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Abstract

In this work we investigate the problem of uncertainty
estimation for image-guided depth completion. We extend
Deep Basis Fitting (DBF) [54] for depth completion within
a Bayesian evidence framework to provide calibrated per-
pixel variance. The DBF approach frames the depth com-
pletion problem in terms of a network that produces a set
of low-dimensional depth bases and a differentiable least
squares fitting module that computes the basis weights using
the sparse depths. By adopting a Bayesian treatment, our
Bayesian Deep Basis Fitting (BDBF) approach is able to
1) predict high-quality uncertainty estimates and 2) enable
depth completion with few or no sparse measurements. We
conduct controlled experiments to compare BDBF against
commonly used techniques for uncertainty estimation under
various scenarios. Results show that our method produces
better uncertainty estimates with accurate depth prediction.

1. Introduction
As we seek to incorporate learned modules in safety crit-

ical applications such as autonomous driving, reliable un-
certainty estimation becomes as critical as prediction accu-
racy [59]. Depth completion is one such task where well-
calibrated uncertainty estimates can help to enable robust
machine perception. Deep Convolutional Neural Networks
(CNNs) are commonly used to solve structured regression
problems like depth prediction due to their strong expres-
sive power and inductive bias [12]. However, in its native
form, a CNN only produces a point estimate, which of-
fers few insights into whether or where its output should
be trusted. Many probabilistic deep learning methods have
been proposed to address this issue [44, 17], but they often
fail to output calibrated uncertainty [23] or become suscep-
tible to distributional shift [50]. Moreover, these methods
can be expensive to compute due to the need for test time
sampling [18] or inference over multiple models [36].

In this work, we propose a method for depth completion
with uncertainty estimation that avoids the above limita-
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Figure 1: Qualitative results of our method, Bayesian Deep
Basis Fitting (BDBF), which outputs uncertainty estimates
with depth completion.

tions. Our approach builds on the idea of Deep Basis Fitting
(DBF) [54]. DBF replaces the last layer of a depth comple-
tion network with a set of data-dependent weights. These
weights are computed by a differentiable least squares fit-
ting module between the penultimate features and the sparse
depths. The network can also be seen as an adaptive basis
function which explicitly models scene structure on a low-
dimensional manifold [4, 60]. It can be used as a replace-
ment to the final layer (with no change to the rest of the
network or training scheme), which greatly improves depth
completion performance.

We extend DBF by formulating it within a Bayesian evi-
dence framework [3]. This is done by placing a prior distri-
bution on the DBF weights and marginalizing it out during
inference. Such last-layer probabilistic approach have been
shown to be reasonable approximations to full Bayesian
Neural Networks [34], while providing the advantage of
tractable inference [48]. This is conceptually similar to
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Neural Linear Models (NLMs) [58] with the notable dis-
tinction that we perform Bayesian linear regression on each
image as opposed to the entire dataset.

A Bayesian treatment also enables depth completion
with highly sparse data. In DBF, when the number of sparse
depths falls below the dimension of the bases, the underly-
ing linear system becomes under-determined. We show that
by learning a shared prior across images, our method is able
to handle any number of sparse depth measurements.

We name our approach Bayesian Deep Basis Fitting
(BDBF) and summarize its advantages: 1) It can be used
as a drop-in replacement to the final layer of many depth
completion networks and outputs uncertainty estimates (in
the form of per-pixel variance). 2) Compared to other un-
certainty estimation techniques, it produces higher quality
uncertainty with one training session, one saved model and
one forward pass, without needing extra parameters or mod-
ifications to the loss function. 3) It can handle any spar-
sity level, with performance degrading gracefully towards
a pure monocular method when the number of depth mea-
surements goes to zero.

2. Related Work

2.1. Uncertainty Estimation for Neural Networks

We start by reviewing uncertainty estimation techniques
for neural networks. There are two types of uncertainty
that one could model: epistemic (model), which describe
the uncertainty in the model and aleatoric (data), which
reflects the inherent noise in the data [33]. Modeling un-
certainty in neural networks can be achieved by placing
probabilistic distributions on network weights. Such net-
works are called Bayesian Neural Networks (BNN) [44].
Direct inference in BNNs is intractable for continuous vari-
ables, and different approximation techniques have been ex-
plored [44, 29, 22, 5, 46, 45, 30]. However, they don’t scale
well to large datasets and complex models, and are thus im-
practical for current vision tasks.

Gal et al. [18] proposed the use of dropout as an ap-
proximate variational inference method for BNNs. How-
ever, their method requires multiple forward passes to ob-
tain Monte Carlo model estimates at test time. Another
research direction is assumed density filtering (ADF) [49]
which can be viewed as a single Expectation Propagation
pass. Gast et al. [20] chose to propagate activation uncer-
tainties without probabilistic weights in a lightweight man-
ner, which requires modifying the layer operations based on
moment matching.

Predictive methods directly output mean and variance of
some parametric distribution by minimizing the negative-
log likelihood (NLL) loss [47]. They only require small
changes to the original network by adding a variance predic-
tion head. This simplicity makes it a popular choice among

Method #T #M #F Alea. Epis.
Predictive [47, 31] 1 1 1 X
Dropout (Predictive) [18, 31] 1 1 K (X) X
Snapshot (Predictive) [26] 1 K K (X) X
Bootstrap (Predictive) [36] K K K (X) X
Proposed (BDBF) 1 1 1 X X

Table 1: Comparison of different uncertainty estimation
techniques. The first three columns represent number of
training sessions (T), copies of model saved (M), and num-
ber of forward passes (F) at test time respectively. Last two
columns indicate whether a method estimates data or model
uncertainties. Dropout, snapshot and bootstrap ensemble
can all be combined with a predictive approach to model
data uncertainty. BDBF has the same complexity as predic-
tive methods.

recent works [31, 39].
Ensemble methods either train multiple models indepen-

dently with different initializations (bootstrap) [36] or save
several copies of weights at different stages during train-
ing (snapshot) [26]. These methods only model epistemic
uncertainty but can be combined with a predictive one to
model data uncertainty. They achieve good performances
in various experimental settings [24, 52, 28], but still need
multiple inference passes at test time, which makes them
less suitable for resource constrained platforms.

Table 1 summarizes the aforementioned approaches and
highlights the difference compared to ours. In Sec. 4.1 we
describe in detail the methods that we evaluate against.

2.2. Uncertainty Estimation in Depth Completion

Great progress has been made in the past few years on
depth completion ranging from high-density completion for
RGB-D/ToF cameras [38, 15, 68, 70], to mid-density com-
pletion from LiDAR sensors [64, 43, 10, 61, 9, 8, 71, 37, 67,
69]. Recently, there has also been rising interests in low-
density completion from map points generated by Visual-
SLAM or Visual-Inertial Odometry [65, 66, 55, 72]. Unlike
systems that are designed for a particular sparsity or sens-
ing modality, our proposed method can be seen as a general
component for depth completion similar to DBF [54].

A complete review of depth completion literature is out
of the scope of this work, we instead focus on methods
that also estimate uncertainty. Gansbeke et al. [19] pre-
dict depth and confidence weights for both color and depth
branch and fuse them based on the confidence maps. Qiu
et al. [53] adopt a similar strategy, but additionally guide
the depth branch via surface normal prediction. Xu et
al. [67] use a shared encoder and multiple decoders to pre-
dict surface normal, coarse depth and confidence, then use
an anisotropic diffusion process to produce refined depth.
Park et al. [51] instead use a single encoder-decoder net-
work to predict initial depth, affinities and confidence be-
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Figure 2: An overview of BDBF for depth completion.
The input to the network is an RGB image I and option-
ally a sparse depth map S. The network produces a M -
dimensional depth bases Φ, which has the same spatial res-
olution as I . BDBF then solves for the weights w given the
sparse depth at valid pixel locations. w can then be used to
reduce the bases into a single channel latent prediction Z,
before going through the activation g to produce depth D.

fore applying a non-local spatial propagation to produce the
final depth. Note that the uncertainties produced by the
above methods are not calibrated and are only used inter-
nally. Therefore, they are not readily useful to downstream
tasks that require probabilistic reasoning. This type of un-
certainty estimation can also be seen as a simplified version
of the predictive method in [47] without the NLL loss.

Few works have tried to evaluate the quality of depth
completion uncertainty. Eldesokey et al. [13] present a
probabilistic normalized convolution [14] that estimates
confidence of both input sparse depths and output dense
prediction, for unguided depth completion. Gustafsson et
al. [24] compared several uncertainty estimation methods
applied to depth completion in the same spirit as [52]. We
follow their approach and provide a systematic compari-
son of our proposed method against the best performing
schemes from [24, 52] and demonstrate superior perfor-
mance and efficiency across a range of datasets.

3. Method
3.1. Problem Formulation

Let D = {(xn,yn)}ND
n=1 be a dataset containing ND

samples. We wish to learn a neural network f that maps
x to y. In depth completion, the input x is usually an image
and sparse depth pair (I, S), and the output y is the pre-
dicted depth map D. We refer to fθ as the basis network
and its output Φ a set of depth bases [54]. Φ is then reduced
by a linear layer fw to z, which is then mapped to positive
depth values via a nonlinear activation function g.

y = f(x) = g ◦ fw ◦ fθ(x) = g ◦ fw(Φ) = g(z) (1)

With a slight abuse of notation, we call z the latent variable
and choose g to be the exponential function [12], so z effec-
tively corresponds to log depth. An overview of our method
is shown in Figure 2.

3.2. Bayesian Deep Basis Fitting

We choose to model the distribution of each pixel in the
latent space z rather than in the target space y, since depth
is strictly positive and may span several orders of magni-
tude [57]. Assuming Gaussian noise in the latent space, we
define our model to be

zi = w>φi + εi, εi ∼ N (0, β−1) (2)

where φi denotes the basis entries corresponding to the la-
tent pixel value zi and β ∈ R is a precision parameter that
corresponds to the inverse variance of the noise. Assuming
that the errors at each pixel are independent, the likelihood
function is

p(z|x,w) = N (z|Φw, β−1I) (3)

here Φ is the N ×M design matrix with N the number of
sparse depths and M the dimension of w. It is assembled
by extracting the basis entries at the pixel locations specified
by S.

Given a suitable prior on the last-layer weights p(w) =
N (m0, α

−1Σ0), where α ∈ R is a precision parameter to
scale the covariance Σ0, the posterior distribution of w can
be computed analytically following Bayes’ rule [3]:

p(w|x, z) = N (m,Σ) (4)

∝ N (w|m0, α
−1Σ0) · N (z|Φw, β−1I) (5)

where the mean and covariance are given by

m = Σ(αΣ−10 m0 + βΦ>z) (6)

Σ = (αΣ−10 + βΦ>Φ)−1 (7)

The latent predictive distribution for a pixel at test time is

p(z∗|x, z) =

∫
p(z∗|w)p(w|x, z)dw (8)

= N (z∗|m>φ∗,φ>∗ Σφ∗) (9)

The Gaussian assumption is made solely for the purpose of
tractable inference. In practice, the shape of the predictive
distribution depends heavily on the loss function. Since we
use L1 loss for training, we employ a Laplace distribution as
its parametric form for evaluating uncertainty [28, 4]. Ad-
ditionally, a robust norm like Huber [27] can be applied if
outliers are present in the target [63] .

3.3. Training

Loss Function. The standard way of learning a Bayesian
regressor is by maximizing the marginal likelihood function
with respect to the parameters θ of the basis function fθ,

log p(z|x, α, β) =
1

2
(N lnβ +M lnα−N ln 2π

− E(m) + ln |Σ| − ln |Σ0|)
(10)

E(w) = β‖z−Φw‖2 + α‖w −m0‖2Σ0
(11)
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where ‖v‖A = v>A−1v is the Mahalanobis norm. This is
known in literature as type 2 maximum likelihood [3].

Directly maximizing (10) has two practical issues. First,
one needs to estimate the hyperparameters α and β, which
adds large overhead during training. Second, gradients need
to be back-propagated through costly operations like matrix
inversion and determinant. Together, they pose challenges
to the training phase and often produce empirically simi-
lar results to a point estimate [58]. We avoid these issues
by assuming sufficient sparse points in training (N � M ).
This renders the linear system over-determined, which al-
lows us to treat the prior p(w) as infinitely broad. The solu-
tion in (6) therefore reduces to a maximum likelihood (ML)
one which can be computed efficiently in one pass [3].

wML = (Φ>Φ)−1Φ>z, β−1ML =
1

N
‖z−ΦwML‖2 (12)

The predicted mean and variance of z∗ at training time
are given by the following according to (9)

µ = w>MLφ, σ2 = β−1MLφ
>(Φ>Φ)−1φ (13)

Given the above results, we can minimize the Negative
Log-Likelihood Loss (NLL) assuming a Laplace distribu-
tion [28], which is defined for a single pixel as

− log p(z|µ, b) ∝ |µ− z|
b

+ log b, 2b2 = σ2 (14)

However, this would still involve back-propagation through
a costly matrix inversion as in (12). We find in our experi-
ments that this sometimes causes numerical instability dur-
ing training and incurs a visible decrease in prediction accu-
racy. Therefore, we opt to minimize directly the L1 loss for
supervised learning. This allows our network to be trained
in its original form without suffering from the performance
drop caused by the NLL loss [40].

Uncertainty Calibration. Not using the likelihood loss
comes with the risk of over-confidence in uncertainty es-
timation, since there is no explicit penalty on the variance
prediction. As the number of parameters in θ is usually on
the order of millions, the noise variance β−1 will be pushed
towards zero [48]. One solution is to regularize θ using an
L2 regularization term in the optimizer. This introduces an
extra hyperparameter to tune: a small regularization would
not prevent overfitting, while a large one will render the fea-
ture bases inexpressive [62]. We notice empirically that the
amount of overconfidence in our method is consistent dur-
ing training and validation. Therefore, we take a pragmatic
approach and propose to solve this problem in terms of esti-
mator consistency [2], measured by normalized estimation
error squared (NEES). For a Laplace distribution, NEES is
defined as ε = (µ− z)2/b2. We record the average NEES ε̄
at training time for the last epoch, and use it to scale the vari-
ance accordingly during inference with σ̄2 = ε̄σ2, which

attempts to make the final prediction consistent. Note that
the scaling factor is computed entirely at training without
any additional data and NEES is not used as a loss function.

Shared Prior. Although the prior p(w) is not used in train-
ing, we still need it for inference. Rather than estimating a
different prior for each image, we make another simplify-
ing assumption that there exists a shared prior for the entire
dataset. This aligns with our observation from experiments
that p(w) shows a relatively sharp peak. Given our train-
ing strategy, we adopt a frequentist approach and collect all
ML solutions of weights wML within one training epoch.
The mean, m0, and covariance, Σ0, can then be computed
from this set. Having a shared prior enables robust depth
completion from a few sparse depth measurements.

3.4. Inference

Inference follows the standard evidence framework [3].
We use EM [11] to estimate the hyperparameters α and β.
The re-estimation equations are obtained by maximizing the
expected complete-data log likelihood with respect to α, β

α−1 =
1

M

(
‖m−m0‖2Σ0

+ tr(Σ−10 Σ)
)

(15)

β−1 =
1

N

(
‖z−Φm‖2 + tr(Φ>ΦΣ)

)
(16)

where tr(·) is the matrix trace operator. The re-estimated α
and β are then plugged back into (6) and (7) to recompute
m and Σ. We initialize this process empirically with α = 1
and β =

√
N and set the maximum number of iterations to

8. In practice we reach convergence within 2 to 3 iterations
when N � M , thus incurring only a small computation
overhead. In the extreme case when N → 0, we rely on the
shared prior alone for a pure monocular prediction.

µ = m>0 φ, σ2 = φ>Σ0φ (17)

4. Evaluation
In this section, we show results on various datasets that

our method outperforms baseline approaches in uncertainty
estimates with accurate depth prediction, and remains re-
silient to sparsity change and domain-shift.

4.1. Baselines

We describe three baselines for uncertainty estimation
that we compare to, which are shown to have strong per-
formance [52, 24] and can be evaluated under controlled
settings. As discussed in Section 3.2, all methods output
mean and variance of the latent prediction before g(·), and
are trained with either L1 loss or its NLL variant (14).

For empirical methods, we choose Snapshot Ensemble
[26] (snap) which can be completed in one training session
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Figure 3: Qualitative results of all methods trained and test with 5% sparsity on VKITTI2.

such that all methods have the same training budget. The
mean and variance are computed using K snapshots.

µ =
1

K

K∑
i=1

µi, σ2 =
1

K

K∑
i=1

(µi − µ)2 (18)

For predictive methods (log) [47], we attach a variance
prediction head parallel to the depth prediction and train
with the NLL loss. Finally, we combine the above two
(snap+log) [31] to form a predictive ensemble method.

µ =
1

K

K∑
i=1

µi, σ2 =
1

K

K∑
i=1

(
(µi − µ)2 + σ2

i

)
(19)

4.2. Datasets

Virtual KITTI 2. The VKITTI2 dataset [6] is an updated
version to its predecessor [16]. We use sequences 2, 6, 18
and 20 with variations clone, morning, overcast and sunset
for training and validation, and clone in sequence 1 for test-
ing. This results in 6717 training and 447 testing images.
The sparse depths are generated by randomly sampling pix-
els that have a depth less than 80m [24]. Ground truth
depths are also capped to 80m following common evalua-
tion protocols. All images are downsampled by half.

NYU Depth V2. The NYU-V2 [56] dataset is comprised of
various indoor scenes recorded by an off-the-shelf RGB-D
camera. We use the 1449 densely labeled pairs of aligned
RGB and depth images. and split it into approximately 75%
training and 25% testing. The same depth sampling strategy
is adopted as above. Note that we intentionally choose this
small dataset (as opposed to the full) to evaluate uncertainty
estimation under data scarcity [62].

KITTI Depth Completion. We also evaluate on the KITTI
depth completion dataset [64] following its official train/val
split. For all experiments other than the official submission,
we down sample both the image and depth by half.

4.3. Implementation Details

Network architecture. We use the same basis network for
all methods, which is an encoder-decoder architecture with

skip connection similar to that in [54]. We use a MobileNet-
V2 [57] pretrained on ImageNet [35]. The decoder outputs
a set of multi-scale bases [54], which are then upsampled
to the input resolution and concatenated together to form a
final 63-dimensional basis. For baseline methods we ini-
tialize the bias of depth prediction head with the average
log depth of the dataset and let the variance head predict an
initial variance of 1. Our method, however, requires no ini-
tialization. When using sparse depths as network input, we
adopt the two-stage approach from [66] which first scaffolds
the sparse depths by interpolation and then fuses it with the
first layer of the encoder via convolution. Note that this
depth pre-processing step is orthogonal to the uncertainty
estimation techniques and we choose this approach for its
simplicity and applicability to both mid- and low-sparsity.
All networks use the same setup unless otherwise stated.

Training parameters. For training we use the Adam opti-
mizer [32] with an initial learning rate of 2e-4 and reduce
it by half every 5 epochs following [42, 54]. We train our
method for 20 epochs and all others for 30. This is to ac-
count for the increased training time using our method. For
Snapshot Ensemble,we follow the original paper [26] and
use the cyclic annealing scheduler from [41] with the same
initial learning rate as before. we train for 5 epochs per cy-
cle, and discard the worst snapshot, which leaves us with
5 snapshots. All training is carried out on a single Tesla
V100 GPU with the same batch size and random seed. For
data augmentation we apply a random horizontal flip with a
probability of 0.5 and a small color jitter of 0.02.

4.4. Metrics

Depth prediction metrics. We evaluate depth completion
performance using standard metrics [12]. Specifically, we
report MAE, RMSE and accuracy (δ-threshold) on depth.
Due to space limitation, we only report δ1 < 1.25.

Uncertainty estimation metrics. Unlike depth prediction
which can be compared to ground truth, the true probability
density function of depth is not available. This makes eval-
uating uncertainty estimates a difficult task in itself. Here,

16151



we describe three popular metrics commonly found in liter-
ature for uncertainty estimates. Note that each metric has its
own advantages and drawbacks, we seek to provide a more
comprehensive evaluation by reporting all three.

1) Area Under the Sparsification Error curve (AUSE)↓.
Sparsification plots [1] are commonly used for measuring
the quality of uncertainty estimates. Given an error met-
ric (e.g. MAE), we sort the prediction errors by their un-
certainty in descending order and compute the error metric
repeatedly by removing a fraction (e.g. 1%) of the most un-
certain subset. An oracle sparsification curve is obtained by
sorting using the true prediction errors. AUSE is the area
between the sparsification curve and the oracle curve. This
normalizes the oracle out and can be used to compare differ-
ent methods [28]. Note that AUSE is a relative measure of
uncertainty quality, since its computation relies on the order
of predicted uncertainties.

2) Area Under the Calibration Error curve (AUCE)↓.
For an absolute measure of uncertainty estimation quality,
[24] proposes to generalize the Expected Calibration Error
(ECE) [23] metric to regression. For Laplace distributions,
given mean µ and variance σ2, we construct prediction in-
tervals µ±Ψ−1(p+1

2 )b for p ∈ (0, 1), where Ψ is the CDF
of the unit Laplace distribution. For each value of p, we
compute the proportion of pixels p̂ for which the true tar-
get falls within the predicted interval. For a well-calibrated
model, p̂ should closely match p. The Calibration Error
curve is defined as |p− p̂|, and AUCE is the area under this
curve. Like ECE, AUCE is not a proper scoring rule [50],
as there exists trivial solutions which yield perfect scores.

3) Negative Log-likelihood (NLL)↓. NLL (14) is com-
monly used to evaluate the quality of model uncertainty on
a held-out dataset [50]. It is a proper scoring rule [21], but
over-emphasizes tail probabilities [7] and cannot fully cap-
ture posterior in-between uncertainty [62].

4.5. Results

Mid-density Depth Completion. In this setting, we train
all methods with 5% sparsity. Table 2 shows quantitative re-
sults when testing on the same dataset under the same spar-
sity level. This is considered an in-distribution test. We see
significant improvements of our method in almost all met-
rics. Figure 3 shows qualitative results of one sample from
the VKITTI2 test set. Compared to others, bdbf not only
predicts higher quality depths but also sharper uncertainties
that closely match the true prediction errors. This indicates
that the learned depth bases in ours is expressive for pre-
dicting both depth and uncertainty. Note that when there’s
enough data, bdbf will reduce to dbf as expected, but the
Bayesian formulation allows for smooth transition to a low
sparsity level by incorporating a learned prior.

(b) Abs. Log Depth Error and Bounds (c) Normalized Error Density
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Figure 4: (a) Qualitative results of bdbf on one test image
from NYU-V2. (b) Absolute log depth error (blue line) and
3b bounds (blue shades) for a single row of pixels (red line)
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Figure 5: (a) Sparsification error, (b) calibration error and
(c) sparsity change plots of NLL vs. MAE with 5% sparsity
on VKITTI2 (top) and NYU-V2 (bottom). Sparsification
and calibration plots are generated using 5% test sparsity.
Sparsity change plots are generated with varying test spar-
sity from 5% to 1%.

We take a closer look at one sample from the NYU-
V2 test set in Figure 4 (a), by plotting the absolute predic-
tion error in log space e = |µ − z| and uncertainty bound
b = σ/

√
2 for one row of pixels in Figure 4 (b), and the

normalized error density ẽ = e/b on the entire image in
Figure 4 (c). bdbf is the only method where the bound
traces the general shape of the prediction error and whose
normalized error density resembles that of a unit Laplace
distribution. snap fails to capture the underlying error dis-
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Trained with 5% VKITTI2 NYU-V2
Input Method % MAE RMSE δ1 AUSE AUCE NLL MAE RMSE δ1 AUSE AUCE NLL
rgbd snap [26] 5% 1.192 3.267 95.59 0.445 0.170 -0.714 0.061 0.126 99.35 0.036 0.202 -1.390
rgbd snap+log [31] 5% 1.271 3.432 95.33 0.142 0.117 -1.582 0.058 0.123 99.32 0.018 0.256 -1.596
rgbd log [47] 5% 1.318 3.423 95.37 0.149 0.125 -1.421 0.057 0.121 99.34 0.018 0.210 -1.783
rgbd dbf [54] 5% 0.709 2.928 97.88 0.148 0.163 -2.488 0.026 0.082 99.64 0.007 0.054 -3.145
rgbd bdbf 5% 0.703 2.925 97.88 0.110 0.136 -2.596 0.026 0.082 99.64 0.007 0.039 -3.151

Table 2: Quantitative results of all methods trained and tested with 5% sparsity on VKITTI2 and NYU-V2.

Trained with 500 VKITTI2 NYU-V2
Input Method # MAE RMSE δ1 AUSE AUCE NLL MAE RMSE δ1 AUSE AUCE NLL
rgbd snap 500 2.312 5.403 90.14 0.459 0.229 -0.207 0.096 0.206 97.53 0.053 0.261 0.211
rgbd snap+log 500 2.396 5.571 89.88 0.273 0.036 -1.150 0.095 0.213 97.44 0.025 0.205 -1.393
rgbd log 500 2.492 5.800 89.13 0.299 0.095 -0.906 0.097 0.212 97.44 0.025 0.152 -1.502
rgbd dbf 500 2.050 5.067 92.58 0.453 0.051 -1.175 0.065 0.167 98.45 0.020 0.055 -2.186
rgbd bdbf 500 2.015 4.994 92.71 0.392 0.014 -1.215 0.064 0.166 98.46 0.021 0.030 -2.199
rgb bdbf 500 2.569 5.642 88.67 0.481 0.015 -0.979 0.098 0.199 98.48 0.030 0.014 -1.689

rgb† log 0 6.758 11.78 61.48 1.591 0.291 2.407 0.366 0.561 75.08 0.161 0.191 0.187
rgb bdbf 0 5.809 9.610 62.78 1.381 0.264 0.809 0.664 0.944 47.76 0.245 0.044 0.459

Table 3: Quantitative results of all methods trained and tested with 500 sparse depths and our proposed method tested with
no sparse depths compared to a monocular depth prediction baseline(†). rgbd under the input column indicates the basis
network uses the sparse depths scaffolding approach from [66], whereas rgb uses color image as basis network input only.

tribution. log and snap+log produce decent relative uncer-
tainties (AUSE) but are not well-calibrated (AUCE). Fig-
ure 5 (a) (b) show sparsification error and calibration plots
for the in-distribution test on both datasets, which are used
to compute AUSE and AUCE respectively. We see that pre-
dictive method (log) performs similar to its ensemble vari-
ant snap+log and both are better than the pure ensemble
method, snap. This is consistent with findings in [28, 52].

We also evaluate all methods under the effect of distribu-
tional (dataset) shift [50]. Here we mainly focus on the fol-
lowing two aspects: sparsity change and domain shift. For
sparsity change within mid-density, we take models trained
on 5% sparsity and test on varying sparsity level from 5% to
1%. Results are shown in Figure 5 (c). Note that these plots
reflect how each method performs on two axes in terms of
uncertainty estimation (NLL) and depth prediction (MAE),
where better methods should reside closer to the lower left
corner. We see that performance of all methods degrade in a
similar manner with deceasing sparsity, which is largely due
to the sparse depth scaffolding approach we choose. How-
ever, bdbf stands out with its 1% result better than the 5%
results of its competitors. We refer the reader to our supple-
mentary material for results on domain shift.

Low-density Depth Completion. In this setting, we train
all methods with 500 sparse points, which is roughly 0.5%
sparsity given our image size. We also introduce a slight
variation of our method bdbf(rgb) which only uses sparse
depths at the fitting stage (not as network input). Because
at very low sparsity levels (e.g. 50 points), the scaffolding
method we use for depth interpolation [66] struggles to re-
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Figure 6: Sparsity change plots of all methods trained with
500 sparse depths and test with various sparsity from 500 to
50. The small subplots show how the performance of each
method changes with decreasing sparsity w.r.t. the perfor-
mance of their in-distribution test (500). Shorter lines indi-
cate better sparsity-invariance.

cover the scene structure which impacts the performance of
all rgbd methods.

The top half of Table 3 shows the in-distribution test of
all methods. Among the four rgbd methods, bdbf again
outperforms the rest by a large margin. bdbf(rgb), despite
not utilizing the rich information provided by the inter-
polated depths, performs on-par with the baselines. The
real advantage of this approach is that it does not suffer
from the artifacts caused by poor depth interpolation in the
very low sparsity regime, which makes it sparsity-invariant.
This claim is verified in Figure 6, which shows how each
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Figure 7: Qualitative results of our method tested with 0
sparse points. log(rgb) is trained as a monocular depth pre-
diction network with NLL loss, which serves as a baseline.
bdbf(rgb) is trained with 500 sparse depths.

Method iRMSE iMAE RMSE MAE
S2D [42] 2.80 1.21 814.73 249.95

Gansbeke [19] 2.19 0.93 772.87 215.02
DepthNormal[67] 2.42 1.13 777.05 235.17
DeepLiDAR [53] 2.56 1.15 758.38 226.50

FuseNet [8] 2.34 1.14 752.88 221.19
CSPN++ [9] 2.07 0.90 743.69 209.28
NLSPN [51] 1.99 0.84 741.68 199.59

GuideNet [61] 2.25 0.99 736.24 218.83
bdbf (ours) 2.37 0.89 900.38 216.44

Table 4: Comparison with selected methods on the official
KITTI depth completion test set.

method’s performance deteriorates with decreasing sparsity.
It is shown in the small subplots that bdbf(rgb) is able to
maintain good performance even with as few as 50 points.

Finally, we test bdbf(rgb) with no sparse depths, which
relies only on the shared prior to make a prediction. We ig-
nore all rgbd methods because with nothing to interpolate
the network outputs poor solutions. We thus only compare
to another baseline log(rgb), which is trained for monocu-
lar depth prediction with NLL loss. Note that bdbf(rgb) and
log(rgb) have exactly the same architecture (except for the
last layer) and number of parameters. We see that bdbf(rgb)
produces sharper depth than the baseline as shown in Fig-
ure 7. Quantitative results can be found in the last two rows
of Table 3. The difference in performance of our method
between two datasets is due to the distribution of the data:
VKITTI2 contains mainly sequential driving videos, which
gives a sharply peaked prior; whereas data from NYU-V2
are taken from a wide variety of scenes with different view-
ing angles, hence a less informative one. These results
show that our learned depth bases and shared prior contain
geometric information about the scene conditioned on the
image and can be used under extreme conditions without
catastrophic failure.

Method MAE RMSE AUSE AUCE NLL
NCNN-L2 [14] 258.68 954.34 0.70 - -
pNCNN [13] 283.41 1237.65 0.055 - -
pNCNN-Exp 251.77 960.05 0.065 - -
bdbf (ours) 206.70 876.76 0.057 0.23 -2.68

Table 5: Comparison with variations of pNCNN [13] on
accuracy and uncertainty on the official KITTI validation
set (with groundtruth). Note that pNCNN is unguided.

Further Comparisons. While our focus is on evaluating
the quality of our uncertainty estimation scheme, we also
evaluate depth completion performance for completeness.
We trained our method with a ResNet34 encoder [25] and
applied it to the KITTI depth completion benchmark with
results shown in Table 4. We compare our relatively simple
Bayesian filtering scheme to SOTA methods that utilize ei-
ther iterative refinement [9, 51] or sub-networks with extra
constraints [67, 53]. Our method compares favorably on all
measures except RMSE and we observe that this difference
is due to a small number of mis-attributed pixels near depth
discontinuities and the use of L1 loss only. This suggests
that these methods could be further improved by predicting
initial depth and uncertainty estimates with our module.

We also compare with pNCNN [13] as it is the only work
that provides a quantitative evaluation of predicted uncer-
tainties for depth completion. Unfortunately, they only eval-
uate using a single metric, AUSE, which we argue cannot
completely capture the true quality of the uncertainty esti-
mate. Results are shown in Table 5, note that pNCNN is un-
guided and evaluation is done on the KITTI validation set,
as groundtruth is required to compute uncertainty metrics.

5. Conclusions

In this paper, we extend Deep Basis Fitting for depth
completion under a principled Bayesian framework that
outputs uncertainty estimates alongside depth prediction.
Compared to commonly used uncertainty estimation tech-
niques, our integrated approach is able to produce better un-
certainty estimates while being data- and compute-efficient.
The benefit of being Bayesian is also demonstrated by the
ability to handle very low-density sparse depths, a situa-
tion where the original DBF method struggles. Our work
allows a depth completion network to be further integrated
into robotics systems, where Bayesian sensor fusion is the
dominant approach.
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