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Abstract

Causally-taken images often suffer from flare artifacts,
due to the unintended reflections and scattering of light in-
side the camera. However, as flares may appear in a vari-
ety of shapes, positions, and colors, detecting and remov-
ing them entirely from an image is very challenging. Exist-
ing methods rely on predefined intensity and geometry pri-
ors of flares, and may fail to distinguish the difference be-
tween light sources and flare artifacts. We observe that the
conditions of the light source in the image play an impor-
tant role in the resulting flares. In this paper, we present
a deep framework with light source aware guidance for
single-image flare removal (SIFR). In particular, we first de-
tect the light source regions and the flare regions separately,
and then remove the flare artifacts based on the light source
aware guidance. By learning the underlying relationships
between the two types of regions, our approach can remove
different kinds of flares from the image. In addition, in-
stead of using paired training data which are difficult to
collect, we propose the first unpaired flare removal dataset
and new cycle-consistency constraints to obtain more di-
verse examples and avoid manual annotations. Extensive
experiments demonstrate that our method outperforms the
baselines qualitatively and quantitatively. We also show
that our model can be applied to flare effect manipulation
(e.g., adding or changing image flares).

1. Introduction

Image flares are common and often undesirable light ar-
tifacts, caused by taking pictures of a scene with a very
bright light source [, 24]. Part of the light undergoes inter-
reflection among the optical elements inside the camera,
producing some unexpected light artifacts in the image [23].
These artifacts tend to appear more often with smartphone
cameras, due to the poor anti-reflective coatings.

The presence of flare artifacts can affect the visual qual-
ity of images, and may inhibit understanding of underlying
object/scene information and hamper the performances of
existing vision tasks [31], e.g., semantic segmentation and
depth estimation. However, automatically detecting and re-

(a) Input (b) Chabert et al. [4] (c) Wuetal. [31] (d) Ours
Figure 1. Single-image flare removal (SIFR). Given an input im-
age with flare artifacts (pointed to by red arrows), existing meth-
ods, (b) and (c), can only handle limited flare types (e.g., flare
spot) without removing the entire flare or wrongly consider other
regions as flares (e.g., the cloud in the first row). In contrast, our
light source aware model (d) can remove the flare more accurately.

moving them can be very challenging. Different combina-
tions of lens properties and environment settings, includ-
ing light source position, characteristics of the lens, and the
camera angle to the light source, may lead to different types
of flares with diverse shapes, colors, and positions.

Professional photographers may apply preventative mea-
sures during the image capturing process, such as optimized
barrel design, lens hood, or anti-reflective coating, to help
eliminate the flares. Unfortunately, these hardware solu-
tions can hardly eliminate the entire flare artifacts [20, 22].
This is probably due to the diverse causes of image flares.
They also cannot be applied to existing images already with
flare artifacts. There have been a few attempts to remove
these undesirable flares from images automatically by uti-
lizing predefined intensity and geometry priors of flare arti-
facts [30, 4]. However, these methods can only handle lim-
ited flare types (e.g., flare spot), as shown in Fig. 1(b). Re-
cently, with the popularity of deep neural networks, a deep
model [31] is proposed to learn to remove different types of
flare artifacts from paired synthetic training data. Although
it is shown to outperform existing traditional methods, it
does not generalize well to diverse real-world images, as
shown in Fig. 1(c).
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From our study, we have made two observations. First,
we observe that the light source plays an important role in
the visual appearances of the generating flares, e.g., a series
of streaks radiating outward from the light source to form a
star-shaped effect, glare as a bright region around the light
source that fades gradually, and a series of circles or rings
in the image. These imply that the shape, brightness, and
position of the light source encode useful cues about the ap-
pearances of the flares. Through learning such light source
aware guidance, we can detect and remove flares more reli-
ably. Second, it is not easy to collect a large-scale dataset of
image flare pairs with diversity. Typically, the user needs to
manually adjust the camera parameters in order to obtain a
flare image, and then use preventative measures to obtain a
flare-free image. Unfortunately, this setting often produces
training pairs with inconsistent colors and exposures, due to
the change of the environmental lighting.

Inspired by the above observations, we propose a light
source guided learning framework with unpaired data for
single-image flare removal (SIFR). First, we detect the
light source region and the flare region separately with two
branches. Given a single image as input, we propose a Light
Source Detection (LSD) module to predict a light source
mask, and a Flare Detection (FD) module to predict a flare
mask. Second, we estimate a flare-free image based on the
flare mask and the light source aware guidance using the
Flare Removal (FR) module. Finally, we feed the predicted
light source mask and the flare-free image through a Flare
Generation (FG) module to learn the inverse mapping to
reconstruct the input flare image. By imposing the cycle-
consistency constraints [34] and learning the underlying re-
lationships between the flare region and the light source re-
gion, we make the first attempt to address the flare removal
problem through a unified framework that integrates both
flare removal and flare generation tasks. Our approach al-
lows training of the model with unpaired data, which are
much cheaper to collect.

We conduct extensive experiments to evaluate the effec-
tiveness of the proposed approach. The experimental results
show that our approach is effective in removing the flare ar-
tifacts, compared with the baselines. We also show that our
model can be applied to image editing, allowing the user
to manipulate the flare effect in the image by changing the
position or size of the light source.

To sum up, we make the first effort to utilize the light
source information to guide the SIFR task, and propose
a deep framework to learn from unpaired data with new
cycle-consistency constraints. We also construct the first
unpaired flare and flare-free image dataset with diverse sce-
narios. Extensive evaluations demonstrate the effectiveness
of our method, both quantitatively and qualitatively, and the
benefits of it on the flare effect manipulation task.

2. Related Work

Traditional methods. The detection and removal of im-
age flares are important problems. A number of approaches
have been proposed to measure, detect or remove flare ar-
tifacts, including hardware and software solutions. Most of
the hardware solutions focus on improving the optical el-
ements of the camera to remove flares. Based on the flare
characteristics of different lens systems that have been stud-
ied [15], Boynton et al. [3] construct a fluid-filled camera
to reduce the effects of unwanted light reflections. Raskar
et al. [22] insert a transparency mask on top of the imag-
ing sensor in order to use 4D ray sampling to reduce flare
effects. Macleod et al. [18] find that replacing a circular po-
larizer with a neutral density filter can reduce the reflections
from lens surfaces. However, the specific hardware modifi-
cations described above are not enough to remove lens flare
artifacts completely. In addition, they can only reduce the
flare artifacts during the capturing process, and cannot deal
with existing images with flare artifacts.

To address the above limitations, several post-processing
methods are proposed for detecting and removing image
flare artifacts. Faulkner et al. [7] and Seibert et al. [25]
propose to remove image flares by deconvolution using the
measured glare spread function (GSF). Wu et al. [30] ap-
ply the proposed shadow extraction method to flare removal
by using the rough user-supplied hints about the flare and
flare-free regions. Talvala et al. [27] selectively composite a
number of images taken by a static camera to block the light
that contributes to flares. Koreban et al. [16] use a selective
processing method on two frames based on the proposed
flare formation model to mitigate the flare effect. Zhang et
al. [32] propose a flare formation model to remove the flares
in an image by decomposing the image into a scene layer
and a flare layer. Other approaches [2, 4, 28] use a two-stage
process to first estimate the flare spot region and then recon-
struct the region via exemplar-based inpainting [5]. All the
above works are based on hand-crafted features, which are
limited by their assumptions, and cannot work well on di-
verse flare patterns in complex scenes.

Deep learning-based methods. Recently, deep learning-
based approaches have shown great successes on a variety
of low-level vision tasks, such as deraining [29], shadow re-
moval [21, 9], and reflection removal [ 17, 6]. To our knowl-
edge, there is only one deep learning-based approach for
SIFR. Wu et al. [31] propose a U-Net architecture for re-
moving flare artifacts. As it is based on a synthesis method
to generate paired training data, it does not generalize well
to real-world data. In contrast, we propose a new learn-
ing framework that learns to remove flare artifacts with
unpaired data. Although previous works such as Mask-
ShadowGAN [10] and RR-GAN [33] propose to train the
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Figure 2. Our proposed light source guided learning framework for single-image flare removal. It consists of a light source detection
(LSD) module, a flare detection (FD) module, a flare removal module (FR), and a flare generation (FG) module. Without the need for
paired data, these modules are used to learn from either real flare images (a) or flare-free images (b). We also introduce two discriminators

for the generated flare-free and flare images.

shadow removal and rain removal tasks by learning the un-
derlying mapping between two domains with unpaired data,
they only learn to predict one mask to indicate the region to
be removed. Unlike the shadow removal and rain removal
tasks, there is a strong distraction factor in the flare removal
task, i.e., the light source. Although the light source region
and the flare region closely resemble each other, only the
flare region should be removed. In our method, we predict
both the light source mask and the flare mask simultane-
ously, in order to explicitly model the underlying relation-
ships between the light source region and the flare region
for SIFR, which has not been explored before.

3. Unpaired Flare Removal (UFR) Dataset

As far as we know, there are no publicly available flare
removal datasets. Creating a large-scale dataset of image
flare pairs can be very challenging. Typically, the flare and
flare-free image pairs should be captured with and without
flare artifacts while keeping the illumination of the scene
unchanged. For each scene, we need to manually adjust the
camera parameters until we get the flare artifacts to cap-
ture a flare image. We then remove these artifacts by using
preventative measures to obtain a flare-free image. Such
an operation is both tedious and time-consuming, making it
very difficult to collect a large number of images with many
types of scenarios. In addition, the training pairs will likely
have inconsistent colors and exposures, due to the change
of the environmental lighting or the hardware devices.

In contrast, our framework does not require paired data
with pixel-wise correspondences for training. Instead, it
learns only from unpaired flare and flare-free images for
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Figure 3. Statistics of the unpaired flare removal dataset, includ-
ing the distribution of the light source location (a) and the number
of light sources in the image (b).

SIFR. To increase the diversity of the images, we construct
the dataset with the following guidelines:

* Scene. We select images that cover a variety of our
daily life scenes, e.g., streets, gardens, living rooms,
and open spaces.

* Light source. The images should contain different
types of light sources (e.g., sun, ceiling lights, street
lights, etc.), with different numbers, shapes, and at dif-
ferent locations.

* Illumination. The images should be captured under
different illumination conditions, including outdoors
(sunrise / sunset) and indoors (daytime / nighttime).

To create this dataset, we initially collect around 3000
flare and flare-free images from the Internet (e.g., Google
and Flickr). We then invite a photographer to help filter
these images by following the above guidelines. In partic-
ular, we ask the photographer to carefully check the flare-
free images to make sure that they have no flares in them, as
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some flares may not be easily observed. In the end, our un-
paired dataset contains a total of 996 flare images and 672
flare-free images, covering a variety of real-world scenes.
Figure 3 shows some statistics of our dataset. We com-
pute the probability map to show the distribution of the light
source location in the image. We can see that most of these
lights appear near the top of the images.

4. Our Approach

Given a single flare image Iy as input, our goal is to learn
a function f that removes the flare artifacts and generates
a flare-free image Iy = f(Iy). The key idea is to utilize
the underlying cues from the light source to guide the SIFR
task. Figure 2 shows the overall architecture of our pro-
posed framework. It consists of a light source detection
(LSD) module, a flare detection (FD) module, a flare re-
moval (FR) module, and a flare generation (FG) module.
During training, we reuse these modules to learn from ei-
ther real flare images or flare-free images with the proposed
constraints. During inference, we only need to use the FD
module and the FR module for the SIFR task.

4.1. Architecture

Light source detection (LSD) module. The LSD mod-
ule aims to detect the light source in the input image, and
output a light source mask. It follows an encoder-decoder
architecture. We first use an encoder to extract features from
the input image by four convolution layers. We then feed
the image features into a decoder to output a light source
mask. It is composed of two deconvolution layers and three
convolution layers.

Flare detection (FD) module. The FD module aims to
detect the flare region in the input flare image, and output a
flare mask. It has the same architecture as that of the LSD
module. Both the light source mask and the flare mask are
binary maps.

Flare removal (FR) module. The FR module aims to
remove the flare artifacts in the input image, and output a
flare-free image. It takes the concatenation of a flare im-
age and the predicted flare mask as input, which has four
channels in total. It is an encoder-decoder architecture with
residual blocks in the middle. It includes three convolution
operations, followed by nine residual blocks. The flare-free
image is then generated by two deconvolution blocks and a
final convolution layer. Although the light source often ex-
ists in most flare images, there are some cases that no light
sources appear in them. It is worth noting that our module
can still remove the flare artifacts for such cases by learning
the semantic features from our dataset.

Flare generation (FG) module. Given a flare-free im-
age, the FG module aims to generate flares on it to output a
flare image. The input to it is the concatenation of a flare-
free image and a light source mask. It has the same archi-

tecture as that of the FR module. The user can also provide
a light source mask to indicate the position and shape of
the light source. The FG module will then generate a flare
image that corresponds to the provided light source mask.

Discriminators. To ensure the generation of plausible
results, we introduce two additional discriminators to our
network. We use a flare-free discriminator Dy to distinguish
between the generated flare-free images and the real flare-
free images, and a flare discriminator Dy to distinguish be-
tween the generated flare images and the real flare images.
We adopt the PatchGAN [12] architecture design for both
discriminators Dy and Dyg.

4.2. Learning from Flare Images

As shown in Figure 2(a), given the input flare image Iy,
the LSD module first predicts a mask M representing the
light source region, while the FD module predicts another
mask Mf{ indicting the flare region in the image. We then
concatenate and pass the predicted flare mask Mg and the
input flare image Iy through the FR module to obtain the
flare-free image fff.

Since the light source region may sometimes be similar
to that of the flare region, the light source can be easily con-
sidered as a flare and removed [31]. To avoid this problem,
we explicitly enforce the light source mask consistency be-
tween the input flare image and the generated flare-free im-
age via the light source loss. In particular, we pass the input
flare image and the generated flare-free image to the LSD
module separately. We apply the light source loss to mea-
sure the pixel-wise difference of the two predicated light
source masks:

Ly =Y |IM; — Mg, (1)

where My is the light source mask from the input flare im-
age Iy, and Mf‘}' is the light source mask from the generated
flare-free image fff.

To reduce the gap between the generated and real flare-
free images, we optimize the following objective using an
adversarial loss [19]:

L§" = Eproppye (o [(Dsr() = 1)%]. 2)
The loss for Dy is formulated as:

Lp, = Ei"’pfake(fc)[(fo(x)>2] + Eypeatn (Dre(y) — 1)(23})

Further, to avoid any artifacts on the generated im-
ages [12], we transform the generated flare-free image back
to the input flare image and enforce the cycle-consistency
constraint. Specifically, we use the mask My as the guid-
ance to indicate the light source region. We concatenate M
with the generated flare-free image I as the input to the FG
module to reconstruct the flare image Iy. We apply the flare
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loss and the reconstruction loss to encourage the contents
and the flare region to be the same. The flare loss is used
to measure the plxel wise difference between the predicted
flare mask M from the input flare image Iz and the new

flare mask M f from the reconstructed image Ip:
Ly =l = M. *)

The reconstruction loss measures the difference between the
prediction I and the ground truth Iy in both the image and
feature space:

cycle Z HIﬂ _ IﬂHl —+ H(b([ﬁ) (jﬂ)”l? (5)

where ¢ is the feature map of the “conv5_3” layer of VGG-
19 [26].

In summary, when learning from the flare images, the
total loss Lq is:

Lo = wi L + wo L3 + ws LI + wa LY, (6)
where wi, we, w3, and wy are the loss weights.
4.3. Learning from Flare-free Images

Our framework also trains in the inverse direction to
learn from flare-free images. As shown in Figure 2(b), given
a real flare-free image I, we first use the LSD module to
predict the light source mask M ;. We then concatenate and
pass Mff and I through the FG module to generate the flare
image Iq. We also apply a similar adversarial loss L a
described above to optimize the FD module. This drlves the
generated flare images to become closer to real flare images:

LE" = By o) [(Da() = 1)°]. o
To enforce the cycle-consistency constraint, we use the
FD module to predict the flare mask Mg by taking the gen-

erated flare image I as the input. We then concatenate Mf{

and Iy and send it to the FR module to produce the recon-
structed flare-free image Iis. We apply the reconstruction
loss LY to force the prediction /i and the ground truth
I to be the same in both the image space and the feature
space:

L3 = 3" |In — Il + l6(T) — ¢) 1. ®

where ng is the feature map of the “conv5_3" layer of VGG-
19 [26].

Further, we adopt the LSD module to produce the light
source mask Mg from I, and then use the light source loss
to avoid removing the light source from the image:

Ly = ZHMfo_Mf?HI €))

In summary, when learning from the flare-free images,
the total loss Ly is:

Lff = 5Lff —|— wstf —|— w7LCyCIE, (10)

where ws, wg, and wr are the loss weights.

Inputimage Chabert et al. [4] CycleGAN [34]  Ours

PSNR*t 16.35 16.63 18.68 21.57

SSIMT 0.718 0.723 0.775 0.812
Table 1. Quantitative comparison of the proposed method with

prior works. The best results are marked in bold.
4.4. Implementation Details

The proposed model is implemented under the PyTorch
framework. Section 4.1 presents the detailed network ar-
chitecture. During training, we first pre-train the modules
by learning from flare-free images. In particular, we gen-
erate random light source masks as the input for the FG
module and as the ground truth for light source detection.
We then reuse these modules to learn from either real flare
images or flare-free images with the proposed constraints.
The input images are resized to 512 x 512 and are scaled
or horizontally flipped in a random manner. The param-
eters of our network are randomly initialized, following a
zero-mean Gaussian distribution with a standard deviation
of 0.02. We adopt the Adam solver [13] to optimize the net-
work with 31 = 0.5 and B3 = 0.9999. We empirically set
all the loss weights to 1. We set the initial learning rate as
0.0002 and decay it by 0.1 every 100 epochs. The param-
eters of the FR module, the FG module, and the discrimi-
nators are alternately updated in each iteration [8]. During
the testing stage, images are also resized to a resolution of
512 x 512 for network inference.

5. Experiments

In this section, we first introduce the experimental set-
tings in Section 5.1. We then compare our results both
quantitatively and qualitatively to the existing methods, and
evaluate the quality of our generated flare-free images via
a user study in Section 5.2. We further conduct thorough
ablation studies to analyze the components of the proposed
model in Section 5.3. Finally, we show how our model can
be applied to flare effect manipulation in Section 5.4.

5.1. Experimental Settings

Benchmark Dataset. To evaluate the performance of our
model effectively, we capture a benchmark dataset of real-
world flare images with ground truth flare-free images using
SONY A6100. In particular, we first capture an image with
a strong light source on a tripod. We then add a lens hood
to block some rays to avoid flare artifacts carefully. In ad-
dition, we also collect some flare and flare-free image pairs
from the Internet to increase the diversity and the number of
image pairs in the dataset. Finally, we obtain a benchmark
dataset of 102 flare and flare-free image pairs.

Baselines. We compare our method with a traditional
flare spot removal method [4], which first detects the flare
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Figure 4. Qualitative comparison of the proposed method with prior works. The first and the last rows are the inputs and ground-truth

flare-free images.

spot region and then removes the artifacts in an inpainting
manner. We also compare our method with CycleGAN [34],
which is a general image-to-image translation framework
using unpaired data. We retrain the model using our training
dataset so that it can map the input flare image to an output
flare-free image, as in our model. To the best of our knowl-
edge, there is only one deep learning based method [3 1] for
SIFR, using paired training data. Unfortunately, both their
paired dataset and code have not been publicly available yet.
To compare with this work, we show the visual results and
conduct a user study by running our model on their images.

Evaluation Metrics. For quantitative comparison, we
compute the PSNR and SSIM metrics between the predicted
flare-free images and the ground truth flare-free images to
evaluate the performance of our results.

5.2. Comparison with Existing Methods

Quantitative Evaluation. We conduct a quantitative ex-
periment on our benchmark. Table 1 compares the per-

formance of our model with the baselines. Our method
performs favorably against all baselines by a large margin
on both PSNR and SSIM metrics. This suggests that our
method can effectively remove flares in the images, even
though it is trained only on unpaired data.

Qualitative Evaluation. Figure 4 shows some qualitative
results of our model, compared with those from the base-
lines and the corresponding ground-truth. From the results,
we can see that our method outperforms other methods in all
cases, and removes the flare artifacts more accurately and
thoroughly. Chabert et al. can only remove the flare spot in
the image, and may sometimes fail to remove the spot ar-
tifact region completely. For example, in the first column,
the flare spot artifact still exists in the image. The accuracy
of the detection has a significant effect on the final removal
performance. In contrast, our model can detect and remove
different types of flare artifacts well.

In general, CycleGAN performs better than Chabert et
al. due to the diverse flare artifacts learned by the network

4182



Wu et al. [31] Input
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Figure 5. Visual comparison of the proposed method against the
deep learning based method [31] for SIFR.

in the training process. However, it may fail to remove
large flare spots in some images (e.g., second and fourth
columns). On the other hand, it may remove part of the
light sources in other images (e.g., third and sixth columns)
by mis-recognizing them as flares, especially when there are
multiple light sources. In contrast, due to the explicit light
source guidance, our method can differentiate between light
source regions and flare regions well, and can therefore re-
move the flares in all these examples accurately. It is worth-
noting that not all flare images contain the light source (e.g.,
seventh column). Our method can still remove the flare arti-
facts even from images that do not contain any light source.

We also visually compare our model with the deep learn-
ing based method [3 1] for SIFR. Figure 5 shows some of the
results. We can see that although our model is only trained
on unpaired data, our results compare favorably with their
results that are trained on paired data. For example, in the
first column, we can still see unremoved flare streaks around
the trunk of the tree in their result, while our method suc-
cessfully removes the majority of these streaks. All these
results suggest that our method trained on unpaired data
works well in the SIFR task.

User Study. We further conduct user studies to evaluate
the quality of our results. We first compare our method with
Chabert et al. [4] and CycleGAN [34]. We randomly select
20 flare images from the benchmark dataset. We apply the
above methods to these flare images to generate the cor-
responding flare-free images. Each time, participants are
shown a flare image on the left, and three generated flare-
free images by two baselines and our method on the right

PSNRT SSIM?T
w/o no-flare 19.21 0.788
w/o LSD module 19.12 0.783
w/o FD module 19.88 0.795
w/o LSD module & FD module 18.71 0.778
w/o light source loss 19.37 0.791
w/o flare loss 20.62 0.801
w/o adv loss 20.19 0.797
w/o cycle 18.95 0.781
Ours 21.57 0.812

Table 2. Results of the ablation study. The best results are high-
lighted in bold.

in random order. Participants are asked to vote for the best
flare-free result. We recruit a total of 19 participants for this
experiment. In the end, our results are ranked the best in
74.3% of the votes, CycleGAN in 23.6% of the votes, and
Chabert et al. in 2.1% of the votes. This suggests that our re-
sults are preferred by the participants most of the time, con-
firming once again the superior performance of our model
in comparison to the baselines.

We then compare our method with Wu et al. [30] and
the baselines using the 48 images in [30]. We conduct our
user study with 19 participants under the same setting as
described in the above paragraph. In the end, our results are
ranked the best in 43.6% of the votes, [30] in 39.5% of the
votes, CycleGAN in 15.1% of the votes, and Chabert et al.
in 1.8% of the votes. This further suggests that our method
is more preferred.

5.3. Ablation Study

To study the effectiveness of our framework design, we
create the following ablated variants for evaluation:

e w/o no-flare. We train our model without using the
flare-free training images.

* w/o LSD module. We remove the LSD module from
our model, i.e., removing the light source guidance for
both flare effect removal and generation.

* w/o FD module. We remove the FD module from our
model, relying only on the FR module to remove the
flare artifacts.

* w/o LSD module and FD module, i.e., without explicit
detection of light sources nor flares.

* w/o light source loss. We train the model without us-
ing the light source loss, which means the light source
constraint is not enforced explicitly.

* w/o flare loss. We train the model without using the
flare loss.

* w/o adv loss. We train the model without using the
adversarial loss.

* w/o cycle. We train the model without using the recon-
struction loss.
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Figure 6. Flare effect manipulation. Given an input image, our
method is able to generate different flare effects based on the light
source mask, which indicates the shape, position, and size of the
light source.

Table 2 shows the results of the ablation study. We can
see that the performance drops when training the model
without using flare-free images. This suggests that both
flare and flare-free images can help improve the SIFR per-
formances. We observe that without the LSD and FD mod-
ules, the network performs the worst among all the ablated
models. Compared between the two ablated versions, with-
out the LSD module has a higher performance drop than the
one without the FD module. This indicates that utilizing the
light source aware guidance can greatly improve the SIFR
performances. Nevertheless, the performance also drops
due to the removal of the FD module, confirming the advan-
tage of explicitly detecting the flare region first before flare
removal. Further, when training the network without using
the light source loss, the flare loss, the adversarial loss, or
the reconstruction loss, the performance would drop. This
indicates that it is beneficial to incorporate additional guid-
ance for the SIFR task.

5.4. Flare Effect Manipulation

We further demonstrate the applicability of our model to
flare effect manipulation. Lens flares can show up in images
in a variety of forms, including blobs, streaks, or colored
light anywhere over the image. Understanding lens flares
can help us manipulate the image in different ways, i.e.,
adding or removing flare effects in the image. Although
flare artifacts are undesirable in many images, some film di-
rectors or photographers deliberately use flares as a special
effect [ 14] to enhance the artistic meaning of an image [ 1].
Flare-like effects can also help increase the perceived real-
ism by indicating the presence of very bright light sources.

Figure 6 demonstrates this application. Given an input
flare-free image, we use the FG module in our network to
generate a flare image. As described before, the input to the
FG module is an image and a light source mask. In this ap-
plication, the light source mask can be obtained from either

Ours Ours

Input Input

Figure 7. Failure cases. Our model may fail on some images with
extremely strong light source and the flare artifacts appear all over
the image.

the input image via the LSD module (i.e., automatic mode)
or provided by the user (i.e., interactive mode). The first row
of Figure 6 shows an input image of a sunset scene, with the
sun being the light source. The flare image in the middle is
generated using the light source mask (the thumbnail on its
left) detected automatically by the FD module, while the
flare image on the right is generated using a different mask
with a larger sun (the thumbnail on its left) provided by the
user. Our method is able to generate different and plausible
flares in both cases. The second row of Figure 6 shows an
input image without an obvious light source. By using a
user-provided light source mask with a sun in it, as shown
in the middle (the thumbnail), our method can generate a
plausible flare image. We also try using a blank light source
mask, as shown on the right (the thumbnail). Our model can
still generate a reasonable flare image.

From this experiment, we demonstrate that the FG mod-
ule trained through our framework can be used to add flares
to an image, and the appearance of the synthesized flares
can be manipulated by adjusting the light source mask.

6. Conclusion

In this paper, we make the first attempt to utilize light
source guidance to address the SIFR problem. Our key
idea is to consider the underlying relationship between the
light source region and the flare region, which is learned
from unpaired data with new cycle-consistency constraints.
In addition, we construct the first unpaired flare and flare-
free image dataset, covering diverse scenarios. Extensive
qualitative and quantitative results show that our approach
achieves superior performances over the baseline methods.
Finally, we also demonstrate that our model can be applied
to flare effect manipulation.

Although our method works well in different types of
flare scenarios, it may fail on some challenging scenes
where the intensity of the light source is extremely strong
and the flare artifacts are all over the image, as shown in
Figure 7. In this case, it is difficult for our model to distin-
guish between flare artifacts and the light source. A possible
solution to this problem is to change the flare representation
from a binary mask to an alpha matte to incorporate proper
visual information. As a future work, we would like to study
more types of extreme flare artifacts.
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