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Abstract

Videos with binaural audios provide immersive viewing
experience by enabling 3D sound sensation. Recent works
attempt to generate binaural audio in a multimodal learning
framework using large quantities of videos with accompa-
nying binaural audio. In contrast, we attempt a more chal-
lenging problem – synthesizing binaural audios for a video
with monaural audio in a weakly semi-supervised setting.
Our key idea is that any down-stream task that can be solved
only using binaural audios can be used to provide proxy
supervision for binaural audio generation, thereby reduc-
ing the reliance on explicit supervision. In this work, as a
proxy-task for weak supervision, we use Sound Source Lo-
calization with only audio. We design a two-stage architec-
ture called Localize-to-Binauralize Network (L2BNet). The
first stage of L2BNet is a Stereo Generation (SG) network
employed to generate two-stream audio from monaural au-
dio using visual frame information as guidance. In the sec-
ond stage, an Audio Localization (AL) network is designed
to use the synthesized two-stream audio to localize sound
sources in visual frames. The entire network is trained end-
to-end so that the AL network provides necessary supervi-
sion for the SG network. We experimentally show that our
weakly-supervised framework generates two-stream audio
containing binaural cues. Through user study, we further
validate that our proposed approach generates binaural-
quality audio using as little as 10% of explicit binaural su-
pervision data for the SG network.

1. Introduction

The perception of movement is primarily guided by rich
visual cues in animals. This can be attributed to its evolu-
tionary advantages over other modalities like sound. How-
ever, audio contains localization information that can be ex-
ploited, albeit not as richly as the visual modality. For ex-
ample, consider a situation where you are talking to a friend
on the sidewalk. The road is busy. Even if you are not fac-
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Figure 1. (a) Binaural cues enable us to localize different instru-
ments in live musical performances even with our eyes closed. (b)
We use saliency maps to model localization information and use it
to convert monaural audio to binaural audio.

ing the road, you are aware of vehicles zooming past. If
you listen carefully, you can also figure out the direction of
movement. Fig. 1(a) illustrates a similar phenomenon for
live musical performances.

According to [18], there are two major factors that al-
low us to spatialize using just the sounds we hear, namely,
Interaural Time Difference (ITD) and Interaural Level Dif-
ference(ILD). ITD is the time difference between the same
sound reaching each ear, and ILD is the amplitude differ-
ence between them. In the commonly used recording se-
tups, a monoaural track is recorded using a single micro-
phone. It aggregates sound signals from various sources and
consequently loses such difference information. Binaural
recordings use two microphones embedded inside a dummy
head-model with realistic ear pinna to model closely the
sound that would have fallen on a person’s eardrums had
they been present on site and preserves the localization in-
formation.

Despite being introduced many years ago, binaural audio
recordings are relatively scarce, especially for videos. This
can be attributed primarily to the fact that special equip-
ment with multiple microphones is required for recording
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it. Devices with multiple microphones are expensive and
creating custom recording hardware, like the dummy-head
mentioned earlier, is both expensive and involved. As such,
there is a need to develop computational approaches that
can make binaural audio more accessible as it can have a
far-reaching impact. When accompanied by binaural audio
tracks, videos provide a more immersive 3D experience for
the viewers by enabling sound spatialization. Such expe-
riences are of high interest to AR/VR enthusiasts and au-
diophiles. For people with visual impairments, being able
to localize using the binaural audio track would enrich the
experience of listening to movies and could possibly con-
tribute towards making the cinematic experience more in-
clusive.

Recent works [5, 31, 14], attempt this problem of gen-
erating stereo audio in a self-supervised learning setup us-
ing videos with accompanying stereo audio. Another recent
work [32], has attempted to utilize the abundantly available
videos with monaural audio to enhance the quality of stereo
sound generated. However, both these works require signif-
icant amounts of video recordings with binaural audio and
creating such datasets is cumbersome.

As part of this work, we investigate how well we can lo-
calize an object based only on information extracted from
binaural audio. We subsequently attempt to leverage this
localization capability to solve the inverse problem of gen-
erating stereo tracks from monaural audio with minimal su-
pervision. Through this work, we seek to establish that the
efficient and commonly available object localization net-
works can be used to provide weak supervision for stereo-
audio generation task while reducing the amount of binau-
ral recordings needed for self-supervision. Fig. 1(b) gives
an overview of our main idea.

Building on the idea that the complementary nature and
natural synchronization of the video and audio stream are
sufficient for stereo-sound generation given real binaural
audio supervision, we try to minimize the amount of bin-
aural recordings needed for the task. To this end, we solve
the proxy-downstream task of sound source localization to
provide the necessary weak supervision for binaural audio
generation. This choice was made based on the observation
that stereo-audio alone can be successfully used to localize
a sound-making object in an accompanying video [4] while
using only monaural audio fails. As such, if the audio being
generated is able to localize well, we can conclude that it be-
longs to the subset of audios that contain localization infor-
mation. However, we cannot be sure that this mapping be-
tween stereo audio and localization is unique. To force the
network to generate only real binaural audio and not spuri-
ous solutions, we experiment by providing small amounts
of explicit supervision to the network. Results show that as
little as 10% of the total binaural recordings are enough to
generate binaural-quality audios. The key novelties of our

work can be listed as below-

• We propose an end to end model to convert a monau-
ral audio accompanying a video to stereo audio using
localization as the weak supervision.

• We also show that guiding the stereo audio generation
task using localization helps reduce the amount of bin-
aural recordings needed for learning to 10% of that
needed by the present state of the art.

2. Related Works

Sound Source Localization. Sound source localization
(SSL) is a widely researched task in the audio processing
community and several methods exist which perform SSL
using recorded binaural audio clips alone. Such methods
primarily use ILD and ITD to estimate the elevation and az-
imuth angles of the sound sources [1, 3, 13, 29, 27, 20, 26,
10]. Of late, researchers have moved towards leveraging the
visual cues from videos to address a problem called audio-
visual sound source localization. The task is to localize vis-
ible objects generating sound by learning the audio visual
correspondence between the monaural audio and the video
frames[7, 15, 2, 24, 23]. Drawing inspiration from human
experience, where one can localize based on the sounds one
hears, [4] shows that tracking of sounding objects is possi-
ble even in the absence of good visual cues by leveraging
SSL in videos with stereo audio recordings.
Monaural to Binaural audio conversion. There are sev-
eral recent works that use visual guidance to generate stereo
audio [5, 31, 8, 12, 32, 11, 14]. These works are super-
vised and use ground truth stereo or binaural tracks for su-
pervision. In [14], 360◦ video and spatial audio are used as
ground truth to localize sound sources. In [5], a new dataset
is created comprising of videos with their corresponding
binaural audio recordings, which is subsequently used to
train a U-Net to generate the binaural spectrogram from
mixed monaural audio input. An attempt to leverage the
easily available monoaural audio clips for domain-specific
pre-training has been tried to enhance the quality of stereo
audio generated [32].

3. Method

Our primary goal is to generate the binaural audio
stream {xL(t), xR(t)} corresponding to any video V =
{I1 . . . IT } with monaural audio xmono(t). Existing meth-
ods approach this problem using a fully supervised setup
and require large amounts of videos with binaural record-
ings. We attempt to solve this problem with minimal ex-
plicit supervision so as to reduce the amount of such record-
ings required significantly. The main idea is to introduce
a down-stream task that can be constrained such that only
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Figure 2. Architecture of our proposed L2BNet comprising of a Stereo Generation Network and an Audio Localization network with an
ILD-IPD Extractor.

binaural audio can solve it and use it to provide proxy-
supervision for binaural audio generation. We use Sound
Source Localization as the down-stream task for our setup.

We propose a two-stage architecture called Localize-to-
Binauralize network (L2BNet). An overview of our method
is shown in Fig. 2. The proposed L2BNet consists of
two networks: (a) Stereo-Generation (SG) network and (b)
Audio-Localization (AL) network. The SG network takes
the monaural audio xmono(t) as input and uses the features
extracted from the corresponding visual frame I to gener-
ate a two-stream audio {x̂L(t), x̂R(t)}. The AL network
takes as input a two-stream audio and uses it to localize
sound sources on a visual frame. These two networks are
described in detail next.

3.1. Stereo Generation (SG) Network

This network takes monaural audio xmono(t) and vi-
sual frame I as inputs and produces a two-stream audio
{x̂L(t), x̂R(t)}, which at the end of the learning stage
should perceptually sound like binaural audio. We train the
SG network to generate the difference audio signal, xD(t),
between the two audio streams since this was found to be
more effective than learning the left and right spectrograms
directly [5]. Subsequently, the two-stream audio can be re-
covered from the difference audio as follows:

x̂L(t)=xmono(t)− xD(t)
2 , x̂R(t)=xmono(t)+

xD(t)
2 . (1)

The SG network consists of two subnetworks - (a) Visual
Subnetwork and (b) Audio Subnetwork. Our stereo genera-
tion network closely follows the architecture of [5] but with
necessary modifications as described below.
Visual Subnetwork: This is a pretrained convolutional
neural network employed to extract visual features from the
input frame. We use pretrained ResNet-18 [6] trained on
ImageNet [22] and extract features from the final convolu-
tional layer. This is done to best preserve the spatial infor-
mation of the objects in the input image which is essential
to provide cues for binaural audio generation. This network
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Figure 3. Attentive Feature Fusion

takes as input an image and generates a visual representa-
tion Av ∈ RCv×W×H , which is a Cv dimensional feature
map on W ×H spatial grid.
Audio Subnetwork: This has a U-net [21] like architecture
which has been widely used for many audio-visual tasks
[15, 28, 9, 5]. We create the monaural audio xmono(t)
by mixing the input binaural audios {xL(t), xR(t)} as
xmono(t) = xL(t)+xR(t)

2 , and compute the corresponding
spectrogram Xmono ∈ CFs×Ts using Short Term Fourier
Transform (STFT), where Fs and Ts are the frequency and
time resolutions respectively, of STFT. The real and imagi-
nary parts of this input spectrogram Xmono are stacked to-
gether and fed through a sequence of convolutional layers to
obtain the latent representation As ∈ RCs×F×T , which is
a Cs dimensional feature map on F × T dimensional time-
frequency grid. We perform an attentive feature fusion (de-
scribed below) of the audio features As and visual features
Av to enhance the audio feature representation. These fea-
tures are then passed through a sequence of up-convolutions
to finally obtain a complex mask M . The spectrogram of
the audio difference between channels is computed using
this mask by multiplying with the input monaural audio as
XD =MXmono. We then apply inverse STFT to obtain the
audio difference signal, xD(t) and estimate the two-channel
audio output using Equation 1.
Audio-Visual Feature Fusion: The goal of the feature fu-
sion step is to infuse the complementary information avail-
able in the visual frame about the scene configuration into
the audio features so that the predicted binaural audio agrees
with the object placement in the frame. To achieve this, we

1932



perform attentive feature fusion [25] between the audio fea-
tures, As ∈ RCs×FT , and visual features, Av ∈ RCv×WH ,
in the following manner:

Q = WqAs, K = WkAv, V = WvAv, (2)

Ae
s = As + V T softmax(KT Q), (3)

where Wq,Wk,Wv are linear projection layers that operate
on visual and audio features. The feature fusion described
in Equation 3, learns to dynamically focus on relevant visual
features Av based on the audio feature representation As to
get an enhanced audio feature representation Ae

s.

3.2. Audio-Localization (AL) Network

The sound source localization problem is well studied in
literature [2, 23, 17]. These methods use both audio and vi-
sual cues to localize the sound creating objects in the image
where image provides the necessary grounding. In contrast
to these approaches, our audio localization network per-
forms sound-source localization using audio-alone. Instead
of regressing for the azimuth and elevation angles [30, 26]
or bounding box [4], we predict a localization map on a
visual frame akin to saliency prediction. This is because,
in this work, we are only interested in localizing sound-
sources on the visual frame than its size/distance.

Our AL network is an auto-encoder that takes binaural
features as input and produces the sound source localization
by predicting a soft score indicating the probability of each
pixel being the sound source. The input binaural features
are stacked together and are given as input to the encoder.
The encoder, which consists of a sequence of convolutional
and pooling layers, generates a low-resolution feature map
z ∈ RD×F×T . The F , T dimensional information is col-
lapsed by average-pooling to get ẑ ∈ RD×1×1. This feature
map acts as input to the decoder, which consists of a se-
quence of up-convolutional layers, to generate the final lo-
calization map Ŝ ∈ RW×H . This localization map depicts
saliency regions for the sound-sources on the visual frame
I corresponding to the input binaural audio. See supp. for
network architecture details.

We experimented with different forms of binaural fea-
tures as input to the audio localization network. For initial
experimentation, we used the binaural audio spectrograms
as the input. We then modified the spectrogram to obtain
the binaural cues, the Interaural Phase Difference (IPD) and
the Interaural Level Difference (ILD), using the expressions
below and giving them input to the AL network.

XILD = 20 log
∣∣∣XL

XR

∣∣∣, XIPD = ∠
(

XL

XR

)
, (4)

where XL, XR are the STFT of xL(t) and xR(t) respec-
tively, and |X|, ∠X are respectively the magnitude and
phase of the spectrogram X . Note that XILD ∈ RF×T and

XIPD ∈ RF×T have the same size as the input binaural
spectrogram. This was done keeping in mind that research
attributes the ability of humans to localize sound sources
to binaural cues such as the IPD and ILD. Therefore, ex-
tracting IPD and ILD features using Equation 4 captures the
relevant binaural cues for better sound-source localization.

3.3. Weakly-Supervised (WS) Training Setup

Initially, the Stereo-Generation network and the Audio-
Localization network were trained together using only lo-
calization loss as weak supervision(WS). Note that the AL
network takes as input the explicit binaural cues (ILD and
IPD) extracted from the synthesized two-stream audio of the
SG network and performs sound source localization. This
forces the SG network to predict only such two-stream au-
dios that contain good binaural cues, else the localization
task fails. While this WS framework enhances the binaural
cues in the generated audio, it cannot ensure good overall
quality. The synthesized two-stream audio could contain
good binaural cues but still be noisy and have artefacts.

In addition, there is ill-posedness associated with am-
biguity in Head-Related Transfer Functions (HRTFs). For
instance, we show in our experiments that the same level
of localization accuracy can be achieved using binaural au-
dios in any of the following two settings: {xL(t), xR(t)}
or {αxL(t), βxR(t)}, where α, β are constants. Intuitively,
these two settings correspond to the same recording setup
with two different HRTFs. Hence, the SG network can learn
any such mapping which gives good localization accuracy
but may not produce consistent binaural audio. Thus, weak
supervision is necessary but not sufficient.

This weak supervision and extreme ill-posedness of the
binaural audio generation task makes it imperative to intro-
duce additional constraints to guide the SG network to gen-
erate good quality binaural audios corresponding to a par-
ticular HRTF setting. We achieve this by using a few binau-
ral videos to provide explicit supervision and guide the SG
network in an end-to-end learning framework, resulting in a
Weakly and Semi-Supervised setup.

3.4. Loss function and Training

In our Weakly-Supervised (WS) learning setup, the Au-
dio Localization network alone provides supervision for the
Stereo Generation network. The loss for this WS setup is,

LWS = ||S − Ŝ||22 − λ||M ||22 (5)

where S is the ground truth (GT) saliency map for localiza-
tion, Ŝ defined as Ŝ = AL (SG (Xmono, I; θSG) ; θAL) is
the predicted localization map, and θSG, θAL are the learn-
able parameters. λ is the regularization parameter on the
predicted mask, M , of SG network.

For the proposed Weakly and Semi-Supervised (WSS)
learning setup, in addition to proxy-supervision from sound
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source localization, we also use few binaural recordings to
provide minimal explicit supervision to SG network. Let p
be the percentage of samples in the dataset used for explicit
supervision. We train the L2BNet in an alternating two-
stage learning setup. In Stage-1, both SG network and AL
network are trained independently for one epoch using only
the p% explicit supervision data with the following loss,

LAL
WSS = ||S −AL (XL, XR; θAL) ||22, (6)

LSG
WSS = ||XD − SG (Xmono, I; θSG) ||22. (7)

We then use the SG network with updated weights to predict
binaural audios for all the remaining (100 − p)% monau-
ral videos in the training dataset and call them pseudo-
binaurals. In Stage-2, the entire L2BNet is trained end-
to-end for one epoch, using pseudo-binaurals along with
weak-supervision from SSL task using the following loss,

LWSS = LWS + αLSG−pseudo
WSS , (8)

whereLSG−pseudo
WSS = ||Xpseudo

D − SG (Xmono, I; θSG) ||22,
α is the regularization parameter, and LWS is the same as
Equation 5.

This proposed two-stage training disassociates binaural
audio generation into two sub-tasks: (i) binaural cue in-
fusion into SG network through sound source localization
from AL network and (ii) explicitly optimizing for the au-
dio quality of SG network. Furthermore, using explicit p%
binaural supervision along with weighted loss ensures that
our model learns two-stream channels with an audio struc-
ture similar to GT binaurals. Finally, we opted for ILD/ITD
features to extract stronger binaural cues for localization as
compared to binaural audios. All these measures guide the
network and mitigate spurious learning.

4. Experiments
4.1. Datasets

We conduct the experiments on two datasets with musi-
cal instrument recordings, each with varying sound sources
and locations: FAIR-Play [5] and YTMusic [16].
FAIR-Play [5] - This dataset consists of 1871 videos of mu-
sical instruments along with binaural audios recorded with a
dummy-head setup. A pre-trained Yolo object detector [19]
is used to detect humans/musical instruments in the videos,
and a visual saliency map is generated around the centroid
of the bounding box. We use the same train-test split pro-
posed by the authors of [5] in our experiments.
YTMusic [16] - This dataset consists of recordings of mu-
sical performances as 360◦ videos with ambisonic sounds.
It originally contained 397 videos as YouTube links, out of
which 287 are still found available. Since this dataset con-
tains ambisonic audio recordings, a binaural decoder was
used to convert them to binaural audio. In particular, we

use the HRTF from NH2 subject in the ARI HRTF dataset1

to perform decoding. We manually annotate the bounding
boxes for musical instruments and generate visual saliency
maps around each of their centroids.

4.2. Implementation details and Evaluation

Networks are trained to generate binaural audio at 16kHz
from input monaural audio processed at 16kHz and video at
10fps. Each training sample consists of 0.63s of monaural
audio and the corresponding RGB frame and the saliency
map at the centre of the clip as input, both of which are
used to predict the two-stream audio, which is then used
to predict the saliency map. The monaural audio segments
are normalized. The STFT is computed with 512 frequency
bins and 64 time bins. We augment the data by flipping
the visual frame along the vertical axis and/or swapping the
corresponding two-stream binaural audio. In all the exper-
iments, we set α, λ to 0.2, 0.01 respectively. All the mod-
els were trained with Adam optimizer with β1 = 0.9 and
β2 = 0.999 with a learning rate of 10−5 on RTX 2080Ti
GPU with a batch size of 32. During testing, monaural au-
dio is processed with an overlapping window of 0.05 sec.
Evaluation and Metrics - We evaluate the predicted bin-
aural audios using two standard metrics: (1) STFT Distance
and (2) Envelope Distance similar to [5, 16]. STFT dis-
tance quantifies the frequency domain fidelity between the
ground truth and predicted audios, while Envelope distance
compares audios for consistency in phase. We evaluate the
quality of the predicted object localization map using F-
measure and Mean Average Error (MAE) as the predicted
localization map is similar to visual saliency.

4.3. Sound Source Localization using Audio

The goal of this experiment is to verify the claim that
sound sources can be localized using audio only if it
contains some binaural cues. For this, we employ the
Audio-Localization network described in Section 3.2,
which takes (only) audio as input and learns to localize the
sound sources on a spatial grid. Note that we represent
the direction of arrival for different sound sources in a
visual frame as a saliency map. The AL network has access
only to the localization saliency map and not the visual
frame. We experiment with the following forms of audio
representations as input to the AL network:
Monaural: The average of GT binaural audio
xmono=

xL+xR

2 .
Binaural-Difference audio: The difference between two
binaural audio channels xD=(xL−xR).
Binaural-mixed: We create a new two-channel audio
as a weighted combination of original binaural audio
{αxL+βxR, (1−α)xL+(1− β)xR}, 0 ≤ α, β ≤ 1.
Binaural audio: The GT binaural audio {xL, xR}.

1HRTF available at http://www.kfs.oeaw.ac.at/hrtf
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Table 1. Quantitative evaluation of Audio-based Visual Sound
Source Localization task. ↑ Higher is better. ↓ Lower is better.

Audio Representation F-measure ↑ MAE ↓
Monaural (xmono) 0.096 0.1766

Binaural-Difference (xD) 0.184 0.0805
Binaural-mixed ({xmix

L , xmix
R }) 0.334 0.0309

Binaural ({xL, xR}) 0.380 0.0281
ILD & ITD ({xILD, xIPD}) 0.394 0.0183

ITD and ILD: Binaural cues (ILD and IPD) of the input
binaural audio {xL, xR} extracted using Equation 4.

For each audio representation mentioned above, the AL
network was trained on FAIR-Play dataset with MSE loss
on the localization saliency maps till convergence. The
quantative results of this Audio-based Sound Source Lo-
calization task are reported in Table 1. The ILD and ITD
representation performs the best among all. This can be at-
tributed to the fact that it captures the explicit binaural cues
necessary for sound source localization. The binaural audio
also performs equally well indicating that the localization is
independent of the channel order. The binaural audio differ-
ence only works for the single source setup but fails when
there are multiple sounding objects. The monaural audio
representation fails to localize and performs poorly as the
object spatial information is collapsed in monaural audio.

Figure 4 shows visual comparisons of the predicted lo-
calization map. The monaural audio representation is un-
able to localize the sources and predicts equal probability
for all the locations. The binaural and ILD & ITD represen-
tations accurately localize the sound sources. Last column
of Figure 4 shows an example where all representations fail
to localize. However, ILD & ITD representation consistency
performs better. Hence, achieving good performance on the
sound source localization task requires some level of bin-
aural information in the input audio; otherwise, the perfor-
mance will be very poor. Refer to supp. for more qualitative
comparisons.

4.4. Localization guided Binaural Audio Synthesis

Having established that binaural cues are necessary for
sound source localization, in this section, we look into the
problem of utilizing sound source localization for the task of
binaural audio synthesis. First, we discuss our experiments
with only weak supervision in the form of sound source lo-
cation on the visual frame. This is then followed by weak
and semi-supervision setup where we use some minimal ex-
plicit supervision in addition to weak supervision.

4.4.1 Binaural audio generation in Weakly Supervised
Learning Setup

In this setup, our primary goal is to investigate whether the
proxy down-stream task of sound source localization pro-

(a) Visual frames

(b) Sound source localization from monaural audio

(c) Sound source localization from binaural audio

(d) Sound source localization from ILD and ITD features
Figure 4. Visual comparisons of Audio-based Visual Sound Source
Localization task using various input audio forms.

vides sufficient supervision to the SG network to infuse bin-
aural cues in the synthesized two-stream audio. For this
experiment, we train the L2BNet in an end-to-end learn-
ing setup with supervision coming from the localization
loss alone. Note that only the SG network has access to
the visual frame. The AL network has access only to the
predicted two-channel audio generated by the SG network
through the binaural feature extractor as shown in Fig. 2.
We train this setup on the FAIR-Play dataset using WS loss
described in Equation 5.

Fig. 5 (a) shows the sound source localization results
for this weakly-supervised setup. It can be observed that
the proposed method localizes sound sources well, even
in multiple instruments setup case. This indicates that the
predicted two-channel audio {x̂L, x̂R} indeed has binaural
quality, which facilitates the localization. Refer to supp. for
more qualitative comparisons

The quantitative evaluation of predicted binaural audio
{x̂L, x̂R} is not straight forward because as observed in
Section 4.3, both Binaural and Binaural-mixed perform
equally well on the localization task. Hence, the mapping
between localization and binaural audio is not one-to-one.
This means that the network trained in a weakly supervised
setting can learn to predict binaural audios corresponding
to any arbitrarily consistent HRTF while performing well
on the localization task. As such, quantitatively comparing
such audio against a ground truth binaural audio recorded
with a fixed HRTF does not make sense. For lack of a bet-
ter metric, despite the arguments presented, we report the
correlations between the predicted two-channel audio and
the binaural recordings from the FAIR-Play dataset. The
STFT / Envelope distance of the predicted two-channel au-
dio ({x̂L, x̂R}) with respect to ground truth is 3.219/0.231
whereas its flipped version ({x̂R, x̂L}) has the correspond-
ing metrics as 3.984/0.262. This indicates that the pre-
dicted two-channel audio has binaural features and hence
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(a) (b)

Figure 5. Visual comparisons of sound source localization task
in (a) Weakly Supervised learning setup and (b) Weakly Semi-
Supervised learning setup.

correlates with the ground truth binaural audios. Though
the predicted binaural audio has perceptible binaural cues,
it also has artefacts such as noise/muffled sound. This is be-
cause the proposed WS learning framework is designed to
enhance the binaural cues in the predicted audio but does
not ensure good audio quality.

4.4.2 Binaural Audio Generation in Weakly and Semi-
Supervised Setup

The weakly-supervised setup with only sound source local-
ization providing supervision to the SG network generates
audio with noise and artefacts. It does not address the am-
biguity in HRTF either. To resolve these issues, we intro-
duce a few ground truth (GT) binaural video samples as
data while training our L2BNet. In addition to resolving
the issues of the WS setup, this also makes comparisons
with baselines more tractable. Our objective in this Weakly
Semi-Supervised (WSS) learning setup is to use a few GT
binaural audios as explicit supervision for the SG network
so that the predicted two-stream audio corresponds to the
recording setup of the audio used for supervision.

For this, L2BNet is trained end-to-end using alternating
training process and loss functions described in Section 3.4.
We train it on FAIR-Play and YT-Music datasets separately
for varying amounts of GT binaural samples as explicit su-
pervision along with weak-supervision from SSL task.

The results of quantitative evaluation for generated bin-
aural audios using this WSS learning setup are reported
in Table 2. The performance of our L2BNet-WSS frame-
work is lower than fully supervised approaches of [5, 32].
This can be explained by the fact that we are indirectly op-
timizing for the binaural audios through localization task
and use very limited amount of supervision. For fair com-
parison, we create a baseline where only the SG network
is trained with identical data, which we refer to as Ours-
SG. This is done to establish that the same number of sam-
ples used by our L2BNet, when used in a completely su-
pervised training setup, is not enough to learn the binaural
mapping. Note that our SG network has some modifications
over the backbone architecture of [5] and hence serves as a
better baseline. When only 10% of the GT binaural sam-
ples are used for supervision, the baseline method (Ours-
SG 10%) fails to perform any meaningful binauralization
as reflected by the STFT and Envelope distance on com-

Table 2. Quantitative comparisons of the proposed Weakly and
Semi-Supervised approach with various baseline methods on
FAIR-Play and YT-Music using STFT and Envelope Distance.
F/S/W indicate Full/Semi/Weak supervision.

Fair-Play YT-Music
F S W STFT ENV STFT ENV

Mono 1.195 0.156 3.075 0.241
Mono2Binaural [5] X 0.951 0.141 1.346 0.179

Sep-Stereo [32] X 0.879 0.135 1.051 0.145
Ours-SG (10 %) X 1.188 0.156 2.156 0.203
Ours-SG (30 %) X 1.109 0.151 1.855 0.192

L2BNet-WSS (10 %) X X 1.121 0.151 1.908 0.195
L2BNet-WSS (30 %) X X 1.028 0.148 1.816 0.189

paring with monaural audio. On the other hand, when we
provide weak supervision, along with the 10% GT binaural
samples, to the same network with our Audio-based Sound
Source Localization task (L2BNet-WSS 10%), the proposed
method learns to generate two-stream audio with binaural
cues as indicated by better quantitative metrics. This can be
attributed to the fact that the proposed WSS framework aids
in learning the discriminative binaural features that ensure
better performance on the localization task, while agreeing
with the recording setup of binaural audios used for explicit
supervision. On increasing the amount of supervision to
30%, our approach (L2BNet-WSS 30%) performs much bet-
ter than the baseline (Ours-SG 30%). Detailed experiments
for varying amounts of explicit supervision data are given
in Section 4.6. In Figure 5 (b), we show the sound source
localization results of this WSS approach where it is able to
localize the sound sources well. See supp. for more qual-
itative comparisons. The video results are available on our
project page2.

4.5. User Study

We conduct user studies to validate our claim that the
proposed Weakly Semi-Supervised approach generates good
quality binaural audios with as little as 10% of binaural au-
dios as explicit supervision. We designed two experiments
and used 13 test samples with single and multiple sources.
A total of 20 users participated, and we used the results cor-
responding to our L2B-WSS (10%) for both experiments.
User Study 1 - Binaural Cue Perception: Here, we ex-
amine whether our generated binaural audio contains suffi-
cient binaural cues to perceive the correct direction of sound
sources. Each user listens to audio samples selected ran-
domly from GT binaural, Mono2Binaural or our method,
and is asked to pick the direction of sound source as left,
right or centre. The results are shown in Fig. 6 (a) where we
can see that the users were able to accurately perceive the
direction of sound source with 85% accuracy for GT bin-
aural samples, 75% for Mono2Binaural, and 65% for our
approach. This indicates that our method generates audio

2https://github.com/KranthiKumarR/Localize-to-Binauralize
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Figure 6. (a) Results from User Study 1 showing the accuracy of
predicted directions. (b) Results from User Study 2 depicting the
perceived closeness to GT binaural.

with perceptible binaural cues. One-sided ANOVA analysis
on these results yield an F -statistic of 8.42 with a p-value of
0.003, indicating that the results are statistically significant.
User Study 2 - Binaural Audio Quality: We conduct this
study to examine the quality of our synthesized binaural au-
dios. The participants are shown two videos correspond-
ing to a single sample, one with GT binaural audio and the
other with monaural audio. Then they are shown the same
sample with predicted binaural audio from our method,
Mono2Binaural method or Ours-SG10% method and asked
which of the previous two videos is the third video closer to
based on audio spatialization quality. The results are shown
in Figure 6 (b). Samples corresponding to Mono2Binaural
method and Ours-SG 10% were scored close to GT binau-
ral 82.5% and 32.5% times on average, while our method
received an average score of 60% indicating the enhanced
binaural quality of our generated audio.

These user studies further validate that our proposed
Weakly Semi-Supervised learning framework successfully
infuses perceptible binaural cues into monaural audios with
as little as 10% ground truth binaural audios as supervision.

4.6. Ablations

Are ILD and IPD features necessary? Given that both
binaural audio and ILD-IPD features are equally good for
localizing sound sources (from Section 4.3), we investigate
which of the two representations is best suited for our weak
supervision setup. For this, we retrain our L2BNet WSS
10% setup by removing the ILD-IPD feature extractor and
directly feeding the predicted two-stream audio. The quan-
titative values obtained are reported in Table 3 and ILD-IPD
feature based method performs better as it encodes the dis-
criminative binaural features more explicitly.
Importance of Attention: We retrain our model L2BNet-
WSS (10%) with and without attention. The results are re-
ported in Table 3, where we can observe a marginal im-
provement in performance when attention is employed.
Performance with varying percentages of supervision:
We performe experiments on L2BNet with 10%, 15%, 30%,
50% and 100% GT binaurals in the WSS framework and
report the results in Figure 7. As baseline, we train SG
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Figure 7. Ablation Study to examine the variation in the perfor-
mance of the proposed Weakly and Semi-Supervised approach with
varying percentages of supervision.

Table 3. Analysis of the performance of the proposed WSS ap-
proach with/without ILD & IPD features and Attention.

AL Network Input Attention
Binaural ILD & IPD Without With

1.143/0.152 1.121/0.151 1.121/0.151 1.162/0.155

network with same amount of explicit supervision data.
With higher percentage of explicit supervision (> 30%),
the SG network learns to generate good quality binaural au-
dios, which directly translates to a good performance on the
sound source localization task. Since the explicit binaural
audios used for supervision already contain sufficient bin-
aural cues which are successfully being learnt by the SG
network with such high amounts of explicit supervision, the
AL network may not add any more binaural cues to the
already good-enough predicted binaural audio. Thus our
method does not improve in performance over the baseline
method. When the explicit binaural supervision is mini-
mal (≤ 30%), the proposed L2BNet-WSS scheme outper-
forms, as the SSL task significantly enhances the binaural
cues when ground truth binaurals are limited.

5. Conclusion

We examined the problem of synthesizing binaural au-
dios from videos with monaural audio with very binaural
audio supervision. To address this problem, we proposed
a framework called Localize-to-Binauralize which reduces
the amount of supervision required by leveraging the weak-
supervision from sound source localization to enhance bin-
aural cues in the audio. Through our experiments, we show
that our framework generates two-stream audio having bin-
aural quality using as little as 10% of explicit supervision
data. The user study performed further indicates that the
two-stream audio synthesized using our proposed L2BNet
in a Weakly Semi-Supervised setup has sufficient binaural
cues for better hearing experience as well and better sound
source perception.
Acknowledgement: Support from Institute of Eminence
(IoE) project No. SB20210832EEMHRD005001 is grate-
fully acknowledged.
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