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Abstract

Co-speech gesture generation is to synthesize a gesture
sequence that not only looks real but also matches with the
input speech audio. Our method generates the movements
of a complete upper body, including arms, hands, and the
head. Although recent data-driven methods achieve great
success, challenges still exist, such as limited variety, poor
fidelity, and lack of objective metrics. Motivated by the fact
that the speech cannot fully determine the gesture, we de-
sign a method that learns a set of gesture template vectors
to model the latent conditions, which relieve the ambiguity.
For our method, the template vector determines the gen-
eral appearance of a generated gesture sequence, while the
speech audio drives subtle movements of the body, both in-
dispensable for synthesizing a realistic gesture sequence.
Due to the intractability of an objective metric for gesture-
speech synchronization, we adopt the lip-sync error as a
proxy metric to tune and evaluate the synchronization abil-
ity of our model. Extensive experiments show the superior-
ity of our method in both objective and subjective evalua-
tions on fidelity and synchronization. 1

1. Introduction
We humans have always been enthusiastic about making

replicas of ourselves. Many successes have been achieved
in generation of explicit behaviours, such as lip syncing
[30], face swapping [32], or pose re-targeting [8]. But syn-
thesizing implicit behaviors of humans, which plays a key
role in synthesizing realistic digital humans, is far less ex-
plored. Co-speech gesture is such a kind of implicit behav-
ior, referring to the movement of body parts when some-
one is speaking, which conveys rich non-verbal information

*Equal contribution.
†Corresponding author.
1https://github.com/ShenhanQian/SpeechDrivesTemplates
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Figure 1: Our method generates realistic gesture sequences
from a piece of speech audio. With various template vec-
tors, our method produces two different gesture sequences
from the same audio, but the movements are synchronized
for the hands, heads, and lips.

such as emotion, attitude, and intention.
Early attempts on co-speech gesture synthesis are mainly

rule-based [7, 21, 34], which suffer from poor naturalness
because the non-verbal information is too delicate to be de-
scribed by rules. Later efforts [24, 15, 22, 14, 12, 36] go be-
yond by learning human behaviors from collected data. A
non-negligible barrier for data-driven methods is the multi-
modal essence of the mapping from speech audio to the pos-
sible gestures. This means that for the same input audio,
there exist multiple feasible solutions so that directly re-
gressing to the ground-truth gesture casts an inconsistently
biased mapping, preventing the model from learning the di-
vergence in the dataset. In recent methods, a common way
to cope with this challenge is adversarial learning [14, 1, 36]
with discriminators narrowing the gap between generated
and real ones. However, this can only improve the real-
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Figure 2: With template vectors serving as the condition,
we transform a plain regression with ambiguity into a con-
ditional regression, resulting in a lower regression loss on
the training set.

ism of gestures and have nothing to do with or even harm
gesture-speech syncing. Therefore, as long as we expect a
stable syncing quality, the regression loss should be the core
supervision.

Given that the regression loss is the only supervision that
we can count on to learn gesture-speech synchronization,
and the input audio does not provide enough information to
determine a gesture sequence exclusively, we complement
the input with a condition vector. This condition vector pro-
vides the missing information (e.g., habits, emotion, or pre-
vious states) to rule out the gestures other than the ground-
truth one, thus transforming the mapping from one-to-many
into one-to-one (Figure 2a). Concretely, we assign a zero
vector to each paired audio-gesture sequence as the initial
condition and update the vector along with the network’s
parameters to minimize the regression loss when training.
The intuition here is that if the network can easily regress to
the target gesture sequence merely with the audio, the con-
dition vectors will stay the same; otherwise, the condition
vector will update to reveal the discrepancy.

From all the learned condition vectors, we can select one
and generate a gesture sequence from any audio clip. By
switching the condition vector and the speech audio, we
observe an interesting phenomenon: the condition vector
plays the role of a gesture template. The condition vector
determines the general appearance of gestures in a gener-
ated sequence, while the audio input adds subtle movements
onto the gesture template to bring it to life and match it with
the speech. Therefore, we call these condition vectors tem-
plate vectors for our method. In Figure 1, we show two ges-
ture sequences generated from the same speech audio with
two different template vectors. The resulting gestures are
clearly not the same but still match well in the movements
of hands, heads, and lips, exhibiting our method’s fidelity,
variety, and synchronization ability.

Now that we can learn the template vectors with back-
propagation, why don’t we directly learn them by recon-
struction? Therefore, we train a VAE (Variational Auto-
Encoder [20]) to model the distribution of gesture se-
quences. With this VAE model, we can encode a ground-
truth gesture sequence into a template vector and learn the
one-to-one mapping from it and the speech audio to the
ground-truth gesture sequence. Also, it is possible to de-
code a template vector to visualize its corresponding gesture
sequence. With either back-propagation or VAE, we learn a
set of template vectors that not only help lower the regres-
sion loss when training (Figure 2b) but also make genera-
tion with variety possible since we can sample one from the
learned template vectors to manipulate the general appear-
ance of a synthesized gesture sequence.

Although previous work on co-speech gesture [14, 1, 36]
limits the scope of gesture to hands and arms only, we advo-
cate including head motion into co-speech gesture, not only
for a more unified and harmonized synthesis of the upper
body but also for the ease of evaluation. Due to the vague-
ness of gesture-syncing, existing work heavily rely on sub-
jective evaluations. We propose to adopt the lip regression
error as a proxy metric under the hypothesis that to learn
gesture syncing well, a model should be able to learn good
lip-syncing, as they both depend on the speech, and the lat-
ter one is much more deterministic. Furthermore, to assess
the fidelity of generated gesture sequences, our trained VAE
can be used to compute a Fréchet Template Distance (FTD)
similar to the FGD proposed by Yoon et al. [36], measuring
the distribution similarity between the generated ones and
the real ones in the feature space.

Our contributions can be summarized as follows:

• We propose an audio-driven gesture synthesis method
in a conditional learning manner. With the learning
of template vectors, we relieve the ambiguity of co-
speech gesture synthesis, enhancing the fidelity and
variety without sacrificing synchronization quality.

• We objectify the evaluation of gesture-syncing by bor-
rowing the lip-sync error as a proxy metric. Also, we
propose the Fréchet Template Distance (FTD) to assess
gesture fidelity.

• We show the superior synthesis quality of our method
in both subjective and objective tests and provide intu-
itive visualizations of the learned template vectors.

2. Related Work
Co-Speech Gesture Synthesis. Synthesizing co-speech

gesture has been an active topic in robotics [23, 16, 37],
graphics [2, 36], and vision [14, 1, 25]. A recent trend in
this task is using in-the-wild videos [14, 1, 37] rather than
those collected in lab scenarios with sensors, extending the
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variety of the synthesized gestures. However, as stated by
Ginosar et al. [14], a barrier on the way towards realistic
co-speech gesture generation is the ambiguity of the task,
which leads to under-fitting of the data and lack of expres-
siveness of the results. Although adversarial learning can
be incorporated to enhance gesture fidelity as done by Gi-
nosar et al. [14], the model still heavily relies on the regres-
sion loss to produce gestures synchronized with the audio,
so the result is deterministic with no variety. Ahuja et al.
[1] disentangle the style and content of gestures by embed-
ding every gesture into a common style space across sub-
jects, achieving style transfer or preserving by switching the
style embedding. However, the styles are defined in a per
subject manner, featuring only one typical gesture for each
subject. Alexanderson et al. [2] introduce the probabilistic
model MoGlow based on normalizing flows [26] to model
the mapping from gestures to Gaussian distributions condi-
tioned on the input audio. This model samples latent vectors
from Gaussian distributions when inferencing, thus is capa-
ble of modeling the one-to-many mapping elegantly. How-
ever, the normalizing flows [26] model only supports linear
operations, limiting the expressiveness of the model. Our
model relieves the ambiguity of one-to-many mapping with
template vector learning and accomplishes diverse genera-
tion by sampling the template vector when inferencing.

Besides the method to generate, another huge challenge
is evaluation. Due to the ambiguity of co-speech gestures,
previous methods mostly rely on the human study to exhibit
the effectiveness of their methods [14, 1, 2], which is rea-
sonable but not objective. As to the objective metrics such
as L1/L2 distance, PCK(Percent of Correct Keypoints) re-
ported in [14, 1, 2, 36], they are all based on the distance be-
tween the generated and the ground-truth, forming a contra-
diction between lower error and greater variety. An inspir-
ing attempt on objective metrics is FGD (Fréchet Gesture
Distance) proposed by Yoon et al. [36], which measures the
distribution similarity in the feature space.

Talking Head and Lip-Syncing. Unlike previous meth-
ods on co-speech gesture synthesis, we treat the head as
a part of the gesture, not only for the completeness of an
upper-body agent but also for the indispensable non-verbal
information conveyed by head movements. Representative
face manipulation methods [32, 35, 38, 5, 13] are designed
in a pose-transfer paradigm, which inherit face landmarks or
model parameters [4] from a target video. Another stream
of methods [19, 11, 10, 33, 27, 31] focus on manipulation
of facial expressions or lips, given a piece of speech audio.
Karras et al. [19] learned a latent code to model emotional
states. Prajwal et al. [27] train a discriminator in an of-
fline manner to enhance lip syncing. These methods achieve
plausible synchronization between the lip and the speech,
but they cannot or can only manually control the head pose,
producing unmatched head motion. Later, Chen et al. [9]

and Yang et al. [39] model head movements explicitly in
order to lift the naturalness of the talking head, but the syn-
chronization quality is not further evaluated.

3. Methods
Pipeline. Given a piece of speech audio as the input,

we generate a sequence of gestures with natural poses and
synchronized motions. An overview of our model is shown
in Figure 3.

Formally, for an audio clip, we follow previous meth-
ods [14, 2] to transform the audio waveform into a mel-
spectrogram, which is a 2D map with time and frequency
on each axis. Then we send it into an audio encoder to
get the audio feature A ∈ R256×F , where F is the num-
ber of frames. As another input, our network takes in a
template vector t ∈ RC and stacks the replicas of it into a
template feature T ∈ RC×F to align the timeline of the au-
dio feature. Therefore, the complete input of our model is
[A|T] ∈ R(256+C)×F , the concatenation of the audio fea-
ture A and the template feature T.

Our gesture generation network is a UNet-alike 1D con-
volutional neural network that slides along the timeline with
a 7-layer encoder, a 6-layer decoder, and skip-connections.

The output is a gesture sequence G ∈ R2K×F , where
2K corresponds to the 2D coordinates of K upper-body
keypoints in a frame, including the face, hands, and arms.

As a main supervision, we apply L1 regression loss on a
regressed gesture sequence G:

Lreg =
1

F

F∑
i=1

∥G(i) − Ĝ(i)∥1,

where G(i) and Ĝ(i) are the predicted and ground-truth ges-
ture vectors in the ith frame of G.

Image Synthesis. To ease visual evaluation of our gen-
erated gesture sequences, we train an image warping and
translation module, inspired by Balakrishnan et al. [3]. For
each frame, we first warp pixels of each body part in the
source image to the target location with local affine trans-
formations to obtain a coarse result, then feed the concate-
nation of the coarse result and heatmaps of keypoints into an
image translation network as a refinement. During the train
session, source and target pairs are randomly combined.

3.1. Complement Audio with Learned Conditions

We mainly rely on the regression loss to train our model
because it is the only reliable source of supervision towards
gesture sequences synchronized with the audio. However,
since the mapping from the speech audio to a gesture se-
quence is not exclusive, i.e., there exist many other feasible
gestures, simply regressing to the ground-truth gesture se-
quence causes ambiguity and leads to overly smooth results.
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Figure 3: Our network takes an audio feature A and a template feature T as the input to generate a co-speech gesture
sequence G. The template vectors t are updated with back-propagation or encoded by a VAE. F is the number of frames,
C is the dimension of the template vector, and K is the number of keypoints. With the generated gesture sequence as an
intermediate representation, we can synthesize a realistic video with an image warping and translation module.

To remove the ambiguity, we should provide more infor-
mation to our model. Concretely, we additionally feed in a
condition vector, as shown in Figure 2a. Here, we expect the
condition vector to narrow the range of potential gestures
instead of pointing to a specific static gesture; otherwise,
the role of the input audio will be weakened, which harms
gesture-speech syncing. To this end, we assign one condi-
tion vector to each short gesture sequence (about 4 seconds
long) instead of each frame and regress from the audio and
the condition vector to the ground-truth gesture sequence.
This relieves the ambiguity between speech and gestures,
laying the foundation of our method.

We call this condition vector a template vector for our
method because this vector determines the general appear-
ance of the generated gesture sequence, while the input au-
dio adds subtle movements to match the speech and the ges-
ture sequence, just like the relationship between the tem-
plate and the content.

Learning Templates by Back-Propagation. We initial-
ize the template vector of each speech-gesture pair to a zero
vector, supposing them to be subject to the same condition.
When training, we back-propagate the regression loss and
update template vectors along with parameters of the UNet.
This means that the model is trained without extra infor-
mation since all the template vectors are set to zero; when
ambiguity occurs, the template vector will be updated to
relieve the ambiguity. By storing the trained template vec-
tors, we extract the latent condition for each sample from
the dataset.

To regularize the template vector space, we apply a KL-

divergence loss

LKL = DKL
(
N

(
µt, σ

2
t

)
∥N (0, 1)

)
where µt ∈ RC and σ2

t ∈ RC are the mean and variance
vectors of template vectors t in a mini-batch. Then the total
loss function is defined as follows:

L = λregLreg + λKLLKL,

where λreg and λKL are weights applied to the loss terms.
We set λKL = 1 and λreg = 1 in our experiments.

Updating template vectors by back-propagation brings
several benefits. First, the regression loss converges faster
lower than a plain regression from the audio, indicating a
better fitting of the training set (see Figure 2b). Second, our
model can generate diverse gestures by sampling arbitrary
template vectors from the trained ones while maintaining
highly synchronized gestures and lips. Third, interpolation
of template vectors results in smooth changes of gestures,
such as switching hands and changing the head orientation,
demonstrating a compact condition space.

Despite the above benefits and inspirations, this method
still has some limitations. First, since the template vector
is assigned in a sample-wise way, each template will only
be used and updated once an epoch, which requires care-
ful tuning of hyper-parameters (e.g., learning rate, number
of epochs) to let the template vectors converge. Second,
although we can observe gesture variations caused by tem-
plate switching, we still lack interpretation of the templates.
Third, we can only conduct the mapping from a template
vector to a gesture sequence but cannot go in the opposite
direction.
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Learning Templates by Reconstruction. To resolve the
above limitations, we consider learning template vectors by
reconstruction with VAE [20]. This VAE first encodes a
ground-truth gesture sequence Ĝ into a mean vector µt ∈
RC and a variance vector σ2

t ∈ RC , then decode them into
a reconstructed gesture sequence G. Similarly, it is built up
with fully 1D convolutions sliding along the timeline and is
also trained with a L1 loss and a KL-divergence loss.

Once the VAE is trained, it is frozen to be used as a tem-
plate vector extractor for computation of FTD described in
Section 3.2.

3.2. Evaluation of Co-Speech Gesture Generation

Common evaluation metrics used by prior methods for
co-speech gesture like L1/L2 distance, accuracy, or PCK
(percent of correct keypoints) are not ideal because what
they measure is the distance between a generated sample
and the ground truth, ignoring the diversity of feasible ges-
tures for a given audio clip. Therefore, targeting these met-
rics will result in boring and inexpressive synthesis.

Intuitively, a good gesture synthesis should meet at least
two requirements: naturalness and synchronization; but
none of them can be easily measured with distance-based
metrics. Next, we propose two metrics for gesture assess-
ment in terms of synchronization and naturalness, respec-
tively.

Lip-Sync as A Proxy Metric. Different from body ges-
tures that are diverse, the lip shapes are almost consistent
because pronouncing a syllable usually requires a particular
mouth shape. Also, we observe better convergence of lip
keypoints’ regression losses than others on the validation
set, which confirms the consistency of the mapping from
speech audio to the lip.

Therefore, we adopt the distance between generated lip
keypoints and the ground-truth as a proxy metric for syn-
chronization measurement of the entire gesture. This proxy
metric works for two reasons: 1) Both lip keypoints and
other keypoints share the same network and features, and
our method has no special design for lip syncing; 2) Al-
though good lip syncing quality cannot guarantee good ges-
ture quality, but lip syncing degradation is a good warning
signal of bad gesture-syncing.

Formally, the proxy metric we use is the normalized lip-
sync error

Elip =
1
F

∑F
i=1 ∥d(i) − d̂(i)∥2

max1≤n≤F d̂(n)
(1)

where d(i) is the distance between the center keypoints of
upper and lower lip in the ith frame of the generated ges-
ture sequence G, and d̂(i) is the corresponding distance for
ground-truth gesture sequence Ĝ.

Fréchet Template Distance. As aforementioned, di-
rectly measuring the distance between a generated gesture

sequence and the ground truth discourages variety. Here,
we introduce FTD (Fréchet Template Distance) as a varia-
tion of FID (Fréchet Inception Distance) [17]. FTD mea-
sures the distribution distance between the synthesized and
the real gesture sequences among a group of samples rather
than a single sample. Therefore, in order to achieve a better
FTD score, the generated results should be not only natural
but also diverse.

In our experiments, FTD is computed on the entire test
test as follows:

FTD = |µt − µt̂|
2
+ tr

(
Σt +Σt̂ − 2 (ΣtΣt̂)

1/2
)
,

where µt and Σt are the mean vector and covariance matrix
of the template vectors [t1, t2, . . . , tN ], encoded from syn-
thesized gesture sequences [G1,G2, . . . ,GN ] across the
test set with the VAE described in Section 3.1, where N
denotes the number of samples in the test set. µt̂ and Σt̂ are
the counterparts for the ground truth.

4. Experiments
Datasets. We test our method on the Speech2Gesture

[14] dataset since it is the only one providing complete an-
notations for the upper body, especially for face keypoints.
However, we only report results of two speakers, Oliver and
Kubinec, of this dataset due to the unusable quality of the
face and hand keypoints of other speakers (pseudo labels
acquired with OpenPose [6]). For results on other speakers,
please refer to the supplementary material. Furthermore,
we collect data of two Mandarin speakers, Xing and Luo,
to test the versatility of our method. The video clips of the
four speakers have a length of about 25.13 hours in total af-
ter manual filtering of incorrect annotations. We train our
model on each of the speakers separately because we focus
on speaker-specific gesture learning.

Evaluation. We report three objective metrics for fair
comparison: 1) the L2 distance that directly measures the
distance between the prediction and the ground truth; 2) the
normalized lip-sync error (Elip) as a proxy metric for gesture
synchronization; 3) the Fréchet Template Distance (FTD) as
a measurement of fidelity.

We conduct an extensive human study to perceptually
compare our method with baselines and verify the feasibil-
ity of our proposed objective metrics. We create videos with
gesture sequences generated by different methods from the
same pieces of speech audio, then publish them as an on-
line questionnaire for human evaluation. For each of the
four speakers, we randomly sample 8 pieces of speech audio
for video generation. For each questionnaire, we randomly
choose at least 2 of the 8 videos for each speaker to form
a questionnaire with 10 video clips. During a test, a par-
ticipant is exposed to the 10 videos one by one. Each video
shows the results of competing methods synchronously with
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audio. The results are anonymized by letters and visual-
ized with both skeleton maps and synthesized images. Af-
ter watching each video, a participant is asked to make three
choices: 1) the one with the best lip-sync quality; 2) the one
with the best gesture-sync quality; 3) the one with the most
natural gestures. The final result is computed by the aver-
aged percentage of each method selected as the best in each
question. After the test, we collect 65 effective question-
naires in total.

Implementation Details. When preparing data, we seg-
ment videos into short clips of 64 frames in 15 FPS (about
4 seconds). To eliminate the scale difference across speak-
ers and video resolutions, we re-scale the skeletons of each
speaker according to their averaged shoulder widths. We set
the dimension of template vector space C = 32 in all the ex-
periments. Although our method is not sensitive to C, too
large a dimension leads to degradation of gesture-syncing,
and too low a dimension limits the expressiveness of the
template space. We use a batch size of 32 for both training
and test. We train our model with an Adam optimizer for
100 epochs. We use learning rate 0.0001, and downscale it
for 10 times at the 90th and 98th epoch. When testing, we
randomly sample a template vector from the trained ones
corresponding to clips in the training set, making our results
diverse and non-deterministic.

4.1. Regression with Learned Templates

As the core of our method, template vector learning
makes it possible to learn the one-to-many mapping from a
piece of speech audio to feasible gesture sequences merely
with a regression loss. In Table 1, we show quantitative
comparison between different configurations of templates.
The model without templates gets the worst FTD, indicat-
ing poor expressiveness of learned gestures. On the con-
trary, the model with frame-wise template vectors gets the
worst lip-sync error (Elip), indicating degradation in gesture-
syncing. This results from the excessive expressiveness of
per-frame template vectors since the model can simply store
per-frame gestures in the per-frame template vectors with-
out extracting information from the audio signal. Mean-
while, our models with clip-wise template vector (learned

Table 1: Effects of template learning in different settings.
Red digits refer to the worst among listed models. Our
models with clip-wise templates achieve the best balance
between synchronization and expressiveness.

template type Elip ↓ FTD ↓

w/o template - 0.17 1.66
w/ template-BP frame-wise 0.21 0.78

w/ template-BP clip-wise 0.17 1.26
w/ template-VAE clip-wise 0.17 0.92

Figure 4: Visualization of ground-truth gestures versus gen-
erated gestures in the template space. By feeding in a ges-
ture sequence to the encoder of our trained VAE, we obtain
the template vector of it. For visualization, we project the
template vectors onto a 2D plane with PCA.

either by back-propagation or VAE) achieve the best bal-
ance between synchronization and expressiveness with rela-
tively low lip-sync error and FTD. In other words, our mod-
els with clip-wise templates produce more diverse gestures
with almost no harm to synchronization.

To confirm the variety of our results, we use the encoder
of our trained VAE to obtain the corresponding template
vectors of both the ground-truth and the generated gesture
sequences and visualize them by projection onto a 2D plane
via PCA. As shown in Figure 4, for the model without tem-
plates, the encoded vectors gather around the origin. In con-
trast, the encoded vectors of our results from clip-wise tem-
plates span a larger space, showing a larger variety, which
is consistent with the lower FTD values in Table 1.

4.2. Comparison with Baselines

Baselines. Speech2Gesture [14] is a fully convolutional
model that directly regresses from a mel-spectrogram to
gesture sequences. To add keypoints of the face, we en-
large the number of channels for the last convolution layer.
For the best balance between the regression loss and the ad-
versarial loss, we set the weight for the latter one to 0.1. Au-
dio to Body Dynamics [29] is a sequential model with sep-
arate LSTM [18] models for regression of body and hand
keypoints. We add one more LSTM model for face key-
points. Following the original configuration, we feed in a
28-channel MFCC. We adjust the hidden layer dimension
of LSTM models from 200 in the original implementation
to 800 for the best performance. MoGlow [2] is a proba-
bilistic gesture generator based on normalising flows [26].
We modify its output channels to adapt to our task. For
better performance, we feed in mel-spectrogram instead of
MFCC, and set the hidden layer dimension H = 800 and
the number of normalizing steps K = 12.

Objective Comparison. We compare our models with
the above baselines across four speakers. As shown in Ta-
ble 2, our models produce the smallest normalized lip-sync
error and the smallest FTD on all speakers, indicating su-
perior gesture-syncing and expressiveness. Meanwhile, our
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Table 2: Comparison with baselines for gesture generation on two English speakers from the Speech2Gesture [14] dataset
(Oliver and Kubinec) and two Mandarin speakers that we collect (Xing and Luo). Our models produce results with superior
synchronization and expressiveness. Note that lower L2 distance does not indicate better performance for our task.

Oliver Kubinec Xing Luo
L2 dist. Elip ↓ FTD ↓ L2 dist. Elip ↓ FTD ↓ L2 dist. Elip ↓ FTD ↓ L2 dist. Elip ↓ FTD ↓

Audio to Body [29] 49.7 0.19 3.48 70.9 0.17 4.51 50.9 0.18 4.75 48.4 0.16 2.70
Speech2Gesture [14] 53.5 0.23 8.30 64.9 0.20 4.53 48.0 0.19 4.49 63.7 0.20 3.10
MoGlow [2] 50.6 0.20 2.28 78.1 0.16 2.49 48.4 0.18 4.94 54.8 0.18 1.47
Ours (w/ template-BP) 50.6 0.17 1.26 83.7 0.15 1.98 50.0 0.17 2.72 51.5 0.16 1.21
Ours (w/ template-VAE) 62.4 0.17 0.92 100.7 0.15 1.07 57.8 0.18 1.72 80.8 0.17 0.69

models produce relatively high L2 distances. This is ex-
pected since our results are generated with randomly sam-
pled template vectors, which should not always conform to
the ground truth gesture.

Subjective Comparison. For a perceptual compar-
ison between methods, we invite volunteers to watch
anonymized results and choose the best in three aspects. Ex-
amples of synthesized images used in the human study are
shown in Figure 7. According to the bar chart in Figure 5,
our models show significant advantages over baseline mod-
els. It is to be mentioned that this human study verifies the
strong correlation between the performance of lip syncing
and body syncing, which endorses our proposal of adopt-
ing the normalized lip-sync error (Elip) as a proxy metric to
measure the extent of how a gesture is synchronous with the
speech audio.

lip body overall
blna2b 5.94% 6.56% 7.34%
blns2g 11.09% 10.63% 11.09%
blnmog 25.16% 22.34% 20.78%

bp 28.28% 28.44% 29.06%
ext 29.53% 32.03% 31.72%

Sync-lip Sync-body Naturalness
Audio2Body 5.94% 6.56% 7.34%

Speech2Gesture 11.09% 10.63% 11.09%
MoGlow 25.16% 22.34% 20.78%
Ours (BP) 28.28% 28.44% 29.06%

Ours (VAE) 29.53% 32.03% 31.72%
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Figure 5: Human study on participants’ preference in lip
and body synchronization and naturalness among methods
(in percentage).

4.3. Visualization of Template Space

For a better interpretation of the template vectors, we ex-
plore the property of the vector space. We visualize the
corresponding gestures of a particular template vector and
its opposite by feeding the vectors into our trained VAE’s
decoder, respectively. Instead of manually selecting tem-

Oliver

Xing

Figure 6: Visualization of the template vector space. Each
scatter plot is a projection of the template vector space of a
subject, which is close to a Gaussian distribution. The green
point in a scatter plot is the endpoint of a sampled template
vector, while the orange one refers to its opposite vector.
Each line of skeleton sequences corresponds to a template
vector by color. For each subject, the gesture sequences of
opposite template vectors exhibit clear semantic symmetry.

plate vectors, we adopt a closed-form factorization algo-
rithm proposed by Shen and Zhou [28] for latent semantics
discovery. Taking the weight matrix of the first layer of the
VAE’s decoder, we conduct eigenvalue decomposition and
keep the eigenvector with the largest eigenvalue. From the
results for Oliver and Xing in Figure 6, we observe high
semantic symmetry such as the position and orientation of
heads and hands.

4.4. Long-Term Generation with Templates

Now that we can generate gesture sequences with diverse
appearances by switching template vectors, how about gen-
erating a longer sequence? Given that the building blocks of
our network are convolutions, our method is born with the
ability to generalize to longer input audio. However, with
a fixed template vector, our method will still look repeti-
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Figure 7: Examples of image frames synthesized from generated gesture sequences with our image synthesis module. In the
1st and the 2nd lines are Oliver and Kubinec from the Speech2Gestrure [14] dataset.

tious in a longer term. Therefore, the next problem before
us is how to model the transition of template vectors across
frames. Towards this goal, we provide a simple solution.

The key idea here is to generate a long and varying tem-
plate vector sequence from random signals. Our template
sequence generator takes a sequence S ∈ RC×F of driving
signal sampled from Gaussian distribution as the input and
outputs a long template sequence T ∈ RC×F . To assure
that the template vector t ∈ RC at each frame of T resem-
bles the trained clip-wise template vectors, we feed t into
a discriminator. Additionally, we apply an adjacency loss
(Ladj) to enforce local continuity of the template sequence
T and a KL divergence (LKL) loss to encourage diffusion of
template vectors on an entire template sequence. The total
loss function for long-term template sequence generation is
defined as follows:

LT = LGAN + λKLLKL + λadjLadj,

where λKL = 1, λadj = 1 in our experiments. The results of
long-term generation can be found in supplementary video.

4.5. Ablation Studies

Transposed Instance Normalization. In our experi-
ments, we observe significant improvements on Elip and
FTD by substituting BN (Batch Normalization) with IN
(Instance Normalization) as shown in the 1st and the 2nd

row in Table 3. However, models with IN produce results
with high-frequent vibrations. Therefore, we propose the
transposed instance normalization (IN∗), which conducts
normalization on the dimension of keypoints (B,2K, F )
rather than frames (B, 2K,F ). This operation produces sta-
ble gesture sequences with comparable performance (the 3rd

row in Table 3).
Hierarchical Gesture Representation. Considering the

kinematics of the human body, we try to decouple body
parts by a hierarchical body representation with separate
root nodes for keypoints of the face, arms, and hands. Com-

Table 3: Ablation study on the normalization operation and
body representation. Experiments are conducted on our
model without template vectors on Oliver. IN∗ denotes our
proposed transposed instance normalization. Hierarchical
denotes that gesture keypoints are split into four parts, and
each part has its local root node.

Hierarchical Elip ↓ FTD ↓

BN 0.20 7.01
IN 0.19 1.54
IN∗ 0.19 1.53
IN∗ ✓ 0.17 1.66

paring the 3rd row and the 4th row of Table 3, we can see an
obvious improvement on lip syncing (Elip).

5. Conclusion
This paper aims to synthesize a gesture sequence of the

complete upper body given speech audio as input. Based
on the fact that speech cannot fully determine gestures, we
propose to learn a set of gesture templates, which relieve
the ambiguity and increase the variety and fidelity of syn-
thesized gestures. Furthermore, we propose to use the nor-
malized lip-sync error as a proxy metric for gesture syn-
chronization and FTD as a measurement of fidelity. Quan-
titative and qualitative results on four speakers across two
languages show the superiority of our method.
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