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Active Learning (AL): The traditional AL methods are

iterative schemes which obtain labels (from oracle or

experts) for a set of informative data samples. The newly

labeled samples are then added to the pool of existing

labeled data and the model is trained again on the labeled

data. The proposed techniques can be divided into two

classes: 1) Uncertainty Based Methods: In this case,

model uncertainty about a particular sample is measured

by specific criterion like entropy [40] etc. 2) Diversity

or Coverage Based Methods: These methods focus

on selecting a diverse set of points to label in order to

improve the overall performance of the model. One of

the popular methods, in this case, is Core-Set [30] which

selects samples to maximize the coverage in feature space.

However, recent approaches like BADGE [1] which use a

combination of uncertainty and diversity, achieve state-of-

the-art performance. A few task-agnostic active learning

methods [34, 42] have also been proposed.

Active Domain Adaptation: The first attempt for ac-

tive domain adaptation was made by Rai et al. [25], who

use linear classifier based criteria to select samples to label

for sentiment analysis. Chattopadhyay et al. [4] proposed

a method to perform domain adaptation and active learning

by solving a single convex optimization problem. AADA

(Active Adversarial Domain Adaptation) [35] for image

based DA is a method which proposes a hybrid informa-

tiveness criterion based on the output of classifier and

domain discriminator used in DANN. The criterion used in

AADA for selecting a batch used is a point estimate, which

might lead to redundant sample selection. We introduce

a set-based informativeness criterion to select samples to

be labeled. CLUE [24] is a recent concurrent work which

selects samples through uncertainty-weighted clustering

for Active DA.

3. Background

3.1. Definitions and Notations

Definitions: We first define a set function f(S) for

which input is a set S. A submodular function is a set func-

tion f : 2Ω → R, where 2Ω is the power set of set Ω which

contains all elements. The submodular functions are char-

acterized by the property of diminishing returns i.e., addi-

tion of a new element to smaller set must produce a larger

increase in f in comparison to addition to a larger set. This

is mathematically stated as for every S1, S2 ⊆ Ω having

S1 ⊆ S2 then for every x ∈ Ω\S2 the following property

holds:

f(S1 ∪ {x})− f(S1) ≥ f(S2 ∪ {x})− f(S2) (1)

This property is known as the diminishing returns property.

Notations Used: In the subsequent sections we use hθ(x)

as softmax output of the classifier, hθ(x) is a composition

of fθ ◦ gθ(x) where, gθ(x) is the function that maps input

to embedding and fθ does final classification. The domain

discriminator is a network Dφ(gθ(x)) which classifies the

sample into source and target domain which adversarially

aligns the domains. We use D for combined data from both

domains and use symbols of Ds and Dt for labeled data

from source and target domain respectively. Du denotes the

unlabeled target data. In active DA, we define budget B as

number of target samples selected from Du and added to Dt

in each cycle.

Active Domain Adaptation: In each cycle, we first per-

form DA using Ds and Dt as the source and Du as the tar-

get. Active Learning techniques are then utilized to select

B most informative samples from Du which is then added

to Dt. This is performed for C cycles.

3.2. Cluster Assumption

Cluster assumption states that the decision boundaries

should not lie in high density regions of data samples, which

is a prime motivation for our approach. For enforcing clus-

ter assumption we make use of two additional objectives

from VADA [33] method. The first objective is the mini-

mization of conditional entropy on the unlabeled target data

Du. This is enforced by using the following loss function:

Lc(θ;Du) = −Ex∼Du
[hθ(x)

T lnhθ(x)] (2)

The above objective ensures the formation of clusters of tar-

get samples, as it enforces high-confidence for classification

on target data. However due to large capacity of neural net-

works, the classification function learnt can be locally non

Lipschitz which can allow for large change in function value

with small change in input. This leads to unreliable esti-

mates of the conditional entropy loss Lc. For enforcing the

local Lipschitzness we use the second objective, which was

originally proposed in Virtual Adversarial Training (VAT)

[19]. It ensures smoothness in the ǫ norm ball enclosing the

samples. The VAT objective is given below:

Lv(θ;D) = Ex∼D[ max
||r||≤ǫ

DKL(hθ(x)||hθ(x+ r))] (3)

4. Proposed Method

In Active Domain Adaptation, there are two distinct

steps i.e., sample selection (i.e. sampling) followed by Do-

main Adaptation which we describe below:

4.1. Submodular Subset Selection

4.1.1 Virtual Adversarial Pairwise (VAP) Score

In our model architecture, we only use a linear classifier and

a softmax over domain invariant features fθ(x) for classifi-

cation. Due to the linear nature, we draw inspiration from
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4.1.4 Combining the Three Score Functions

We define the set function f(S) by defining the gain as a

convex combination of V AP (xi) , d(S, xi) and R(S, xi).

f(S ∪ {xi})− f(S) = αV AP (xi) + βd(S, xi)

+ (1− α− β)R(S, xi)
(9)

Here 0 ≤ α, β, α + β ≤ 1 are hyperparameters which

control relative strength of uncertainty, diversity and repre-

sentativeness terms. We normalize the three scores before

combining them through Eq. 9.

Lemma 1: The set function f(S) defined by Eq. 9 is sub-

modular.

Lemma 2: The set function f(S) defined by Eq. 9 is a non

decreasing, monotone function.

We provide proof of the above lemmas in Sec. 2 of sup-

plementary material. Overview of the overall sampling ap-

proach is present in Fig. 3.

4.1.5 Submodular Optimization

As we have shown in the previous section that the set func-

tion f(S) is submodular, we aim to select the set S satisfy-

ing the following objective:

max
S:|S|=B

f(S) (10)

For obtaining the set of samples S to be selected, we use

the greedy optimization procedure. We start with an empty

set S and add each item iteratively. For selecting each of

the sample (xi) in the unlabeled set, we calculate the gain

of each the sample f(S ∪ {xi}) − f(S). The sample with

the highest gain is then added to set S. The above iterations

are done till we have exhausted our labeling budget B. The

performance guarantee of the greedy algorithm is given by

the following result:

Theorem 1: Let S∗ be the optimal set that maximizes the

objective in Eq. 10 then the solution S found by the greedy

algorithm has the following guarantee (See Supp. Sec. 2):

f(S) ≥

(

1−
1

e

)

f(S∗) (11)

Insight for Diversity Component: The optimization al-

gorithm with α = 0 and β = 1 degenerates to greedy

version of diversity based Core-Set [31] (i.e., K-Center

Greedy) sampling. Diversity functions based on similar

ideas have also been explored for different applications in

[12, 3]. Further details are provided in the Sec. 3 of supple-

mentary material.

4.2. Virtual Adversarial Active Domain Adaptation

Discriminator-alignment based Unsupervised DA meth-

ods fail to effectively utilize the additional labeled data

present in target domain [29]. This creates a need for mod-

ifications to existing methods which enable them to effec-

tively use the additional labeled target data, and improve

generalization on target data. In this work we introduce

VAADA (Virtual Adversarial Active Domain Adaptation)

which enhances VADA through modification which allow

it to effectively use the labeled target data.

We have given our subset selection procedure to select

samples to label (i.e., Dt) in Algo. 1 and in Fig. 2. For

aligning the features of labeled (Ds∪Dt) with Du, we make

use of domain adversarial training (DANN) loss functions

given below:

Ly(θ;Ds,Dt) = E(x,y)∼(Ds∪Dt)[y
T lnhθ(x)] (12)

Ld(θ;Ds,Dt,Du) = sup
Dφ

Ex∼Ds∪Dt
[lnDφ(fθ(x))]

+ Ex∼Du
[ln(1−Dφ(fθ(x)))]

(13)

As our sampling technique is based on cluster assumption,

for enforcing it we add the Conditional Entropy Loss de-

fined in Eq. 2. Additionally, for enforcing Lipschitz conti-

nuity by Virtual Adversarial Training, we use the loss de-

fined in Eq. 3. The final loss is obtained as:

L(θ;Ds,Dt,Du) = Ly(θ;Ds,Dt) +

λdLd(θ;Ds,Dt,Du) + λsLv(θ;Ds ∪ Dt) +

λt(Lv(θ;Du) + Lc(θ;Du))

(14)

The λ-values used are the same for all our experiments

and are mentioned in the Sec. 5 of supplementary material.

Differences between VADA and VAADA: We make

certain important changes to VADA listed below, which en-

ables VADA [33] to effectively utilize the additional super-

vision of labeled target data and for VAADA procedure:

1) High Learning Rate for All Layers: In VAADA, we

use the same learning rate for all layers. In a plethora of DA

methods [29, 18] a lower learning rate for initial layers is

used to achieve the best performance. We find that although

this practice helps for Unsupervised DA it hurts the Active

DA performance (experimentally shown in Sec. 5 of sup-

plementary material).

2) Using Gradient Clipping in place of Exponential

Moving Average (EMA): We use gradient clipping for all

network weights to stabilize training whereas VADA uses

EMA for the same. We find that clipping makes training

of VAADA stable in comparison to VADA and achieves a

significant performance increase over VADA.

We find VAADA is able to work robustly across diverse

datasets. It has been shown in [29] that VADA, when used

out of the box, is unable to get gains in performance when

used in setting where target labels are also available for

training. This also agrees with our observation that VAADA

significantly outperforms VADA in Active DA scenario’s

(demonstrated in Fig. 10, with additional analysis in Sec. 5

of supplementary material).
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