∈[t3,t4] h(vs(tq), vl(tk))
. (13)

By leveraging Laug and Lret, we achieve motion pattern
discrimination as well as temporally consistent understand-
ing of different views. Moreover, both learning objectives
are implemented on multi-level features with diverse reso-
lutions, leading to more robust temporal modeling.

4. Experiment
4.1. Dataset and Evaluation

We use three popular video action recognition datasets,
Kinetics-400 [11], UCF-101 [53] and HMDB-51 [35]. For
self-supervised pretraining, we use the training set of UCF-
101 or Kinetics-400 for fair comparisons. For the down-
stream tasks, following [6, 23, 34], we use split 1 of UCF-
101 and HMDB-51 for evaluation.

4.2. Implementation Details

Self-supervised Pretraining. We use R3D-18 [25] or
S3D [72] as the backbone network. For temporal augmen-
tation, we use temporal shuffle and reverse as two typical
transformations. For the definition of contrastive pairs, we
regard clips from the same video as positive pairs, and those
of different videos as negative. Specifically, we randomly
sample 32 RGB frames within a video, and uniformly split
them into two 16-frame clips with resolution 112 × 112 to
form positive pairs. For the proposed timestamp retrieval,
we regard 16-frame clips as short sequences and the 32-
frame clips as long sequences. For multi-level feature op-
timization, we formulate it as a two-stage procedure. In
the first few epochs, we only use Eq. 5 to optimize high-
level features until they could generate reliable soft targets
in Eq. 9. Then, we jointly use Eq. 5 and Eq. 10 for multi-
level feature learning. The specific definition of multi-level
features is listed in the Supplementary Material. We use
batch size of 256, and set default number of prototypes to
1000 with queue length 1024. In total, we train for 100
epochs on Kinetics-400, and 300 epochs on UCF-101 us-
ing ADAM with an initial learning rate of 10−3 and weight
decay of 10−5. The learning rate is decayed by 10 at 70
epochs for Kinetics-400, and 200 epochs for UCF-101.
Action Recognition. For action recognition, we initial-
ize the backbone with pretrained model parameters except
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Method Backbone Dataset Res Freeze UCF HMDB
CBT [54] S3D K600 112 ! 54.0 29.5
CCL [34] R3D-18 K400 112 ! 52.1 27.8

MemDPC† [23] R2D3D-34 K400 224 ! 54.1 30.5
TaCo [4] R3D K400 - ! 59.6 26.7

Ours S3D K400 112 ! 61.1 31.7
Ours R3D-18 K400 112 ! 63.2 33.4

Order [74] R(2+1)D UCF 112 % 72.4 30.9
VCP [42] R3D UCF 112 % 66.0 31.5
STS [63] R3D-18 UCF 112 % 77.8 40.7
PRP [76] R(2+1)D UCF 112 % 72.1 35.0

Ours S3D UCF 112 % 74.3 37.2
Ours R3D-18 UCF 112 % 76.2 41.1

RotNet [32] R3D-18 K400 112 % 62.9 33.7
CBT [54] S3D K600 112 % 79.5 44.6

TempTrans [31] R3D-18 K400 112 % 79.3 49.8
Pace [64] R(2+1)D K400 112 % 77.1 36.6

ST-Puzzle [33] R3D-18 K400 224 % 63.9 33.7
SpeedNet [6] S3D-G K400 224 % 81.1 46.8

MemDPC [23] R2D3D-34 K400 224 % 78.1 41.2
DSM [61] R3D-34 K400 224 % 78.2 52.8

Ours S3D K400 112 % 76.5 42.3
Ours R3D-18 K400 112 % 79.1 47.6

Table 1. Comparison results for action recognition task. We show of settings of
the backbone used, pretraining dataset, resolution for fair comparison. Freeze
(tick) indicates linear probe, while no freeze (cross) indicates the finetune mode.
† means using two-stream networks, i.e., RGB and optical flow.

Method Multi-level UCF HMDB
w/o % 58.1 28.8

One-hot ! 57.8 28.5
Instance ! 59.4 30.1
Semantic ! 54.5 26.3
Combined % 60.4 32.3
Combined ! 63.2 33.4

Table 2. Ablation study on multi-level feature
optimization. Results are based on R3D-18.

Method Backbone UCF HMDB
w/o TM SlowFast 57.8 30.3
w/ CTM SlowFast 65.4 34.8
w/ NTM SlowFast 63.9 34.1
w/o TM R3D-18 55.9 28.1
w/ CTM R3D-18 43.2 21.1
w/ NTM R3D-18 63.2 33.4
w/o TM S3D 53.8 27.2
w/ CTM S3D 41.1 19.8
w/ NTM S3D 61.1 31.7

Table 3. Ablation study on temporal mod-
eling. Results are shown on three back-
bones: one two-pathway network SlowFast,
two single-pathway networks (R3D-18, S3D).
TM: temporal modeling, CTM: convention
temporal modeling approach, NTM: our tem-
poral modeling strategy.

the last fully-connected layer. There are two settings for
this task: 1) Finetune the whole network in a fully super-
vised manner (denoted as finetune); 2) Only train the linear
classifier (denoted as linear probe). For evaluation, follow-
ing [74, 64], we uniformly sample 10 clips for each video,
then center crop and resize them to 112×112. The final pre-
diction of each video is the average softmax probabilities of
each clip. Performance is measured by Top-1 accuracy.
Video Retrieval. For video retrieval, we directly use the
pretrained model as a feature extractor without finetuning.
Following [74, 42], we select videos in test set as query,
and aim to retrieve k-nearest neighbors in training set. We
employ the cosine similarity in feature space to measure the
similarity, and use Top-k recall R@k for evaluation.

4.3. Evaluation on Downstream Tasks

Action Recognition. In this subsection, we compare our
method with recent state-of-the-art self-supervised video
representation learning approaches on video action recog-
nition. In Table 1, we report the Top-1 accuracy of two
settings, i.e., linear probe and finetune. We exclude models
with much deeper backbones or multi-modal data from our
comparison. Note that [27] reports that with various train-
ing settings in finetune mode, even training from scratch

could reach performances comparable to that using pre-
trained models. Therefore, the linear probe can more con-
sistently compare the learned representations.

Under the linear probe setting, our method obtains the
best results on both datasets. Specifically, our method
with S3D and R3D-18 backbones outperform contrastive
learning based approaches, CBT [54] and CCL [34], re-
spectively, by a large margin. Even when compared with
MemDPC [23] which leverages two stream information
(RGB and flow), with larger resolution, our method still
shows significant advantages. Additionally, our method
also outperforms TaCo [4], an approach that carefully de-
signs various temporal pretext tasks, demonstrating our
model’s ability to represent the temporal aspect generally.

Under the end-to-end finetune setting, for models pre-
trained on UCF-101, our method can outperform ap-
proaches that used simple temporal order or playback rate
as their pretext task, and is comparable to STS [63] which
designed a complex learning scheme to characterize ap-
pearance and motion statistics. This demonstrates that
our method is capable of robust spatiotemporal modeling.
For models pretrained on Kinetics dataset, our method is
comparable to recent state-of-the-art approaches even with
smaller resolution; this is evident of the generalization of
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Method Backbone Dataset
UCF-101 HMDB-51

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
SpeedNet [6] S3D-G Kinetics-400 13.0 28.1 37.5 49.5 - - - -

VCP [42] R3D UCF-101 18.6 33.6 42.5 53.3 7.6 24.4 36.3 53.6
Pace [64] R3D-18 UCF-101 23.8 38.1 46.4 56.6 9.6 26.9 41.1 56.1

MemDPC [23] R2D3D-34 UCF-101 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7
PRP [76] R3D UCF-101 22.8 38.5 46.7 55.2 8.2 25.8 38.5 53.3
DSM [61] I3D UCF-101 17.4 35.2 45.3 57.8 7.6 23.3 36.5 52.5
STS [63] R3D-18 UCF-101 38.3 59.9 68.9 77.2 18.0 37.2 50.7 64.8

Ours R3D-18 UCF-101 39.6 57.6 69.2 78.0 18.8 39.2 51.0 63.7
Ours R3D-18 Kinetics-400 41.5 60.6 71.2 80.1 20.7 40.8 55.2 68.3

Table 4. Comparison results for video retrieval task. We report R@k (k=1,5,10,20) on UCF-101 and HMDB-51 datasets.

learned representations. Note that due to limited computa-
tional resources, we only report results with resolution 112
and training epochs 100. According to [50, 63], further im-
provement is expected when using resolution 224 and more
epochs for self-supervised pretraining.
Video Retrieval. Besides the video action recognition task,
we also report the video retrieval performance. Table 4
shows the quantitative results on UCF-101 and HMDB-51.
Our method pretrained on UCF-101 is superior to other ap-
proaches over two datasets. Our method is significantly bet-
ter than those using temporal cues to design pretext tasks.
Though DSM [61] and STS [63] designed elaborate opera-
tions to build static appearance and dynamic motion statis-
tics, our higher performance indicates good transferability
of knowledge to the downstream task, hence showing the
efficacy of our multi-level feature optimization. Further im-
provement can be observed when Kinetics-400 is utilized.

4.4. Ablation Study

Here, we present ablation studies on key modules in the
framework as well as some crucial experiment settings. We
report the results on action recognition under linear probe
setting to evaluate the learned video representations.
Multi-level Optimization. In this work, we use the graph
constraint in Eq. 9 to guide lower-level feature learning. We
compare it with using different constraints for lower-level
features: one-hot labels in Eq. 1, only instance-wise distri-
bution in Eq. 6, only semantic-wise distribution in Eq. 7,
and no constraint i.e., only Lhigh for high-level features.
Besides, we also compare with using combined graph con-
straint on high-level features as an extra loss term. Results
on R3D-18 for these different settings are shown in Table 2.
We regard the method that only optimizes high-level rep-
resentations without any constraints as baseline. When us-
ing one-hot labels (in InfoNCE loss) as self-supervision for
lower-level features, the poorer-than-baseline performance
can be explained by gradient competition [52, 73]. Using
Eins improves the results, while Esem only appears to badly
corrupt the learned representations. This is because Eins is
a soft probability distribution, the learning process is simi-
lar to distilling knowledge from high-level representations.

On the contrary, Esem is a hard 0-1 distribution and enforces
invariance between samples of the same inferred category.
Our method employing both constraints shows significant
improvement as combining both distributions can yield re-
liable self-supervision. We also observe that introducing
graph constraint on high-level representations does bring
improvement but still less effective than our full pipeline.
This shows that the multi-level feature optimization pro-
duces more transferable representations.

Temporal Modeling. We compare our temporal model-
ing approach with the conventional temporal augmentation
technique, which shuffles or reverses input video clips to
construct contrastive pairs, on three backbones (R3D-18,
S3D, and two-pathway network SlowFast). Table 3 shows
that the conventional approach improves the action recog-
nition performance of SlowFast network, but not the per-
formance of R3D and S3D. This is because the model is
trained from scratch, it needs to learn robust spatiotempo-
ral statistics from the input data. For R3D and S3D that
use a single 3D convolution pathway to learn 3D features,
the temporally shuffled or reversed clips may exhibit differ-
ent spatiotemporal statistics from what is deemed as natu-
ral, thus corrupting the learned representations. SlowFast’s
explicit disentanglement of static appearance and dynamic
motions allows temporally augmented clips of different mo-
tion patterns to thrive well. In contrast, our proposed tempo-
ral modeling method performs augmentation and discrimi-
nation in the multi-level feature space. The augmentation
part, which is particularly analogous to the projection head
of [12], is only utilized during training, hence the param-
eters do not affect backbone inference, avoiding unnatural
sequences. To sum up, our simple temporal modeling oper-
ation is effective for both single-pathway and two-pathway
backbones, while the conventional approach might be lim-
ited to two-pathway networks.

Number of Prototypes. We explore the influence of the
hyper-parameter K, the number of prototypes, on action
recognition. We show the results pretrained on UCF-101
and Kinetics-400 with a range of K values in Fig. 3. It
demonstrates that it is not necessary to set K equal to the
number of categories of a specific dataset, e.g., 101 on UCF,
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Figure 3. Ablation study on two hyper-parameters: K and E. The
legend presents pretrained dataset and action recognition evalua-
tion dataset, e.g., the red line denotes pretraining on Kinetics-400
and evaluation on UCF-101.

Figure 4. Retrieval of Top-3 similar samples in two distributions.
Left: Query sample; Middle: Top-3 samples of instance-wise dis-
tribution, Right: Top-3 samples of semantic-wise distribution.

400 on K400. Instead, by setting K to a relatively larger
number, the Top-1 accuracy is still comparatively high. It is
worth noting that if K is too small (especially smaller than
the number of categories), the performance drops signifi-
cantly. Because when K is too small, the learned semantic-
wise discrimination is too coarse-grained and fails to fil-
ter out the hard negatives when formulating the graph con-
straint. In summary, it is not difficult to set a reasonable
value for K for pretraining. A comparatively large number
is enough, and we set K = 1000 as default.
Two-stage Training Split. We formulate our multi-level
feature optimization as a two-stage process. At the first
stage, we only optimize high-level features to obtain good
initialization of instance- and semantic-wise distribution.
At the second stage, we jointly optimize all multi-level fea-
tures. Here, we explore the influence of the stage split by
training epochs. Fig. 3 compares different first stage train-
ing portion as percentageE of epochs, and we make several
observations. First, when E = 0, i.e., no first stage train-
ing, the supervision for lower-level features (in Eq. 9) is ran-
domly initialized and this derails feature learning. Second,
when E is large, optimization on lower-level features are
not sufficient, hence weaker transferability of learned rep-
resentations affects retrieval performance. Third, the per-
formance is best when E is within the range of [10%, 20%],
a stable range for both UCF-101 and Kinetics-400.

4.5. Qualitative Analysis

Based on the inferred instance- and semantic-wise sim-
ilarity distributions, we list the Top-3 most similar sam-
ples from each distribution based on the example query
in Fig. 4. The results show that instance-wise similar-
ity distribution provides samples with similar appearance
or motion characteristics, while semantic-wise distribution

(a) Results of our temporal modeling approach.

(b) Results of conventional temporal modeling approach.

Figure 5. CAM visualization of important motion areas. We use
the heatmap to reveal how much temporal cues are contained in
each spatial grid. Our approach learns these areas well.

provides samples of the same semantic category. The in-
tersection of these two distributions leads to sample pairs
that share both spatiotemporal characteristics and seman-
tics. This demonstrates that the combined graph constraint
could serve as a reliable self-supervisory signal that main-
tains unique instance-wise information and is able to dis-
criminate different semantics.

To evaluate the temporal modeling performance, we use
the pretrained backbone as a feature extractor, and train a
linear classifier to discriminate temporally augmented fea-
tures from the original. We provide the CAM [82] visual-
ization in Fig. 5 to show how much temporal cues are con-
tained in each region. It is clear that our temporal model-
ing strategy contributes to more accurate and discriminative
motion areas, while conventional temporal augmentation is
not able to perceive important motion cues well. For exam-
ple, our method precisely focuses on the moving hands in
the typing scene, but the conventional approach regards the
keyboard as the motion key.

5. Conclusion

In this work, we propose a multi-level feature optimiza-
tion framework for unsupervised video representation learn-
ing. We perform instance- and semantic-wise discrimi-
nation on high-level features, thereby employing reliable
self-supervisory cues to optimize lower-level representa-
tions for improved generalization. Meanwhile, we also
leverage multi-level features of various temporal spans for
robust temporal modeling. Extensive experiments demon-
strate that our learned representations achieve superior per-
formance on a series of downstream tasks.
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