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Abstract

The prevalence of relation networks in computer vision is
in stark contrast to underexplored point-based methods. In
this paper, we explore the possibilities of local relation op-
erators and survey their feasibility. We propose a scalable
and efficient module, called group relation aggregator. The
module computes a feature of a group based on the aggre-
gation of the features of the inner-group points weighted by
geometric relations and semantic relations. We adopt this
module to design our RPNet. We further verify the expand-
ability of RPNet, in terms of both depth and width, on the
tasks of classification and segmentation. Surprisingly, em-
pirical results show that wider RPNet fits for classification,
while deeper RPNet works better on segmentation. RPNet
achieves state-of-the-art for classification and segmentation
on challenging benchmarks. We also compare our local
aggregator with PointNet++, with around 30% parameters
and 50% computation saving. Finally, we conduct experi-
ments to reveal the robustness of RPNet with regard to rigid
transformation and noises.

1. Introduction
Point cloud processing has attracted considerable atten-

tion for its advantages in various applications, including au-
tonomous driving, augmented reality, and robotics. Though
easily accessible, unlike other visual elements (i.e., images),
point clouds can be difficult to learn due to irregularity.

To duplicate the success of convolutional networks on
regular grids [24, 43], some prior works change point clouds
into multi-view images [12, 10] or regular volumes [53, 12]
before convolution. However, image-based projection and
voxelization reduce the resolution of point clouds and re-
sult in the damage of internal geometric information. These
explicit transformations also lead to complex preprocessing
and significant computations.

PointNet [38] diverts the attention to the methods of pro-
cessing raw point clouds. To handle irregular points, it
adopts point-wise multi-layer perceptrons (MLP) to learn

on points independently and utilize a symmetric function to
obtain the global information. For the ignorance of local
structures, PointNet++ [40] further introduces set abstrac-
tion (SA) (shown in Fig. 1 left) as the local aggregator to
build the hierarchical networks. However, this aggregator
keeps learning on points independently, losing the sight of
shape awareness.

When a local aggregator independently learns on points,
the shape ambiguity problem has been exposed: since no
points inside the set react with others, the aggregator will
be sensitive to the coordinates S ∈ RN×3 and be confused
about the outline and the geometric information of the set.
Here N is the number of points inside the set. The shape
ambiguity problem causes the damage to the robustness and
generalization of an aggregator.

In general, an excellent aggregator is underdeveloped for
two reasons: it should discriminatively describe the under-
lying shape of point sets, and it should be robust to rigid
transformation (i.e., translation, rotation) as well as noises.
For a preliminary exploration, RS-CNN [33] computes a
point feature from the aggregation of features weighted by
predefined geometric relations (low-level relation) between
the point Si and its neighborsN (Si) (shown in Fig. 1 mid-
dle). Based on the low-level relations instead of coordinates
only, RS-CNN is insensitive to coordinates and robust to
rigid transformation. However, RS-CNN is insufficient to
learn semantic relations (high-level relations) for the lack
of interaction between features.

In this case, self-attention [47] (shown in Fig. 1 right)
may be a good instance as the supplement for high-level
relations. Self-attention achieves great success on natural
language processing. Recent work [64, 19] has shown that
self-attention can be a viable alternative for convolution on
images. However, self-attention can be depressing for sig-
nificant computations as well as a large number of param-
eters. The goal of this work is to extend grid-based self-
attention to irregular points with a high-efficiency strategy.

To this end, we propose group relation aggregator
(GRA) to learn from both low-level and high-level relations.
Compared with self-attention and SA, our designed bottle-
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Figure 1. Comparison of some prior works. We input each module with one centroid (query) and its neighbors (keys) of features or
coordinates. PointNet++ [40] (left) learns on points independently and lacks the interaction between points. RS-CNN [33] (middle)
focuses on low-level relation learning, while self-attention (right) in Transformer [47] learns from high-level relations between features.
Here the input group in self-attention is in the global scope.

neck version of GRA is obviously efficient in terms of com-
putation and the number of parameters. With bottleneck
GRA, we construct the efficient point-based networks RP-
Net.

Specifically, we construct each point set by taking a sam-
pled point Si as the centroid and its neighbors N (Si), cor-
responding to features Fi and N (Fi) respectively. To ex-
ploit a point set, we force GRA to learn attention of the
set from both predefined geometric priors (i.e., Euclidean
distance between Si and N (Si)) and feature-level inter-
action (i.e., mapping through a linear layer followed by
matrix multiplication and scaled dot-product on Si and
N (Fi)). By applying the attention to the transformed
features N (Fi) (i.e. mapping through a linear layer), the
weighted features can reflect the geometric shape as well as
semantic information of a point set. This proposed module
benefits from the geometric priors in terms of shape aware-
ness and robustness to rigid transformation, while the fea-
ture interaction enables the adaptation to content and the
robustness to noises.

Considering the efficiency of GRA, we introduce the bot-
tleneck concept to this module. The output of the first linear
layer has the identical channels to the input. We cut down
its output channels with a specific factor. Though this be-
havior harms the model quality (discussed in [47]), we add
a mapping after the relation operation. Cross-channel atten-
tion also helps the module to explore channel-wise. All the
changes turn our module into a high-efficiency version.

With our proposed module, we construct RPNet with re-
spect to width (RPNet-W) and depth (RPNet-D). We then
evaluate these two types of models on the datasets of clas-
sification (i.e., ModelNet40 [53]) and segmentation (i.e.,
ScanNet v2 [6], S3DIS [1]). The results show that our
method outperforms point-based methods by a large mar-
gin, and even achieves comparable performance with all
convolution-based methods in a state of high-efficiency. In-
terestingly, our model may obtain extra accuracy on classi-
fication by increasing the width, while deep model works

better than wide model on segmentation in terms of effi-
ciency and accuracy.

Our key contributions are manifold:

• A novel scalable local aggregator for point clouds is
proposed. It encodes the geometric and semantic rela-
tions between points;

• An expandable and high-efficiency hierarchy RPNet is
proposed. Equipped with the bottleneck version of our
aggregator, extensive RPNet keeps efficient;

• Experiments on the challenging benchmarks of clas-
sification and segmentation, indicate that RPNet
achieves state of the arts.

2. Related Work
2.1. Learning on Point Clouds

Multi-view methods [10, 15, 54, 16, 39] describe a 3D
object with multiple views from different viewpoints. Re-
cent works have been proposed to recognize 3D shapes
through convolutional neural networks, i.e., converting 3D
shapes to 2D images [45] or lattice space [44]. However,
this transformation results in the loss of shape informa-
tion for self-occlusion, and a great number of views are
required for decent performance. Voxel-based methods
[53, 35, 12, 23, 5, 49, 42] apply volumetric CNN to rec-
ognize the 3D grids transformed from 3D shapes, i.e., the
efficient submanifold sparse convolution [13]. The input 3D
grid is limited to low resolution considering computational
cost, leading to the loss of structural information. Different
from multi-view and voxel-based methods, the goal of our
work is to process point clouds directly.

Point-based methods [25, 11, 26, 34, 36, 22] have at-
tracted great attention for processing on raw point clouds
recently. PointNet [38] learns from global information
through pointwise multi-layer perceptrons and max-pooling
operation. PointNet++ [40] introduces set abstraction to
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Figure 2. A simple analogy between image convolution and set abstraction.

capture local features, and farthest point sampling to down-
sample uniformly between two set abstractions. Likewise,
recent works concentrate on effective local learning ap-
proaches or various sampling manners. Point2Sequence
[31] learns the information from different local regions
by attention mechanism. ShufflePointNet [4] goes wider
in an effficent manner via group convolution and chan-
nel shuffling. RandLA-Net [21] aggregates the local re-
gion with spatial encoding followed by attentive pooling.
Convolution-based methods [57, 52, 17, 46, 33, 32, 63, 30,
29, 65, 50, 52] are another branch for local aggregation, us-
ing dynamic strategies of transformation to support the nor-
mal work of convolution on point clouds. PointCNN [28]
applies traditional convolution on point clouds after trans-
forming neighboring points to the canonical order. Grid-
GCN [56] captures local geometry by graph instead of point
set. However, these intuitively predefined transformations
for the followed convolution operation may also cause a
loss of structural information of the original point clouds,
and the model may be sensitive to rigid transformation for
convolution. In this paper, we focus on the relation learning
based on MLP for a robust learning.

2.2. Relation Learning

Relation learning (i.e., self-attention [47]) has generally
revolutionized natural language processing [8, 9]. It in-
spires applications in different computer vision fields, in-
cluding image recognition [7, 48, 20, 19, 2, 41, 59, 64], im-
age synthesis [61, 37], object detection [18, 14], and video
understanding [51]. Wang et al. [51] uses non-local oper-
ation to model the relation between two pixels in an im-
age, capturing long-range dependencies. DETR [3] adopts
transformer encoder-decoder architecture for a competitive
end-to-end detector.

Recent work proves the practicability of relation learning
on point clouds. PointASNL [58] adopts the non-local op-
eration to capture long-range dependencies of point clouds.
ShapeContextNet [55] applies self-attention-like operator to

learn the global feature of a point cloud. Though effective,
these methods focus on global relation learning, leading to
loss of local information. RS-CNN [33] learns the relations
within a local region by a predefined geometric priors, but
the low-level relation cannot fully represent the relation be-
tween two points. In this paper, we aim to design a local
aggregator to model the relation between two points on both
geometric level and semantic level.

3. Relation Learning on Point Clouds

In this section, we first review PointNet++ [40] , and
the relation-based modules RS-CNN [33] and self-attention
[47]. Next, we propose a general operator to learn inner-
group relations and its instances. Then we design its bot-
tleneck version as the building block, and finally, we im-
plement the network architectures, Inner-Group Relation
Point-based Networks (named RPNet) with this block.

3.1. Background

Most point-based blocks come from SA (shown in Fig. 1
left) in PointNet++ [40] to aggregate local features. It
achieves point downsampling as well as feature transforma-
tion. Denote one input point as xi ∈ R3×N , its neighbors
as xi·, its feature as f (xi) ∈ RC×N and its cooridnate as
p (xi) ∈ R3×N , with C being the channels of input point
features and N the number of input points. Specifically,
this layer transforms the group of feature points f (xi·) via
pointwise multi-layer perceptrons followed by max-pooling
after point sampling and grouping. For an intuitive presen-
tation, we show an analogy between the operations inside
image convolution and SA in Fig. 2. SA without sampling
can be formulated as follows:

y (xi) = A ({M (xij) ,∀xij ∈ G (xi)}) , (1)

whereA is the aggregation function (i.e., max-pooling),M
is the mapping function, and G is the grouping method (i.e.,
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Figure 3. Our group relation aggregator. After sampling and
grouping operations on one point cloud, we input features and
coordinates of the centroids f (xi), p (xi) and their neighbors
f (xi·), p (xi·). There are two parts in the relation function R, α
for the geometric relation as well as θ for the semantic relation. We
apply cross-channel attention (denoted as⊗ in the above figure) to
the output ofM and the γ. Here we introduce the cross-channel
attention, which segments the output of γ to K groups with size
N × G × (C′′/K), and we apply one of K weight map with
size N × G to each of the (C′′/K) channels of the correspond-
ing group via element-wise product. The outputs of cross-channel
attention and γ have the same shape. Finally, we aggregate the
output followed by a linear function.

kNN, Ball Query [40]). Here we adopt farthest point sam-
pling as the default sampling method.

SA is popular for its simplicity, but it suffers from shape
ambiguity as it learns from features or coordinates indepen-
dently. In this way, RS-CNN [33] tries to solve this prob-
lem. Relation-shape convolution is of shape-awareness for
the predefined geometric relation. As shown in Fig. 1 mid-
dle, the relation-shape convolution adaptively aggregates
the key contents according to the weight from the prede-
fined function Rl. For a more powerful shape-aware repre-
sentation, it further applies a channel-raising mapping Lcr

after the weighted features. Relation-shape convolution can
be formulated as:

y (xi) = Lcr (A ({Rl (xi, xij) · f (xij) ,∀xij ∈ G (xi)})) .
(2)

Relation-shape convolution is good practice to learn ge-
ometric relations on point clouds, but semantic level rela-
tions may be ignored. In this case, self-attention opera-
tion can be an inspiration to complement the semantic level
relation learning on point clouds. Recently, self-attention
is proved to be effective in computer vision. Similar to
relation-shape convolution, self-attention (shown in Fig. 1
right) also learns to aggregate the key contents according to
the weight (or compatibility) of query-key pairs. However,

differently, the weight is implicitly obtained by the interac-
tion of one query and its keys in a high-level space instead
of 3D space. The relation function is defined as Rh (i.e.,
scaled dot-product). L is a linear function after aggrega-
tion. Self-attention operator can be formulated as:

y (xi) = L (A ({Rh (xi, xij) · β (xij) ,∀xij ∈ G (xi)})) .
(3)

3.2. Inner-Group Relation Learning

We explore a local aggregator to learn from both geomet-
ric relations and semantic relations inside a point set. Thus
we propose group relation aggregator (shown in Fig. 3),
which has the following form:

y (xi) = L (A ({H (xi, xij) ,∀xij ∈ G (xi)})) , (4)

where the inner-group relation function H equipped with
cross-channel attention is defined as:

H (xi, xij) =M (R (xi, xij))⊗ γ (xij) , (5)

where ⊗ means cross-channel attention. Denote the num-
ber of attention maps as K to enable the operation of cross-
channel attention, the total number of centroids as N , each
centroid with G neighbors, the feature dimension as C.
C ′ = C/r1 and C ′′ = C/r2 (details in Sec. 3.4). We
found our introduction of cross-channel attention benefi-
cial by allowing the model to attend to information from
different representation subspaces. Cross-channel atten-
tion first segments the output of γ to K groups with size
N×G×(C ′′/K). For each ofK weight map obtained from
M, it then applies the map with size N ×G to every chan-
nel (totally C ′′/K channels) of the corresponding group by
element-wise product. The number of channels in the out-
put of γ is consistent after the operation of cross-channel at-
tention. Cross-channel attention will degenerate into vanilla
attention when K = 1. The operation of cross-channel at-
tention can further allow the design of bottleneck, signifi-
cantly reducing the number of parameters and the computa-
tions. M a combination of both linear functions and non-
linearity functions, i.e., {MLP → ReLU → MLP}. It
allows us to introduce additional trainable transformations
for more expressive construction of the weights. The output
dimensionality of ω does not need to match that of γ as the
attention weights are shared across a group of channels for
cross-channel attention. The function γ is a linear function
here. The relation function R contains a geometric func-
tion α (·, ·) followed by a mapping function ω as well as a
semantic function θ (·, ·):

R (xi, xij) = [ω (α (xi, xij)) , θ (xi, xij)], (6)

where ω is a sequence of mapping operations, and α can be
defined like this:
α (xi, xij) = [‖p (xi)− p (xij)‖ ,p (xi) ,p (xij)

p (xi)− p (xij)].
(7)
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Figure 4. Comparison of architectures of PointNet++ (above) and our RPNet-D14 (below) for segmentation task. ‘Skip’ and ‘Res’ represent
‘Skip Block’ and ‘Residual Block’ respectively. The two blocks are based on our GRA. Skip block is a GRA combined with down-
sampling, while residual block has a branch of residual link. Each skip block groups with a specific scale and outputs the features with
a fixed dimension, while each residual block enhances the features through a fixed scale of groups. For example, the first skip block in
RPNet-D14 groups 32 points corresponding to the center points and outputs 64 dimension vectors. The following residual block groups 16
points per center point.

We explore possible instantiations of θ, along with fea-
ture transformation elements that surround self-attention
operations in our architecture:

Concatenation: θ (xi, xij) = [η (f (xi)) , µ (f (xij))]

Summation: θ (xi, xij) = η (f (xi)) + µ (f (xij))

Subtraction: θ (xi, xij) = η (f (xi))− µ (f (xij))

Hadamard product: θ (xi, xij) = η (f (xi))� µ (f (xij))

Here η and µ are trainable transformations such as linear
mappings, and have matching output dimensionality.

3.3. Bottleneck Improves Efficiency

Matrix multiplication in self-attention brings about sig-
nificant computations. The complexity of GRA is of
O
(
C2

)
. To design an efficient aggregator, we introduce

the philosophy of bottleneck to GRA. Denote the channel
dimensionality of input features by C. The output of η and
µ have C/r1 channels. The output of γ and H have the
same dimension C/r2. The output of the block is subse-
quently expanded back to C through a linear mapping. In
our architectures, we set r1 = 16 and r2 = 4.

3.4. RPNet

The main structures of our RPNet generally follow
PointNet++ [40], which we use as our baseline. The num-
ber X in RPNet-WX and RPNet-DX refers to the number
of our GRA blocks.

Classification. RPNet-W consists of GRA only. The
backbone of RPNet-W has three stages, each with differ-
ent spatial resolution. Every stage comprises multiple self-
attention blocks. In RPNet-W7, grouping of the first two
stages are performed by multi-scale groupers, with the sizes
of {16, 32, 128} and {32, 64, 128} in order. RPNet-W9 and
RPNet-W15 adopt more detailed scales within [16, 128] and
[32, 128]. The third stage groups all the rest points for ag-
gregation. The output of the third stage is processed by a
classification layer that comprises three linear layers and
dropout with a ratio of 0.5 between two of the layers, fol-
lowed by a softmax activation.

Segmentation. We build RPNet-D with skip block
(GRA with down-sampling) and residual block (GRA with
a residual link). The input of RPNet-D is 8k or 16k points
containing various information (i.e. coordinates, color and
normal). RPNet-D first encodes a point cloud by downsam-
pling points, i.e. {8192 → 1024 → 256 → 64 → 32}, and
then decodes by upsampling through feature propagation
[40]. The residual GRA blocks are attached to the down-
sampling or upsampling blocks. The segmentation layer
includes a linear layer and a dropout layer of 0.5. An il-
lustration (Fig. 4) shows the architecture of RPNet-D14.

4. Experiments

First, we evaluate our RPNet-W and RPNet-D on the
classification and segmentation tasks of various datasets, in-
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Figure 5. We visualize the attention weights of a chair (a)(b) and
an airplane (c)(d) from our GRA in different scales. Blue balls
stand for the center (query) points. By visualizing, we can find
that the bounding points obtain higher importance. We argue that
GRA describes a shape representation by the bounding points to
a large extent. Intuitively, it works on human eyes as well. We
discriminate a shape by its outline most of the time.

cluding synthetic datasets and scene segmentation datasets.
Furthermore, we discuss the expandability of our RPNet.
We then analyze the robustness of our models in terms of
rigid transformation and noises. The following ablation
studies explore the variants of our module and assess the
effectiveness of the components used to construct the net-
works. All the experiments are performed on a machine
with four V100 GPUs.

4.1. Evaluation on Classification

We conduct experiments on ModelNet40 [53] on classi-
fication through our RPNet-W network. The dataset con-
tains 9843 training point clouds and 2468 test ones from 40
different categories.

Implementation. Our implementation mainly follows
the practice in [38]. For training, we first select 1024
points as input. To prevent overfitting, we apply augmen-
tation strategy including the following components: ran-
dom scaling in the range [0.8, 1.25], random shift in the
range [−0.1, 0.1], random dropout points with the ratio of
the range [0, 87.5%]. The initial learning rate is 0.001, and
it decays by a factor of 0.7 every 20 epochs. For testing,
similar to [38, 40], we average the predictions of randomly
scaled inputs.

Results. In Tab. 1, we compare our RPNet-W with state-
of-the-art classification methods on ModelNet40. Among
all current methods, our method achieves state-of-the-art

Method Modality Accuracy(%)
PointGCN [62] Graph 89.5
KPConv [46] Grid 92.9
SO-Net [27] Points+Normals (5k) 93.4
PVRNet [60] Points+Views 93.6
RS-CNN [33] w/ vot. Points 93.6
PointNet [38] Points 89.2
RS-CNN [33] w/o vot. Points 92.4
PointASNL [58] Points 92.9
RPNet-W7 (ours) Points 93.8 ↑0.9
RPNet-W9 (ours) Points 93.9 ↑1.0

PointNet++ [40] Points+Normals 91.9
FPConv [29] Points+Normals 92.5
Grid-GCN [56] Points+Normals 93.1
PointASNL [58] Points+Normals 93.2
RPNet-W7 (ours) Points+Normals 93.9 ↑0.7
RPNet-W9 (ours) Points+Normals 94.1 ↑0.9

Table 1. Performance of classification on ModelNet40 on accu-
racy(%).

Method S3DIS-6 ScanNet
Convolution-based Methods

PointCNN [28] 65.4 45.8
FPConv [29] 68.7 63.9
KPConv [46] 70.6 68.4

MLP-based Methods
RandLA [21] (105) 70.0 -
PointNet++ [40] 53.4 33.9
PointWeb [65] 66.7 -
PointASNL [58] 68.7 63.0
RPNet-D8 (ours) 69.1 67.1
RPNet-D14 (ours) 70.0 67.7
RPNet-D27 (ours) 70.8 ↑2.1 68.2 ↑5.2

Table 2. Mean per-class IoU(%) for the task of semantic segmen-
tation on the datasets of ScanNet v2 and S3DIS (6-fold cross vali-
dation). “-” means unknown.

with a promotion of 0.9%. We also compare our RPNet-W7
with RS-CNN and PointASNL with and without normal in-
put. Besides, we visualize the attention maps in Fig. 5.

4.2. Evaluation on Segmentation

Large-scale scene segmentation is a more challenging
task due to outliers and noises. We evaluate our RPNet-
D on Stanford 3D Large-Scale Indoor Spaces (S3DIS) [1]
and ScanNet v2 (ScanNet) [6] datasets. S3DIS contains 271
scenes from six zones. It provides 13 types of semantic la-
bels for scene segmentation. ScanNet includes 1513 train-
ing point clouds and 100 test ones. It marks each point from
21 categories.

Implementation. On both datasets, we verify each
method with mean per-class IoU (mIoU), and use point po-
sition and RGB information as input. In particular, we eval-
uate models with 6-fold cross-validation over all six zones
(6-fold) on S3DIS. For training, we randomly sample 16384

15482



Input Ground Truth Prediction

Figure 6. Examples of semantic scene labeling with RPNet.

Figure 7. Model comparison in terms of width on classification
(above) and depth on segmentation (below). We compare mod-
els by both accuracy or mIoU (left) and the number of parameters
(right). Here “nor.” means normals, “BT” means bottleneck ver-
sion.

points from the scenes. For evaluation, similar to [58], we
obtain an average prediction of 5 votes by sliding a window
across the room in 0.5m stride.

Results. In Tab. 2, we list the latest methods to com-
pare with our RPNet-D, i.e., PointASNL [58]. We adopt
the same training and test approach by randomly chopping
cubes with a fixed number of points. We show the results of
convolution-based methods as well, i.e., FPconv [29], KP-
conv [46]. All of these methods utilize the raw point clouds
as the input. An illustration of semantic scene labeling is
shown in Fig. 6.

4.3. Discussion of Expandability

As show in Fig. 7, we evaluate various models with re-
spect to accuracy and the number of parameters. With the
same depth or width, our model outperforms SOTAs by an
obvious margin. Besides, the efficiency of our model is also
competitive compared with prior works.

Shown in Fig. 7 above, we compare our RPNet-W with

PointNet++ multi-scale grouping (MSG) version. To im-
prove efficiency, we use a bottleneck architecture to build
blocks. These blocks significantly reduce the computational
cost while maintaining high accuracy. By increasing the
width, our model can obtain more geometric information
from a point cloud, and thus higher accuracy. The com-
parison of RPNet-W9 and RPNet-W15 shows a overfitting
problem. We argue that the width of 9 is enough for the full
exploitation. Wider model would bring much redundant in-
formation and cause the decrease of performance.

Shown in Fig. 7 below, similar to [26], we deepen our
models on segmentation. We compare the efficiency im-
provement of RPNet-D with our bottleneck blocks. To ver-
ify the effectiveness of greater depth, we gradually increase
the depth of RPNet-D on ScanNet. Obviously, as the depth
increases, the model can obtain higher mIoU. We argue that
relation learning helps to deeply extract representations by
stacking residual blocks. We also obtain a similar conclu-
sion from [26] that going deeper can help improve the ac-
curacy on segmentation.

To explore which kind of model works better on the two
tasks, we conduct simple experiments on deeper models for
classification and wider models for segmentation. First, we
test deeper model using RPNet-W1 on classification:

Depth 3 5 7
acc. 92.9 92.5 ↓0.4 92.1 ↓0.8

Shown in the table, the results perform worse with the depth
increasing. We discuss that the task of classification con-
centrates on the global view instead of point-wise recogni-
tion. Increasing the depth could not be beneficial to obtain
such global view. Besides, there would be a great number of
redundant features inside each layer. The errors of a global
view would increase significantly if the depth is over the
threshold value.

Also, we test wider RPNet-D4 (RPNet-D without resid-
ual block) on segmentation:

Width 1 2 3
acc. 66.8 67.0 ↑0.2 67.1 ↑0.3

Shown in the table, increasing the width leads to almost
no improvement, but with nearly X-fold increasing on the
number of parameters and the computation. Through the
empirical results as well as our discussion, we conclude that
RPNet-W fits for classification, while RPNet-D works bet-
ter on segmentation.

4.4. Ablation Study

We conduct ablation studies to evaluate the effectiveness
of our design. We mainly discuss some key components of
our GRA, including inner-group relation function, aggrega-
tion function and cross-channel attention. We perform all
ablation studies on S3DIS with 6-fold validation.

Inner-group relation functionH. Shown in Tab. 3, we
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Model Geometric Relation α Semantic Relation θ mIoU (%)
`2 `1 xi − xij [xi, xij ] sum sub cat had

A X 63.7
B X X 63.8
C X X X X 64.2
D X X X X X 67.8
E X X X X X 67.8
F X X X X X 67.5
G X X X X X 67.6

Table 3. The results of different designs on inner-group relation
function H (sum: summation, sub: subtraction, cat: concatena-
tion, had: Hadamard product). The experiments are on S3DIS
with 6-fold validation.

ablate the designs of geometric and semantic relation func-
tions α and θ in details. We define the geometric priors as
four possible components: `2, `1, xi − xij and [xi, xij ].
`2 and `1 can directly describe the distances between two
points, while xi − xij and [xi, xij ] show the relative and
global positions of two points. Model C outperforms model
A and B, which shows that four components of geomet-
ric priors boost the performance of our RPNet at the same
time. Furthermore, we survey the designs of semantic re-
lation function θ with four possibilities: summation, sub-
traction, concatenation and Hadamard product. The results
prove that summation or subtraction works better in RPNet.
Summation or subtraction would be better in terms of com-
putation as well.

Aggregation functionA. We adopt three types of sym-
metric function to aggregate in our GRA: max-pooling, avg-
pooling and sum-pooling. Here is the results:

RPNet-D8 max-pooling avg-pooling sum-pooling
acc. 67.8 67.5 67.7

The table shows that max-pooling performs better than the
others. We argue that max-pooling can filter the redundant
information in our GRA and select the expressive features.

Cross-channel attention. We test the design of our
cross-channel attention below:

RPNet-D8 vanilla att. cross-channel att.
acc. 67.8 69.1 ↑1.3

As shown in the table, cross-channel attention greatly
boosts our GRA by 1.3% on S3DIS. Vanilla attention does
not enable the channelwise exploration. However, differ-
ent channels may play different roles to influence the final
weights. One channel attention map cannot fully utilize the
feature space, especially when the space has a great number
of dimensions. To handle this problem, cross-channel at-
tention applies multiple attention maps to different groups
of channels, allowing the channelwise exploration in GRA.

4.5. Analysis of Robustness

Robustness to rigid transformation. We evaluate the
robustness to rigid transformation for the comparison of
our RPNet with PointNet [38], PointNet++ [40], RS-CNN

model origin perm ±0.2 90° 180° 270°
PointNet [38] 88.7 88.7 70.8 42.5 38.6 40.7
PointNet++ [40] 88.2 88.2 88.2 88.2 47.9 39.7
RS-CNN [33] 90.3 90.3 90.3 90.3 90.3 90.3
RPNet-W7 (ours) 90.9 90.9 90.9 90.9 90.9 90.9

Table 4. Robustness to point permutation and rigid transformation
(%). We perform the operations of random permutation (perm),
translation of ±0.2, and clockwise rotation around Y axis.

Figure 8. (Left) Classification results of different models with
noises. (Right) By learning semantic relation, the local aggregator
is relatively insensitive to noises, concentrating more on the shape
instead of independent points.

[33]. We follow the experimental setup of RS-CNN for the
evaluation. As shown in Tab. 4, all these coordinate-based
methods are insensitive to permutation thanks to the design
of symmetric function. However, PointNet is sensitive to
translation and rotation, while PointNet++ is vulnerable to
rotation. RS-CNN and our RPNet perform robust due to
the usage of relation learning. Our RPNet outperforms RS-
CNN for the learning on high-level relation.

Robustness to noises. We also evaluate our networks
on robustness to noises. Shown in Fig. 8, our RPNet outper-
forms other competitive methods with the same noises in-
put. Note that RS-CNN is sensitive to noise. We argue that
the predefined relation may affect the output of attention
map, causing the wrong relation representation. However,
our RPNet uses semantic level relation, which is skilled at
denoising and focusing on the content.

5. Conclusion

We present group relation aggregator as well as deeper
(RPNet-D) and wider (RPNet-W) models for efficient point
cloud analysis. By learning from both geometric and se-
mantic relations inside a point set, our RPNet achieves state-
of-the-art on both classification and segmentation tasks. We
further introduce bottleneck philosophy to our module for
high efficiency. Experiments based on challenging bench-
marks illustrate the effectiveness of our RPNet.
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