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Abstract

Object detection aims to accurately locate and classify
objects in an image, which requires precise object represen-
tations. Existing methods usually use rectangular anchor
boxes or a set of points to represent objects. However, these
methods either introduce background noise or miss the con-
tinuous appearance information inside the object, and thus
cause incorrect detection results. In this paper, we propose
a novel anchor-free object detection network, called Cross-
Det, which uses a set of growing cross lines along horizon-
tal and vertical axes as object representations. An object
can be flexibly represented as cross lines in different com-
binations. It not only can effectively reduce the interference
of noise, but also take into account the continuous object
information, which is useful to enhance the discriminabil-
ity of object features and find the object boundaries. Based
on the learned cross lines, we propose a crossline extrac-
tion module to adaptively capture features of cross lines.
Furthermore, we design a decoupled regression mechanism
to regress the localization along the horizontal and verti-
cal directions respectively, which helps to decrease the op-
timization difficulty because the optimization space is lim-
ited to a specific direction. Our method achieves consis-
tently improvement on the PASCAL VOC and MS-COCO
datasets. The experiment results demonstrate the effective-
ness of our proposed method. Code can be available at:
https://github.com/QiuHeqian/CrossDet.

1. Introduction
Object detection usually relies on object representation

to predict the location and category of objects in an im-
age. Thus, a suitable object representation is key to the
success of object detection. Existing popular object de-
tectors mainly base on two classes of object representa-
tions: anchor-based representation and point-based repre-
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Figure 1. Different object representations for object detection. (a)
uses rectangular anchor boxes as object representation [12]. (b)
and (c) use single center point [27] and a set of keypoints [30] as
object representation. The red/green boxes are assembled by the
red/green dots. (d) denotes our crossline representation by yellow
lines. Green boxes indicate the correct predict. Red boxes indicate
false predictions.

sentation.
Anchor-based representation methods [1, 3, 8, 13, 15, 18,

21, 23, 26] usually place a set of bounding boxes with pre-
defined size anchors as their basic object representations,
and then regress and classify them based on extracted fea-
tures by one or several times. However, to ensure a good
recall rate, these methods require to manually design the
hyper-parameters of anchors for new scenarios with differ-
ent object sizes or aspect ratios. In addition, these meth-
ods [1, 3, 8, 23, 26] often extract the whole features inside
anchor. When there are two objects overlapped, it is easy to
be confused because both of them contain the similar fea-
tures of overlapping areas. For example, the sofa is mis-
takenly classified the dog in overlapping areas as shown in
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Figure 1 (a).
To overcome the above drawbacks, recent academic at-

tention has been leaned toward anchor-free object detec-
tors [4,5,19,20,27,30,33–35,37]. Replacing preset anchors,
these anchor-free detectors use a set of points (e.g., prede-
fined corners [5], center points [4, 27, 34], border points
[19, 35] or key points [30]) as object representations and
then group these points into a bounding box. However,
these discrete points are easy to lose their adjacent infor-
mation, which makes it difficult to determine whether the
scattered points belong to the same object. As shown in
Figure 1 (b), the sofa is difficult to be detected due to the
coarse feature of single center point. In Figure 1(c), the
sofa can not be tightly surrounded by a bounding box.

In this paper, we propose CrossDet, a new flexible
and efficient anchor-free object detection network that uses
learned cross lines as object representations. Because the
goal of object detection is to tightly surround the object by
a bounding box, it is important to focus on the information
in the horizontal and vertical directions. Compared with the
other representations as shown in Figure 1, the crosslines
are adaptively grown to the boundary box of object along
the horizontal and vertical directions. On the one hand, it
can flexibly represent objects using cross lines of various
combinations, and extract features by avoiding the features
of overlapping areas. On the other hand, it takes into the
continuous adjacent object features, and helps to perceive
the change of object features, so as to better find object
boundaries.

Based on the learned lines, we design a novel crossline
extraction module to adaptively integrate the line features
along the horizontal and vertical directions, which can be
flexibly plugged into object detection network. Specifically,
this module first encodes axis-aware long-range context by
average pooling in the horizontal or vertical spatial dimen-
sion, and then selectively samples line features as object
representation. Based on the extracted features, we utilize a
decoupled regression mechanism to regress the offsets and
scales of horizontal and vertical lines respectively, which
restricts the regression range to a specific direction, and can
effectively ease the optimize difficulty. Furthermore, the
predicted crossline representation can be fed into the next
stages to refine the detection results, which is coherently
across multiple stages. We conduct extensive experiments
on two common benchmarks to demonstrate the effective-
ness of our CrossDet.

The main contributions are summarized as:
• We propose a novel anchor-free object detection net-

work that is first attempt to use automatically growing cross
lines to represent objects instead of anchor boxes or a set of
keypoints.

• We design a crossline extraction module to adaptively
aggregate the line features. Based on the extracted features,

we design a decoupled regression mechanism to learn the
horizontal and vertical lines separately.

• We validate the effectiveness of our method on the
PASCAL VOC and MS-COCO datasets. The results show
that our proposed method is beneficial to accurate object
detection.

2. Related Work
2.1. Anchor-based Object Representation

Existing anchor-based object representation methods [1,
3, 8, 13, 15, 18, 21, 23, 26] commonly use a large number of
pre-defined rectangular anchor boxes as object representa-
tion, and then predict the category and regress the localiza-
tion of these anchor boxes by one or several times. Accord-
ing to the refine times, anchor-based object representation
methods can be divided into two-stage and one-stage object
detection methods. Two-stage detectors are currently dom-
inated by popular R-CNN series [1, 8, 23]. They first use
region proposal network (RPN) to generate a set of rectan-
gular proposals from the preset anchors, and then extract
their features using RoI pooling or RoIAlign [8] for the fol-
lowing classification and regression. Compared with two-
stage detectors, one-stage detectors such as YOLO [21,22],
SSD [15], RetinaNet [13] are more effective on computa-
tion cost. They usually eliminate the proposal generation
and directly predict bounding boxes. Although these meth-
ods have detected objects successfully, there are common
drawbacks for the above methods. The hyper-parameters of
anchors require to be carefully tuned so as to cover more
objects for different scenarios. It is coarse and ambigu-
ity because these anchor boxes for per location share fea-
ture of the same grid. Even though some two-stage meth-
ods [1,3,8,23,26] extract the whole box features of propos-
als (refined anchors) instead of grid features, it is inevitably
to introduce background noise or irrelevant foreground fea-
tures. The proposed crossline representation can more flex-
ibly represent objects in different combinations, and thus
reduce the interference of noise.

2.2. Point-based Object Representation

To break the limitation imposed by the hyper-parameters
of anchor boxes, recent anchor-free detectors [4, 5, 19, 20,
27, 30, 33–35, 37] develop a set of points as object repre-
sentations and then group these points into a bounding box.
Based on fully convolution network (FCN), CornerNet [5]
proposes to detect a pair of corners (the top-left corner and
the bottom-right corner) of an object, and employs a asso-
ciative embedding method [16] to group them for the fi-
nal predicted object bounding box. ExtremeNet [35] es-
timates four extreme points (top-most, left-most, bottom-
most, right-most) and one center point of objects to repre-
sent objects. CenterNet [4] extends CornerNet as a triplet,
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Figure 2. (a) The overall architecture of CrossDet. Based on the image features encoded by FPN [12], we first predict the coarse crossline
representation, and then further refine the crossline representation based on the extracted features on the horizontal and vertical lines.
To capture more semantic information, we use the fused features of the two directions to predict the object category. (b) The crossline
extraction module encodes the axis-aware context information using horizontal and vertical pooling, and then generate a weight map to
adaptively sample the line features along the horizontal and vertical directions. C = 256, H ×W denote the height and width of pyramid
feature maps.

including one center keypoint and two corners to provide
more recognizable information. However, these methods
require to carefully group these keypoints to form the final
object bounding box. Without the need for grouping points,
Zhou et al. [34] models an object by a single center point
for object bounding box. It simply extracts features of cen-
ter point at per location to find center points and regress
object properties, such as object size, depth, orientation, lo-
cation and etc. In addition, GA-RPN [28], Foveabox [10],
FSAF [37] and FCOS [27] regard the locations inside the
object as positives and directly predict the object existing
possibility and the bounding box coordinates. However, the
feature of single point is often difficult to distinguish and
locate objects due to the lack of object semantics and lo-
cation information. Subsequently, Reppoints [30] models
object by a set of representative points to learn object shape
and pose information, and then uses converting functions to
transform these points to a bounding box. In order to eas-
ily combine these points, these methods usually require to
manually set a fixed number of key points. However, it is
not reasonable because different numbers of points are often
needed to represent objects of different sizes. In this paper,
we adopt a set of learned cross lines to represent objects,

which can adaptively adjust length of lines and change the
number of extracted features according to the object size.
In addition, the cross lines contain continuous adjacent ob-
ject information, which can facilitate object localization and
classification.

3. CrossDet: Crossline Representation for Ob-
ject Detector

In object detection, a reliable object representation will
be beneficial to accurate object classification and localiza-
tion. To achieve this goal, we propose a novel anchor-free
object detector CrossDet, which utilizes a set of flexible
cross lines instead of rectangular anchor boxes or points as
object representations. Without the hyper-parameters of an-
chor boxes, these cross lines can be adaptively grown along
the horizontal and vertical directions and supervised by the
location, width and height of ground-truth objects.

The overall detection network of CrossDet is constructed
with a multi-stage pipeline, as illustrated in Figure 2. Fol-
lowing methods [27, 30, 31], we adopt feature pyramid net-
work [12] as our backbone. In the initial stage, we first
adopt the regression branch to predict the coarse crossline
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location. Next, we utilize a crossline extraction module to
gather context information around the cross lines and then
selectively sample the important features on the cross lines.
Based on the captured crossline features, we further pre-
dict their corresponding object categories and the location
of horizontal and vertical lines using a decoupled regression
mechanism. In the following sections, we will describe all
components in detail.

3.1. Crossline Representation

In this paper, we use a set of cross lines to represent
an object, corresponding to the horizontal line Hline =
(x1, x2, yo) and vertical line Vline = (xo, y1, y2), where
(xo, yo) is the intersection point coordinate of the horizon-
tal and vertical lines, respectively. x1, x2 and y1, y2 denote
the left and right endpoints of horizontal line and top and
bottom endpoints vertical line, respectively. An object can
be flexibly represented in different cross-line combinations.
For example, Figure 3 (a) and (c) illustrate two combining
forms of the bounding box of dog. Unlike the point-based
methods [4, 5, 30, 35], each set of cross line can be con-
veniently converted into a bounding box and be naturally
supervised by the ground-truth bounding box annotations.
The endpoints x1, x2 of the horizontal line can be regarded
as the left and right borders of the object bounding box,
and the endpoints y1, y2 of the vertical line can be seen as
the top and bottom borders of the object bounding box, as
shown in Figure 3. In this initial stage, we preset the initial
length each line of crossline to three pixels, i.e., the horizon-
tal line: {(xo − 1, yo), (xo, yo), (xo + 1, yo)}, the vertical
line: {(xo, yo − 1), (xo, yo), (xo, yo + 1)}, which can take
into account both the adjacent information on the left and
right or top and bottom, and thus beneficial to the subse-
quent regression of object location.

3.2. Crossline Extraction Module

The structure of crossline extraction module (CEM) is
illustrated in the yellow box of Figure 2, which expects to
capture more significant features on continuous cross lines
for object classification and localization. Given a set of
crossline object representation intersection at the (xo, yo)-
th position, Clines : {Hline = (x1, x2, yo),Vline =
(xo, y1, y2)} and the input feature map I ∈ RC×H×W ,
with C, H and W denoting the channel dimension, height
and width. To effectively extract important crossline fea-
tures, this module includes two parts axis-aware pooling
and cross-line sampling. Firstly, we perform axis-aware av-
erage pooling with a band shape window (1,W ) or (H, 1)
to encode context information and the dependencies be-
tween features along the horizontal or vertical axes. The

output can be computed as:

IHpool
(0, y) =

1

W

W−1∑
x=0

I(x, y), (1)

IVpool
(x, 0) =

1

H

H−1∑
y=0

I(x, y), (2)

where IHpool(0,y) ∈ RC×H×1 and IVpool(x,0) ∈ RC×1×W

are the output feature maps after horizontal axis pooling and
vertical axis pooling, respectively. To modulate the current
location and its neighbor features, we slide convolution ker-
nels with size 1×3 and 3×1 over the horizontal IHpool

and
vertical feature maps IVpool

separately. Then, we expand the
strip feature maps to the dimension of C×H×W , and inte-
grate them to enhance the original features by element-wise
summation.

Based on the integrated feature maps I ′ ∈ RC×H×W

that consider the dependencies between long-range fea-
tures, we can generate the corresponding weight map
W (I ′) ∈ RC×H×W using a 1 × 1 convolution layer and
a normalize layer with sigmoid function. Then, we lever-
age the weight map to adaptively sample the features of
crosslines. The crossline features on the o-th position,
including horizontal FHline

(xo, yo) and vertical features
FVline

(xo, yo), can be calculated as follows:

FHline
(xo, yo) =

x2∑
x=x1

W (x, yo)⊗ I ′(x, yo), (3)

FVline
(xo, yo) =

y2∑
y=y1

W (xo, y)⊗ I ′(xo, y), (4)

W (x, y) =
1

1 + e−I(x,y)
(5)

where ⊗ indicates the element-wise multiplication. A high
weight W (x, y) ∈ [0, 1] means that the (x, y)-th features
is important to the crossline features on the (xo, yo)-th po-
sition. Note that the crossline features are adaptively ag-
gregated based on the length and position of the learned
crossline x ∈ [x1, x2], y ∈ [y1, y2] rather than the whole
feature maps x ∈ [0,W − 1], y ∈ [0, H − 1].

3.3. Decoupled Crossline Regression

Furthermore, we propose a decoupled crossline regres-
sion mechanism to independently regress the offsets and
scales of horizontal and vertical lines using the features
of their corresponding directions, as shown in Figure 3.
Because there are multiple sets of cross lines within the
ground-truth bounding box, it will be friendly to assign the
regression targets. It is not necessary to force every set of
candidate cross lines to the position of center line of ground-
truth, which is difficult to learn due to the long distance
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Figure 3. An example of initial crossline representation and cor-
responding ground-truth cross lines on the (xo, yo)-th position.
Green cross lines are crossline-based representation. White dot-
ted lines indicate the search space of network optimization. Red
boxes indicate ground-truth bounding boxes (x1, y1, x2, y2). The
regression targets of initial horizontal and vertical lines in cross
lines (a) and (c) are assigned along the corresponding direction
rather than the center lines of objects.

between them. Here, we assign the cross lines within the
ground-truth as the regression target along the specific di-
rection. As shown in Figure 3, according to the positions
of candidate cross lines, the horizontal line Hline keeps
the Y-axis coordinate yo unchanged, and just focuses on
offsets ∆x and scales ∆w along the horizontal direction,
while the vertical line Vline only predicts offsets ∆y and
scales ∆h along the vertical direction, keeping X-axis coor-
dinate xo unchanged. Given a ground-truth object bounding
box (x1, y1, x2, y2), the supervision of Hline is represent
as (x1, x2, yo) and the supervision of Vline is represent as
(xo, y1, y2) at each location (xo, yo). Thus, it makes fur-
ther reduce the search space and the difficulty of network
optimization. The procedure can be described as follows:

Hp
line(x

p
c , w

p) = T (Ha
line(x

a
c , w

a), (∆x,∆w)), (6)
V p
line(y

p
c , h

p) = T (V a
line(y

a
c , h

a), (∆y,∆h)), (7)

where Hp
line and V p

line indicate the predicted horizontal line
and vertical line, Ha

line and V a
line are the candidate cross

lines. T (·) represents the decode transformation function
of coordinates following popular R-CNN [7]:

xp
c = xa

c + wa∆x,wp = wae∆w, (8)

ypc = yac + ha∆y, hp = hae∆h, (9)

where xp
c , ypc , wp

c and hp
c indicate the center coordinates

of predicted lines and their width and height (likewise for

xa
c , w

a, ypc , y
a
c , h

p, ha of candidate cross lines). We can nat-
urally convert the crossline representation into a predicted
bounding box represented by two corners (xp

1, y
p
1 , x

p
2, y

p
2),

and then use the GIoU loss LGIoU [24] to optimize the re-
gression branch similar to FCOS [27].

In addition, we further design an offset constraint loss
Loc to restrict their offset ranges to ensure the horizontal
and vertical lines cross each other:

Loc = max(0, xp
1 − xo) +max(0, xo − xp

2)

+max(0, yp1 − yo) +max(0, yo − yp2) (10)

where the horizontal coordinate of the vertical line is re-
stricted to xo ∈ [xp

1, x
p
2], the vertical coordinate of the hor-

izontal line is limited to yo ∈ [yp1 , y
p
2 ]. In this paper, we set

α = 0.1. The decoupled regression loss can be computed
as:

Lreg(x
p
1, x

p
2, y

p
1 , y

p
2) = LGIoU + αLoc (11)

3.4. Network Learning

Target Assignment. There are multiple stages for accu-
rate object detection based on crossline representation. In
the initial stage, we expect to generate as many foreground
samples as possible to facilitate the optimization in the sub-
sequent stages. During training, we assign a positive sample
if the center of crossline falls into any ground-truth box as
FCOS [27]. When a sample falls into multiple ground-truth
boxes, we simply choose the minimum distance as the tar-
get. In the next stage, it is difficult to find appropriate IoU
thresholds to assign the positive and negative samples due to
the dynamics of the distribution of predicted samples in the
previous stage. Inspired by [31], we automatically assign
the positive and negative samples in accordance with sta-
tistical characteristics (i.e., the sum of mean and standard
deviation.) of objects.

Loss Function. The overall CrossDet can be jointly op-
timized in an end-to-end manner using a multi-task loss as:

L =

K∑
k=1

λk
clsLk

cls + λk
regLk

reg, (12)

where Lk
cls and Lk

reg indicate the classification loss and
regression loss in the k-th stage, respectively. Following
FCOS [27], focal loss is used as the classification loss. The
specific regression loss is calculated by Eq. 11. The weights
λk
cls and λk

reg are used to control the contributions among
different stages and tasks. For convenience of optimize, we
set the total number of stages K = 2 in our implemen-
tation. In the first stage, we only use the regression loss
to learn a set of coarse crosslines. In the second stage,
we combine the regression loss and classification loss to
optimize network. The loss function can be calculated as
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L = λ1
regL1

reg+λ2
clsL2

cls+λ2
regL2

reg, if not otherwise spec-
ified.

4. Experiments

To evaluate the proposed CrossDet comprehensively, we
conduct experiments on two public object detection datasets
in natural scenes, including the PASCAL VOC dataset [6]
and MS-COCO dataset [14].

Dataset. The PASCAL VOC dataset [6] contains 20
object categories for evaluating object detector. Follow-
ing [23], we train the models on the union of VOC2007
trainval and VOC 2012 trainval sets for 16551 images and
validate on VOC2007 test set with 4952 images. Compared
with the PASCAL VOC dataset, the MS-COCO dataset [14]
involves larger scale and 80 object categories, which con-
sists of 115k images for training (trainval35k set), 5k im-
ages for validation (minival set) and 20k images for testing
(test-dev set).

Evaluation Metrics. In our all experiments, we adopt
standard COCO-style Average Precision AP as evaluation
metrics, which average mAP over IoU (Intersection-over-
Union) thresholds from 0.5 to 0.95 and also include APS ,
APM , APL for small, medium and large objects. The met-
rics can evaluate the object classification and localization
performance more comprehensively.

Implementation Details. Unless specified, we adopt
ResNet-50 [9] with FPN [12] pre-trained on ImageNet [25]
as our backbone network in all experiments. Following the
typical convention, the long edge and short edge of input
images are resized to 1000 and 600 on the PASCAL VOC
dataset [6], 1333 and 800 on the MS-COCO dataset, re-
spectively. We use stochastic gradient descent (SGD) to
train detectors with batch size of 16 (8GPUs, 2 images per
GPU) for 12 epochs. The initial learning rate is set to 0.01
and then decreased by a factor of 10 after 8 epochs and 11
epochs. There is no data augmentation expect for the tra-
ditional horizontal flipping during training. For fair com-
parison, all experiments are implemented with open source
MMDetection [2] toolbox based on Pytorch [17]. The loss
weights λ1

reg = 1 and λ2
reg = λ2

cls = 2, respectively.

4.1. Ablation Study

In this section, we adopt ResNet-50 [9] with FPN [12] as
our backbone and perform the ablation studies on the PAS-
CAL VOC dataset [6] to analyze the effect of each compo-
nent in our proposed method.

Comparison with different representations. To
demonstrate the effectiveness of the proposed Crossline-
based representation, we replace the crossline representa-
tion with other representation methods and compare them
in Table 1. For fair comparison, these object representa-
tion methods are implemented in a two-stage pipeline. In

Representation AP AP50 AP75 APS APM APL

Center Points 48.4 73.6 52.8 12.3 34.9 58.1
Key Points 48.9 74.3 52.9 12.9 34.5 58.6
Anchor boxes 49.3 74.5 53.0 13.0 34.7 58.8

Cross lines (ours) 50.9 75.4 55.2 15.0 36.6 60.8
Table 1. The effects of different object representations.

Method AP AP50 AP75 APS APM APL

w/o CEM 48.4 73.6 52.8 12.3 34.9 58.1

w/o Axis-aware Pooling 50.5 74.8 55.2 13.6 35.4 60.6
Global Pooling 50.5 75.3 55.1 13.4 35.7 60.6
Axis-aware Pooling 50.9 75.4 55.2 15.0 36.6 60.8

w/o Sampling 48.8 74.5 53.7 12.3 35.2 58.4
Max Sampling 50.7 75.7 54.9 14.3 36.0 60.5
Average Sampling 49.7 75.0 54.4 13.8 35.7 59.3
Soft-weighted Sampling 50.9 75.4 55.2 15.0 36.6 60.8
Table 2. The effects of crossline extraction module. CEM repre-
sents the crossline extraction module. w/o means the method is
removed.

the first stage, we generate the initial object localization op-
timized by a localization supervision. In the second stage,
we simultaneously predict the final object localization and
categories via classification and localization supervisions.
Center-based representation uses the features per location
as object representations. Following Reppoints [30], we ag-
gregate a set of key points using deformable convolution
layer to represent objects. For anchor boxes-based repre-
sentation, we extract their features in the second stage using
popular RoIAlign layer [8]. It can be observed that the pro-
posed crossline representation achieves better performance
in Table 1, and significantly outperforms other representa-
tion based on center point, a set of key points and rectan-
gular anchor boxes by 2.5%, 2.0% and 1.6%, receptively.
These results show that the crossline-based representation
is useful for accurate object detection.

Crossline Feature Extraction Strategy. Table 2 com-
pares the effects of different feature extraction strategies of
cross lines. To validate the effectiveness of axis-aware av-
erage pooling, we use the common global average pooling
instead of axis-aware pooling. There is no performance im-
provement compared to removing axis-aware pooling. A
possible reason is that the global context information of the
whole image may contain more irrelevant features. Further-
more, we investigate the effects of three cross-line sampling
strategies. The max sampling and average sampling that
take the max and average values on the line features respec-
tively. The soft-weighted sampling strategy selectively ex-
tracts the significant features of cross lines. It can be ob-
served that all three strategies significantly improve the per-
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formance by 1.9%, 0.9% and 2.1% AP. The soft-weighted
sampling strategy achieves the best performance of 50.9%.

Table 3 analyzes the effects of crossline extraction mod-
ule (CEM) on the classification branch and the regression
branch. Compared to removing CEM, the CEM on the
classification branch and the CEM on the regression branch
yield very close performance improvement. When CEM are
conducted on both branches, the performance can be further
improved by 1.4% at least. These results demonstrate that
crossline features is important to object classification and
localization.

Cls-CEM Reg-CEM AP AP50 AP75 APS APM APL

48.4 73.6 52.8 12.3 34.9 58.1

✓ 49.4 74.1 53.5 13.1 35.1 59.1
✓ 49.5 75.2 54.4 12.9 34.6 59.5

✓ ✓ 50.9 75.4 55.2 15.0 36.6 60.8
Table 3. The effects of crossline extraction module on the classi-
fication branch and the regression branch respectively. Cls-CEM
and Reg-CEM represent the crossline extraction module is con-
ducted on the classification and regression branches.

Method AP AP50 AP75 APS APM APL

Traditional Regression 50.1 75.3 54.7 14.2 35.7 59.8
Decoupled Regression 50.6 75.4 54.9 14.4 36.4 60.4
w/ Loc 50.9 75.4 55.2 15.0 36.6 60.8

Table 4. The effects of regression mechanism. w/Loc means that
the method introduces the offset constraint loss Loc.

Different Regression Mechanism. We compare the tra-
ditional regression and our decouple regression mechanism
in Table 4. The traditional regression usually requires each
feature to regress the center lines of ground-truth bounding
boxes, which is hard to find the scope of the optimization.
It can be observed that the detection performance in AP is
improved from 50.1% to 50.6% using the decoupled regres-
sion mechanism. In addition, the proposed offset constraint
loss Loc further improves the performance from 50.6% to
50.9%.

Multi-stage Network Design. Because the proposed
CrossDet can be coherently trained across multi-stage
pipeline, we investigate the effects of multi-stage network
design in Table 5. When the number of stages K=1, we di-
rectly predict object categories and localization without the
learning of initial cross lines. When there are two stages
K=2, the third line uses the classification information to op-
timize the initial cross lines, the fourth line uses the local-
ization information to supervise the initial cross lines. It can
be seen that the performance is increased by 1.9% at least
when the initial cross lines are directly supervised. The re-
gression supervision has significant improvement than the

classification. We further perform both classification and
localization supervision for the learning of the initial cross
lines, the performance is consistent with only localization
supervision. These results demonstrate it is more important
to learn the localization information of initial cross lines.

Stages cls. reg. AP AP50 AP75 APS APM APL

K=1 ✓ ✓ 48.1 74.2 52.1 15.0 34.4 57.5
K=2 ✓ 50.0 74,8 53.8 13.9 35.5 59.6
K=2 ✓ 50.9 75.4 55.2 15.0 36.6 60.8
K=2 ✓ ✓ 50.9 75.8 55.10 15.1 36.6 60.5

Table 5. The effects of multi-stage network in the proposed
method. K denotes the number of stages in the proposed Cross-
Det. cls. and reg. represent the supervision source of coarse cross
lines in the first stage.

4.2. Comparison with State-of-the-art Detectors

Results on Pascal VOC Dataset. We compare our
method CrossDet with other typical anchor-based repre-
sentation [12, 13] and point-based representation methods
[27, 30, 31] on VOC2007 test set in Table 6. For fair com-
parison, we reimplement these methods on MMDetection
use their default parameters and 16 batchsize and 12 epochs
without bells and whistles. Under the same experimen-
tal conditions, our method CrossDet can consistently out-
perform other representation methods with ResNet-50 and
ResNet-101 backbone networks by 1.6% and 1.1% at least.

Results on MS-COCO Dataset. To further validate the
generality ability, we also evaluate our method CrossDet
with other state-of-the-art methods on the large-scale MS-
COCO test-dev set in Table 7. Under standard setting with
12 epochs, our CrossDet with ResNet-50 and ResNet-101
backbone achieves 41.8% and 42.8% AP. Following ad-
vance settings [27, 30, 31, 31], we also conduct our method
with 24 epochs and the multi-scale training strategy. It
can be observed that our CrossDet with multi-scale test-
ing achieves 48.4% AP and suppresses other state-of-the-
art anchor-based and point-based methods. These results
demonstrate the effectiveness of the proposed crossline-
based representation for object detection.

5. Conclusion
In this paper, we have proposed an anchor-free object

detector CrossDet, which uses a set of cross lines as ob-
ject representations. This crossline representation can flexi-
bly model continuous object information for accurate object
classification and localization. Based on the learned cross
lines, the crossline extraction module is designed to adap-
tively capture features of cross lines along the horizontal
and vertical directions. In addition, the decouple regression
mechanism is used to optimize the cross lines to automat-
ically grow along the horizontal or vertical directions. Ex-
tensive experiment results have validated the effectiveness
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Method Backbone AP AP50 AP75 APS APM APL

Faster R-CNN [12] ResNet-50 46.5 74.8 50.5 11.9 33.8 55.6
RetinaNet [13] ResNet-50 47.2 73.2 50.2 12.1 33.0 56.7
Reppoints [30] ResNet-50 45.9 73.5 48.8 11.6 32.2 55.0
FCOS-imprv [27] ResNet-50 47.6 72.2 51.1 11.7 31.8 57.7
ATSS [31] ResNet-50 49.3 73.8 53.6 13.5 36.2 58.8
CrossDet (ours) ResNet-50 50.9 75.4 55.2 15.0 36.6 60.8

Faster R-CNN [12] ResNet-101 48.8 75.5 53.5 10.7 35.9 58.3
RetinaNet [13] ResNet-101 49.5 74.1 53.0 12.4 35.5 59.3
Reppoints [30] ResNet-101 47.5 74.2 51.3 11.4 33.9 56.9
FCOS-imprv [27] ResNet-101 49.7 73.4 54.3 12.4 34.7 60.1
ATSS [31] ResNet-101 51.7 75.2 57.1 12.7 37.1 61.9
CrossDet (ours) ResNet-101 52.8 76.9 57.9 13.7 38.0 63.4

Table 6. Comparison with state-of-the-art methods on VOC2007 test set [6]. These methods are trained using 12 epochs.

Method Backbone Epoch AP AP50 AP75 APS APM APL

Anchor-based Representation
Faster R-CNN w. FPN [12] ResNet-101 24 36.2 59.1 39.0 18.2 39.0 48.0
Cascade R-CNN [1] ResNet-101 18 42.8 62.1 46.3 23.7 45.5 55.2
SABL [29] ResNet-101 24 43.3 60.9 46.2 23.8 46.5 55.7
YOLOv3 [22] DarkNet-53 - 33.0 57.9 34.4 18.3 35.4 41.9
SSD513 [15] ResNet-101 - 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [13] ResNet-101 - 39.1 59.1 42.3 21.8 42.7 50.2
RefineDet512 [32] ResNet-101 - 41.8 62.9 45.7 25.6 45.1 54.1

Point-based Representation
ExtremeNet* [35] Hourglass-104 200 40.2 55.5 43.2 20.4 43.2 53.1
CornerNet* [11] Hourglass-104 200 40.5 56.5 43.1 19.4 42.7 53.9
FreeAnchor [33] ResNet-101 24 43.1 62.2 46.4 24.5 46.1 54.8
CenterNet [4] Hourglass-104 190 44.9 62.4 48.1 25.6 47.4 57.4
FCOS* [27] ResNet-101 24 41.5 60.7 45.0 24.4 44.8 51.6
FCOS-imprv* [27] ResNet-101 24 43.0 61.7 46.3 26.0 46.8 55.0
ATSS* [31] ResNet-101-DCN 24 46.3 64.7 50.4 27.7 49.8 58.4
RepPoints* [30] ResNet-101-DCN 24 45.0 66.1 49.0 26.6 48.6 57.5
SAPD [36] ResNet-101-DCN 24 46.0 65.9 49.6 26.3 49.2 59.6
BorderDet* [19] ResNet-101-DCN 24 47.2 66.1 51.0 28.1 50.2 59.9

Crossline-based Representation
CrossDet ResNet-50 12 41.1 60.1 44.7 24.4 43.8 51.0
CrossDet ResNet-101 12 42.8 61.9 46.7 25.1 45.7 53.5
CrossDet* ResNet-50-DCN 24 45.2 63.8 49.8 28.1 47.7 55.8
CrossDet* ResNet-101-DCN 24 47.4 65.9 52.3 29.5 50.2 58.7
CrossDet** ResNet-50-DCN 24 46.3 64.6 51.9 30.3 48.0 56.8
CrossDet** ResNet-101-DCN 24 48.4 66.4 54.1 32.0 50.6 59.0

Table 7. Comparison with state-of-the-art methods on MS-COCO test-dev set [14]. The symbol * represents multi-scale training and **
represents multi-scale training and testing.

of the proposed CrossDet, which achieves superior perfor-
mance on the PASCAL VOC and MS-COCO datasets.
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