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Abstract

This paper presents a Simple and effective unsupervised
adaptation method for Robust Object Detection (SimROD).
To overcome the challenging issues of domain shift and
pseudo-label noise, our method integrates a novel domain-
centric data augmentation, a gradual self-labeling adap-
tation procedure, and a teacher-guided fine-tuning mech-
anism. Using our method, target domain samples can be
leveraged to adapt object detection models without chang-
ing the model architecture or generating synthetic data.
When applied to image corruptions and high-level cross-
domain adaptation benchmarks, our method outperforms
prior baselines on multiple domain adaptation benchmarks.
SimROD achieves new state-of-the-art on standard real-
to-synthetic and cross-camera setup benchmarks. On the
image corruption benchmark, models adapted with our
method achieved a relative robustness improvement of 15-
25% AP50 on Pascal-C and 5-6% AP on COCO-C and
Cityscapes-C. On the cross-domain benchmark, our method
outperformed the best baseline performance by up to 8%
and 4% AP50 on Comic and Watercolor respectively.'

1. Introduction

State-of-the-art object detection models are highly accu-
rate when trained on images that have the same distribution
as the test set [39]. However, they can fail when deployed
to new environments due to domain shifts such as weather
changes (e.g. rain or fog), light condition variations, or im-
age corruptions (e.g. blur) [25]. Such failure is detrimen-
tal for mission-critical applications such as self-driving or
automated retail checkout, in which domain shifts are in-
evitable. To make them reliable, it is important for detection

ICode and notebook are available at https://marketplace.
huaweicloud.com/markets/aihub/notebook/detail/
?21d=d6d7162£f-32b9-483d-97d7-b1l6b32b148e2

models to be robust to domain shifts.

Different types of methods have been proposed to over-
come domain shifts for object detection namely data aug-
mentation [25, 14, 12], domain-alignment [6, | 1, 38,37,27,

,23,17], domain-mapping [3, 18,23, 17], and self-labeling
techniques [33, 30,22, 18]. Augmentation methods can im-
prove the performance on some fixed set of domain shifts
but fail to generalize to the ones that are not similar to the
augmented samples [ 1, 26, 32]. Domain-aligning methods
use target domain samples to align intermediate features of
networks. These methods require the addition of special-
ized modules such as gradient reversal layers, domain clas-
sifiers to the model. On the other hand, domain-mapping
methods translate labeled source images to new images that
look like target domain images using image-to-image trans-
lation networks. Similar to augmentation methods, they
are suboptimal since the generated images do not always
have a high similarity to real target domain images. Fi-
nally, self-labeling is a promising approach since it lever-
ages unlabeled training samples form the target domain.
However, generating accurate pseudo-labels under domain
shift is hard; and when pseudo-labels are noisy, using target
domain samples for adaptation is ineffective.

In this paper, we propose a Simple adaptation method for
Robust Object Detection (SimROD), to mitigate the domain
shifts using domain-mixed data augmentation and teacher-
guided gradual adaptation. Our simple approach has three
design benefits. First, it does not require ground-truth labels
of target domain data and leverage unlabeled samples. Sec-
ond, our approach requires neither complicated architecture
changes nor generative models for creating synthetic data
[1&]. Third, our simple method is architecture-agnostic and
is not limited to region-based detectors. The main contribu-
tions of this paper are summarized as follows:

1. We propose a simple method to improve the robustness
of object detection models against domain shifts. Our
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method first adapts a large teacher model using a grad-
ual adaptation approach. The adapted teacher generates
accurate pseudo-labels for adapting the student model.

2. We introduce a data augmentation called DomainMix
for learning domain-invariant representations and for re-
ducing the pseudo-label noise. It efficiently mixes the
labeled source domain images with unlabeled samples
from the target domain along with their (pseudo-)labels.
The mixed training samples give strong supervision for
adapting both the teacher and student models.

3. We conduct a comprehensive benchmark and ablation
studies to demonstrate the effectiveness of SImROD in
mitigating different domain shifts namely synthetic-to-
real, cross-camera setup, real-to-artistic, and image cor-
ruptions. Our simple method are competitive with more
complicated baselines and achieve new state-of-the-art
results on some of these benchmarks.

2. Motivation and related works

In this section, we review the mainstream approaches rel-
evant to our work and explain the motivation of our work.

Data augmentations for robustness to image corruption
Data augmentation is an effective technique for improving
the performance of deep learning models. Recent works
have also explored the role of augmentation in enhancing
the robustness to domain shifts. In particular, specialized
augmentations have been proposed to combat the effect of
image corruptions for image classification [13, 14, 12] and
object detection [25, 8]. For example, AugMix [14] sam-
ples a set of geometric and color transformations which are
applied sequentially to each image and mixes the original
image with multiple augmented copies. DeepAugment [ 2]
generates augmented samples using image-to-image trans-
lation networks whose weights are perturbed with random
distortions. [25, 8] proposed style transfer [10] as augmen-
tation for increasing the shape bias and improve robustness.
While these augmentation methods offer some improve-
ment over the source baseline, they can overfit to few cor-
ruption types and fail to generalize to others. In fact, [1]
provided empirical evidence that the perceptual similarity
between the augmentation transformation and the corrup-
tion is a strong predictor of corruption error. [!] also ob-
served that broader augmentation schemes perform better
on dissimilar corruptions than more specialized ones. [32]
showed that augmentation techniques that are tailored to
synthetic corruptions have difficulty to generalize to natu-
ral distributions shifts. In their extensive study, training on
more diverse data was the only intervention that effectively
improved the robustness to natural distribution shifts.

Unsupervised domain adaptation for object detection
Unsupervised domain adaptation (UDA) methods leverage
unlabeled images from the target domain to explicitly mit-

igate the domain shift. In contrast to images obtained with
augmentation, these unlabeled samples are more similar to
the test samples. Moreover, they are cheap to collect and do
not require a laborious annotation.

Several approaches have been proposed to solve the
UDA problem for object detection. Adversarial training
methods such as [6] learn domain-invariant representations
of two-stage detector networks. Recent methods improved
the performance, by mining important regions and align-
ing at the region-level [ 1], by using hierarchical alignment
module [38], by coarse-to-fine feature adaptation [37], or by
enforcing strong local alignment and weak global alignment
[27]. [16] proposed a center-aware alignment method for
anchor-free FCOS model. While alignment methods help
reduce the domain shift, they require architecture changes
since extra modules such as gradient reversal layers and do-
main classifiers must be added to the network.

Alternatively, domain-mapping methods tackle UDA by
first translating source images to images that resemble the
target domain samples using a conditional generative adver-
sarial network (GAN) [3, 15]. The model is then fine-tuned
with the domain-mapped images and the known source la-
bels. For object detection, [23, 17] combined domain trans-
fer with adversarial training. For instance, [23] generates a
diverse set of intermediate domains between the source and
target to discriminate and learn domain-invariant features.

Finally, recent works have shown that adapting batch
normalization [19] layers can improve robustness to adver-
sarial attacks [35] or image corruptions [28] and reduce do-
main shifts [24, 5].

Self-training for object detection adaptation
Self-training enables a model to generate its own pseudo-
labels on the unlabeled target samples. Recently, [30] ap-
plied pseudo-labeling in the STAC framework for semi-
supervised object detection However, pseudo-labeling can
degenerate the performance in the presence of domain shift
since the pseudo-labels on target samples may become in-
correct leading to poor supervision. Instead, our work tack-
les the domain shift between the original source training
data and the unlabeled target training data. To reduce do-
main shift, [4] enforced region-level and graph-structures
consistencies between a mean teacher model and the stu-
dent model using additional regularization loss functions.
Next, [22] proposed a method to directly mitigate the noisy
pseudo-labels of Faster-RCNN detectors by modeling their
proposal distribution. Unlike [22], our method is agnostic to
the model architecture and can also work with single-stage
object detectors too. Finally, [18] combined domain trans-
fer with pseudo-labeling and is also architecture-agnostic.
Compared to prior works, our proposed method is sim-
pler because it does not generate synthetic data using
GAN:S, nor change the training loss function or model archi-
tecture. As will be shown in Section 4, our simple method
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Figure 1. Our proposed adaptation method for robust object detection mitigates the domain shift

with teacher-guided pseudo-labels
and label noise using three simple steps. (1)

The proposed DomainMix augmentation module randomly samples and mixes images from both the source and target domains along with
their ground-truth and pseudo-labels. (2) These domain-mixed images are used to gradually adapt the batch norm and convolutional layers
of a large source teacher model. During this step, the pseudo-labels of the target domain images are also refined. (3) New domain-mixed

images with the refined pseudo-labels are used to finetune the source

is very effective in reducing domain shifts and label noise.

3. Problem definition and proposed solution

In this section, we define the adaptation problem and de-
scribe our proposed solution.

3.1. Problem statement

We are given a source model M for an object detection
task with parameters 65, which is trained with a source
training dataset D={(x;,y;)}, where x; is an image and
each label y; consists of object categories and bounding box
coordinates. We consider scenarios in which there exists a
covariate shift between the input distribution pg : X x Y —
R of the original source data D and the target test distri-
bution pp : X xY — R*. More formally, we assume that
ps (v [ x) = pr (y | x) but ps (x) # pr (x) [31].

In the unsupervised domain adaptation setting, we are
also given a set of unlabeled images D = {(X;)} from the
target domain, which we can use during training. Therefore,
our objective is to update the model parameters 6y into 6y
to achieve a good performance on both the source test set
and a given target test set, i.e., improving its robustness to
the domain shifts. To effectively exploit the additional in-
formation in D, we need to tackle two inter-related issues.
First, the target training set D does not come with ground-
truth labels. Second, generating pseudo-labels for D with
the source model 5 leads to noisy supervision due to the
domain shift and hinders the adaptation. In the following
subsections, we present a simple approach for tackling these
technical issues.

student model.

3.2. Simple adaptation for Robust Object Detection
We present our simple adaptation method SimROD for
enabling robust object detection models. SimROD in-
tegrates a teacher-guided fine-tuning, a new DomainMix
augmentation method and a gradual adaptation technique.
Sec. 3.2.1 describes the overall method. Next, Sec. 3.2.2
presents the DomainMix augmentation, which is used for
adapting both the teacher and student. Finally, Sec. 3.2.3
explains the gradual adaptation that overcomes the two in-
terrelated issues of domain shift and pseudo-label noise.

3.2.1 Overall approach

Our simple approach is motivated by the fact that label
noise is exacerbated by the domain shift. Therefore, our
approach aims to generate accurate pseudo-labels on target
domain images and use them together with mixed images
from source and target domain so as to provide strong su-
pervision for adapting the models.

Because the student target model may not have the ca-
pacity to generate accurate pseudo-labels and adapt itself,
we propose to adapt an auxiliary teacher model first, which
can later generate high-quality pseudo-labels for fine-tuning
the student model. A flow diagram of SimROD is provided
in Figure 1. Its steps are summarized as follows:

Step 1:  We train a large source teacher model T with big-
ger capacity than the student model M to be adapted using
the source data D and get parameters 63. The source teacher
is used to generate initial pseudo-labels on target data.
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Step2: We adapt the large teacher model parameters from
07 to 6¢ using the gradual adaptation of Algorithm 2 (see
Sec. 3.2.3). During this step, we use mixed images gener-
ated by the DomainMix augmentation (see Sec. 3.2.2)

Step 3: We refine the pseudo-labels on the target data D
using the adapted teacher model parameters 6. Then, we
fine-tune the student model M using these pseudo-labels in
line 2 and 8 of Algorithm 2.

One benefit of this approach is that it can adapt both
small and large object detection models to domain shifts
since it produces high quality pseudo-labels even when the
student network is small. Another advantage of our method
is that the teacher and student do not need to share the same
architecture. Thus, it is possible to use a slow but accurate
teacher for the purpose of adaptation while choosing a fast
architecture for deployment.

3.2.2 DomainMix augmentation
Here, we present a new augmentation method named Do-
mainMix. As illustrated in Figure 1, it uniformly samples
images from both the source and target domains D U D and
strongly mixes these images into a new image along with
their (pseudo-)labels. Figure 2 shows an example of Do-
mainMix images from natural and artistic domains.
DomainMix uses simple ideas with many benefits to mit-
igate domain shift and label noise:

e It produces a diverse set of images by randomly sam-
pling and mixing crops from source and target sets with
replacement. As a result, it uses a different sample of im-
ages at every epoch, thus increasing the effective number
of training samples and preventing overfitting. In con-
trast, simple batching reuses same images at every epoch.

e It is data-efficient as it uses a weighted balanced sam-
pling from both domains. This helps learning representa-
tions that are robust to data shifts even if the target dataset
has limited samples or the source and target datasets are
highly imbalanced. In [2], we provide ablation studies
that demonstrate the data efficiency of DomainMix.

e It mixes ground-truth and pseudo-labels in the same im-
age. This mitigates the effect of false labels during adap-
tation because the image always contains accurate labels
from the source domain

o Itenforces the model to detect small objects as the objects
in original samples are scaled down.

The steps of DomainMix augmentation are listed in Al-
gorithm 1. For each image in a batch, we randomly sam-
ple three additional images from source and target data
D U D and mix random crops of these images to create a
new domain-mixed image in a 2 x 2 collage. In addition,

Algorithm 1 DomainMix augmentation

Inputs: A batch 3 of B images, labels {y;} from source
data D, unlabeled target data D, pseudo-labels {yj}
Output: A batch of domain-mixed samples B\
1: procedure DOMAINMIX (3, D, {¥,})

2: B — 0

3: for: < 1,B do

4 S {(xi,y:)} _

5: for j + sample(D U D, 3) do

6: if j € D then

7: S+ SU{(x;,¥;)}

8: else

9: S(-SU{(Xj7yj)}

10: Collate crops from 4 images in S into X;
11: Recompute all box coordinates in S into y;
12: B BU{(Xi,yi)}

Figure 2. An example image generated by DomainMix mixing real
images from Pascal VOC and artistic images from Watercolor2K.

we collate the pseudo-labels y; for the unlabeled exam-
ples X; in D with the ground-truth labels of source images.
The bounding box coordinates of the objects are computed
based on the relative position of each crop in the new mixed
image. Furthermore, we employ a weighted balanced sam-
pler to sample uniformly from the two domains.

3.2.3 Gradual self-labeling adaptation

Next, we present a gradual adaptation for optimizing the
parameters of the detection model. This algorithm miti-
gates the effects of label noise, which is exacerbated by the
domain shift. In fact, the pseudo-labels generated by the
source models can be noisy on target domain images (e.g. it
cannot detect objects or detects them inaccurately). If these
initial pseudo-labels are used to adapt all the layers of the
model at the same time, it results in poor supervision and
hinders the model adaptation.

Instead, we propose a phased approach. First, we freeze
all convolutional layers and adapts only the BN layers in
the first w epochs. After this first phase, BN layers’ train-
able coefficients are updated. The partially adapted model
is then used to generate more accurate pseudo-labels, which
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Algorithm 2 Gradual self-labeling adaptation

Inputs: Source model 6, labeled source data D, unlabeled
target data D, warmup epochs w, total epochs T, steps
per epoch N, and batch size B
Output: Adapted model 65
1: procedure ADAPT(0;, D, D)

2 forX; + Ddoy,; + GenPseudo(X;, ;)

3: Initialize 6 <+ 6y

4: for layer < 6.layers do

5: if layer is not BatchNorm then Freeze layer

6: for epoch + 1,...,T do

7 if epoch == w then > switch to Phase 2
8: for T <— D doy; + GenPseudo(X;,0)

9: Unfreeze all layers
10: for step < 1,...,N do
11: Sample a batch 3 = {(x;,y;)}2 ; from D
12: B < DomainMix (3, D, {¥;}) asin Algo 1.
13: Update 6 to minimize the loss with B
14: Qﬁ — 0

is done offline for simplicity. In the second phase, all layers
are unfrozen and then fine-tuned using the refined pseudo-
labels. Note that during these two phases, we use the mixed
image samples generated by the DomainMix augmentation.
The detailed steps of this gradual adaptation are listed in
Algorithm 2.

In contrast to prior works [24,28], which used BN Adap-
tion on its own, we integrate it within a self-training frame-
work to effectively overcome the inevitable label noise
caused by the domain shift [18]. As will be shown in Sec-
tion 4, when used with the DomainMix augmentation, the
resulting method is effective in adapting object detection
models to different kinds of domain shifts.

Note that [18] also used a two-phase progressive adap-
tation method but they used synthetic domain-mapped im-
ages, which are generated by a conditional GAN, to fine-
tune the model in the first phase. In contrast, our method
leverages actual target domain images, which are mixed
with source domain images using DomainMix augmenta-
tion, during the entire adaptation process.

4. Experiments results

In this section, we evaluate the effectiveness of Sim-
ROD to combat different kinds of domain shifts, com-
pare the performance with prior works on standard bench-
marks, and conduct ablation studies. For our experiments,
we adopted the single-stage detection architecture Yolov5
[20] and used different model sizes by scaling the input
size, width and depth. We study synthetic-to-real and
camera-setup shifts [6] in Section 4.1, cross-domain artistic
shifts [18] in Section 4.2, and robustness against image cor-

ruptions [25] in Section 4.3. Training details and additional
results are provided in the supplementary materials [2].

4.1. Synthetic-to-real and cross-camera benchmark

Datasets. We used Sim10k [21] to Cityscapes [7] and
KITTI [9] to Cityscapes benchmarks to study the ability to
adapt in synthetic-to-real and cross-camera shifts, respec-
tively. Following prior works, only the car class was used.

Metrics. For a fair comparison, we grouped different
model/method pairs whose “Source” models (trained only
on the labeled source data) have a similar average precision
AP?°(6°) on the target test set (i.e. Cityscapes val). We
compared each group based on three metrics: (1) AP50(9a)
of their “Adapted” models, (2) absolute adaptation gains 7,
and (3) their effective adaptation gains p defined as:

T = AP0(9%) — AP%(6°), (1
APSO(Ga) _ APSO(QS)
AP?°(Oracle) — AP’ (6s)’

p =100 x (2)
where “Oracle” is the model that is trained with the labeled
target domain data. The gain metric 7 was proposed by
[37] to compare methods that may share same base architec-
ture but have different performance before adaptation. For a
better comparison, we also analyze the effectiveness of the
adaptation method using the metric p. This metric helps un-
derstand if an adaptation method offers higher performance
on the target test set beyond what is expected from having
high performance on the source test set. A method that fails
to adapt a model will have an effective gain of p = 0%
for that model whereas a method that gives a target perfor-
mance close to the Oracle will have p = 100%.

Sim10K to Cityscapes. Table 1 shows that SImROD
achieved new SOTA results on both the target AP50 perfor-
mance and on the effective adaptation gain. We use two stu-
dent models S320 and S416, which have the same Yolov5s
architecture but different input sizes of 320 and 416 pix-
els to compare with prior methods that have comparable
Source AP50 performance. For example, our S320 mod-
els achieves AP50 = 44.70% and p = 72.93% compared
to AP50 = 43.8% and p = 35.34% for Coarse-to-Fine
[37]. Similar results were observed when comparing the
performance of our adapted S416 model with that of the
FCOS model adapted with EPM [16]. Fig. 3 demonstrates
the effectiveness of SimROD to adapt models from Sim10K
to Cityscapes compared to prior baselines. Models adapted
with SimROD enjoyed up to 70-75% of the target AP per-
formance (that is obtained if the model was trained with a
fully labeled target dataset). In contrast, the baseline meth-
ods achieved only about 30% of their Oracle performance.

KITTI to Cityscapes benchmark. Table 2 shows the
results of this experiment, where SImROD outperformed
the baselines. With the S416 model, it achieves slightly
higher AP50 performance than the best baseline PDA [17].
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Method Arch. Backbone  Source  AP50  Oracle T p Reference
DAF [6] F-RCNN V 30.10  39.00 - 8.90 - CVPR 2018
MAF [11] F-RCNN V 30.10  41.10 - 11.00 - ICCV 2019
RLDA [22] F-RCNN 1 31.08 42,56 68.10 1148 31.01 ICCV 2019
SCDA [38] F-RCNN V 34.00  43.00 - 9.00 - CVPR 2019
MDA [36] F-RCNN V 3430  42.80 - 8.50 - ICCV 2019
SWDA [27] F-RCNN V 3460 4230 - 7.70 - CVPR 2019
Coarse-to-Fine [37] F-RCNN V 35.00 43.80  59.90 8.80 35.34 CVPR 2020
SimROD (self-adapt) YOLOv5  S320 33.62 38.73 4881 511 33.66 Ours
SimROD (w. teacher X640) YOLOvS  S320 33.62 4470 4881 11.08 7293 Ours
MTOR [4] F-RCNN R 3940  46.60 - 7.20 - CVPR 2019
EveryPixelMatters [16] FCOS v 39.80 49.00 69.70 9.20 30.77 ECCV 2020
SimROD (self adapt) YOLOvS5  S416 39.57 4421 56.49 4.63 2737 Ours
SimROD (w. teacher X1280)  YOLOv5  S416 39.57 52,05 5649 1247 73.73 Ours

Table 1. Results of different method/model pairs for the Sim10K-to-Cityscapes adaptation scenario. “V”, “I” and “R” represent the
VGG16, ResNet50, Inception-v2 backbones respectively. ”S3207, “M416”, “X640”, “X1280” represent different scales of Yolov5 model
with increasing depth, width and input size. “Source” refers to the model trained only using source images without domain adaptation. For
a fair comparison, we group together method/model pairs whose “Source” performance are similar. We report the AP50 (%) performance
of the adapted model and the “Oracle” model which is trained with labeled target data, as well each method’s absolute and effective gains

(%) when available. T and p are the absolute gain and the effective gain respectively as defined in (1) and (2).

Method Arch. Backbone  Source  AP50  Oracle T P Reference
DAF [6] F-RCNN V 30.20  38.50 - 8.30 - CVPR 2018
MAF[11] F-RCNN V 30.20  41.00 - 10.80 - ICCV 2019
RLDA [22] F-RCNN I 31.10 4298 6810 11.88 32.11 ICCV 2019
PDA [17] F-RCNN V 3020 4390 55.80 1370 5352  WACV 2020
SimROD (self-adapt) YOLOvS  S416 31.61 3594  56.15 433 17.65 Ours
SimROD (w. teacher X1280) YOLOv5  S416 31.61 4566 56.15 14.05 57.27 Ours

SCDA [38] F-RCNN V 3740  42.60 - 5.20 - CVPR 2019
EveryPixelMatters [16] FCOS R 3530 4500 70.40 9.70  27.64 ECCV 2020
SimROD (self adapt) YOLOv5 M416 36.09 4294  59.29 6.85 2951 Ours
SimROD (w. teacher X1280) YOLOv5 M416 36.09 47.52 5929 1143 49.26 Ours

Table 2. Results of different method/model pairs on the KITTI-to-Cityscapes adaptation scenario. 7 and p are the absolute gain and the

effective gain respectively as defined in (1) and (2).
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Figure 3. AP50 on test vs effective gain for Sim10K to Cityscapes.
We use five different backbones S320, M320, S416, S640 and
M640 for the student and the same backbone X 1280 for teacher.

When using the medium size M416 model, SimROD also
outperformed prior baselines with comparable Source AP50
performance namely SCDA [38] and EPM [16].

4.2. Cross-domain artistic benchmark

Datasets and metrics. The cross-domain artistic bench-
mark consists of three domain shifts where the source data
is VOCO7 trainval and the target domains are Clipart1lk, Wa-
tercolor2k and Comic2k datasets [18]. We use the same
benchmark metrics as in Sec. 4.1.

Results. Our method outperformed the baselines by sig-
nificant margins. Compared to DT+PL [18], our method
further improved the AP50 of the yolov5s model by abso-
lute gains of +8.45, +12 and +10.69 % points on Clipart,
Comic, and Watercolor respectively. While DT+PL outper-
formed the augmentation-based baselines on Clipart, it did
slightly worse than STAC on Comic and Watercolor. Fi-
nally, SimROD was effective in adapting models of differ-
ent sizes. Without generating synthetic data or using do-
main adversarial training, SImMROD’s effective gain p was
consistently above 70% and could reach up to 97% when a
large adapted teacher was used to refine the pseudo-labels.

In Table 3, we give a detailed benchmark for the VOC
to Watercolor benchmark, from which we used 1000 unla-
beled images as target data. In [2], we present detailed re-
sults on Clipart and Comic dataset as well as more ablation
results when using extra unlabeled data for adaptation.
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Method Arch. Backbone  Source  AP50  Oracle T p  Reference
DAF [6] F-RCNN V 39.80  34.30 NA  -5.50 NA CVPR 2018
DAM [23] F-RCNN V 39.80 52.00 NA  12.20 NA CVPR 2019
DeepAugment [12] YOLOvS  S416 37.46  45.19 56.07 7.73  41.54  arXiv 2020
BN-Adapt [19] YOLOvS  S416 37.46 45.72 56.07 826 44.39  NeurIPS 2020
Stylize [10] YOLOv5  S416 3746  46.26 56.07 8.80 47.29  arXiv2019
STAC [30] YOLOvS  S416 37.46  49.83 56.07 12.37 6647  arXiv 2020
DT+PL [ 18] YOLOvS  S416 37.46  44.86 56.07 740 39.77 CVPR 2018
SimROD (self-adapt) YOLOv5  S416 37.46  52.58 56.07 15.12 81.26  Ours
SimROD (teacher X416) YOLOvS5  S416 37.46  55.55 56.07 18.09 9721 Ours

ADDA [34] SSD A% 49.60 49.80 58.40 0.20 227 CVPR2017
DT+PL [18] SSD A% 49.60 54.30 58.40 4.70 53.41 CVPR2018
SWDA [27] F-RCNN V 44.60  56.70 58.60 12.10 86.43 CVPR2019
DeepAugment [12] YOLOvS M4l16 46.95  54.02 66.34 7.07 3647 arXiv 2020
BN-Adapt [19] YOLOvS M4l16 46.95 55.75 66.34 8.80 45.39  NeurIPS 2020
Stylize [10] YOLOvS M4l6 4695 55.24 66.34 829 4276  arXiv2019
STAC [30] YOLOvS M4l16 4695 57.82 66.34 10.87 56.07 arXiv 2020
DT+PL [18] YOLOvS M4l16 46.95 49.14 66.34 2.19 11.30 CVPR 2018
SimROD (self-adapt) YOLOvS M416 46.95  60.08 66.34 13.13  67.72  Ours
SimROD (teacher X416)  YOLOvS M416 4695  63.47 66.34 16,52 8522  Ours

Table 3. Benchmark results on Real (VOC) to Watercolor2K domain shift.

(a) Pseudo-labels on unlabeled target samples
Figure 4. Qualitative comparison: (a) pseudo-labels generated on unlabeled target examples and (b) test predictions with adapted Yolov5s.

4.3. Image corruptions benchmark

Datasets. We evaluate our method’s robustness to im-
age corruption using the standard benchmarks Pascal-C,
COCO-C, and Cityscapes-C [25]. For Pascal-C, we used
VOCO7 trainval split as the source training data. For
COCO-C and Cityscapes-C, we divided the train split and
used the first half as source training data. There are N, =
15 different corruption types for each dataset. Thus, we
applied each corruption type on the VOCI12 trainval or on
the second half of COCO-C and Cityscapes-C train as unla-
beled target data. Precisely, we applied each corruption type
with middle severity onto each image using the imagecor-
ruptions library [25]. More details are given in [2].

Metrics. For image corruption benchmark, we followed
the evaluation protocol from [13,25,32] and measured the
mean performance under corruption (mPC), relative perfor-
mance under corruption (rPC), and the relative robustness

(b) Predictions on test target samples

7. of the adapted model averaged over N, corruption types:

1 N. 1 5
PC® = — Y — N AP® . 3
m N ; N, ; 3)
mPC?*
PC® = 4
r C AP?ICZ‘HI ( )
7. = mPC(0%) — mPC(6°). 5)

where AP, and AP, ; denote the average precision of the
test data with corruption type c and severity level s. The
relative robustness 7. quantifies the effect of adaptation on
the performance under distribution shift (mPC).

Baselines. We use the following baselines which
were proposed to improve the robustness to image corrup-
tions: Stylize [10], BN-Adapt [19], DeepAugment [12],
STAC [30], and DT+PL [18]. Unless specified, we em-
ployed weak data augmentations such as RandomHorizon-
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Method AP0 mPC®°  PC Te p Method TG DMX GA FT mPC® r
Source 8313 5378 6469  0.00 0 Source 5378 0.0
Stylize 8479 6292 7421 914 36.62 BN-Adapt v 64.60 108
BN-Adapt 83.01 6460 77.82 1082 4335 BN-A + DMX v v 6678  13.0
DeepAugment 85.05 64.88 7628 11.10 4447 SimROD w/o TG v v v 7181 18.0
STAC 87.00 6688 7687 1310 5248 SimROD w/o GA v/ v v 7345 197
SimROD (ours) 8697 7540 8670 21.62 86.62 SimROD v v v v 7540 217
Oracle 8675 7874 9077 2496 100

Table 4. Performance comparison on Pascal-C benchmark.

Method AP0 mPC0  PC e P
Source 36.85 22.03 59.78 0.00 0
Stylize 35.75 23.82 66.63 1.79 22.02
BN-Adapt 36.24 24779 6841 276 3395
DeepAugment 35.51 2433 6852 230 28.29
STAC 36.76 2480 6746 277 34.07
SimROD (ours) 36.79 2846 77.36 6.43 79.09
Oracle 36.23 30.16 8325 8.13 100

Table 5. Performance benchmark on COCO-C dataset.

Method AP0 mPC®®  PC Te p
Source 19.48 11.53  59.19 0.00 0
Stylize 21.77 14.62  67.16 3.09 2581
DeepAugment 20.28 1479 7293 326 27.23
STAC 24.54 1539  62.71 386 3225
SimROD (ours) 24.06 18.01 74.85 6.48 54.14
Oracle 26.58 2350 8841 1197 100

Table 6. Performance benchmark on Cityscapes-C dataset.

talFlip and RandomCrop for all baselines.

Main results. Table 4, 5 and 6 show the results of
Yolov5Sm model for Pascal-C, COCO-C, and Cityscapes-
C, respectively. We report the results with different model
sizes in [2]. We used the large model Yolov5x model as a
teacher. An ablation study on Pascal-C is provided in Table
7 and will be discussed later.

Unlabeled target samples improved robustness to im-
age corruption. The source models suffered from perfor-
mance drop due to image corruptions. By adapting the mod-
els with SimROD, the mean performance under corruption
mPC®® was significantly improved by +21.62, +6.43, and
+6.48 absolute percentage points on Pascal-C, COCO-C,
and Cityscapes-C, respectively. Our method outperformed
the Stylize, DeepAugment, BNAdapt baselines on all met-
rics. In fact, STAC, which also used unlabeled target sam-
ples, achieved the second best performance. This shows that
augmentation or batch norm adaptation is not sufficient to
fix the domain shift on all possible corruptions. Instead, us-
ing unlabeled samples from target domain is more effective
to combat image corruptions.

Pseudo-label refinement ensured performance close
to Oracle. Moreover, Tables 4, 5 and 6 show that the perfor-
mance of our unsupervised method was close to that of the
Oracle, which uses ground-truth labels for farget domain
data. This was possible because the adapted teacher pro-
duces highly accurate pseudo-labels, which could be used
along with DomainMix augmentation to effectively adapt
the student model.

Ablation Study. Next, we present an ablation study us-

Table 7. Ablation study on Pascal-C with yolovSm. See [2] for ab-
lations with other models. TG, GA, DMX, and FT denote Teacher
Guidance, Gradual Adaption, DomainMix, and Fine-Tuning.

ing the YolovSm model on Pascal-C in Table 7 to gain some
insights about the contributions of the three parts of our
method. First, BN-Adapt improved the mean performance
under corruption by 10.82% AP50. Applying DomainMix
augmentation on top of BN-Adapt improved the perfor-
mance by 2.18%. Next, the teacher-guided (TG) pseudo-
label refinement was particularly useful in adapting small
models. When using our full method, the performance in-
creased by 10.8% compared to BN-Adapt. Compared to
self adaptation, TG improved the Yolov5 model’s perfor-
mance mPC by +3.7 %. Finally, the gradual adaptation
(GA) also played an important role in refining pseudo-labels
and in improving the model’s robustness. For example, if
we did not use GA and skipped the BN adaptation in the
first phase, the performance dropped by 1.95% compared
to the full method. Our method organically integrates these
parts to tackle UDA for object detection. While the parts
may appear simple, their synergy helped mitigate the chal-
lenging issues of domain shift and pseudo-label noise.

Qualitative analysis Finally, we illustrate the effective-
ness of our method by showing the pseudo-labels generated
with our method on the unlabeled target training images on
Comic dataset. As seen in Figure 4(a), our method gener-
ated highly accurate pseudo-labels despite the domain shift.
In contrast, STAC and DT+PL generated sparse labels since
they missed to detect many objects. The performance dif-
ference transferred to the quality of predictions on the test
set as shown in Figure 4(b).

5. Conclusion

We proposed a simple and effective unsupervised
method for adapting detection models under domain shift.
Our simple method gradually adapts the model with the help
of a new domain-centric data augmentation and a teacher-
guided pseudo-label refinement procedure. Our method
achieved significant gains in terms of model robustness
compared to baselines both for small and large models. Our
method could mitigate different kinds of domain shifts from
low-level image corruptions to high-level cross-domain or
stylistic differences. Through ablation study, we got some
insights on why gradual adaptation works and how the
teacher-guided pseudo-label refinement can help adapt the
models. We hope that this simple method will serve as a
strong baseline and will guide future research progress.
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