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Abstract

With wide applications of image editing tools, forged im-
ages (splicing, copy-move, removal and etc.) have been
becoming great public concerns. Although existing im-
age forgery localization methods could achieve fairly good
results on several public datasets, most of them perform
poorly when the forged images are JPEG compressed as
they are usually done in social networks. To tackle this
issue, in this paper, a self-supervised domain adapta-
tion network, which is composed of a backbone network
with Siamese architecture and a compression approxima-
tion network (ComNet), is proposed for JPEG-resistant
image forgery localization. To improve the performance
against JPEG compression, ComNet is customized to ap-
proximate the JPEG compression operation through self-
supervised learning, generating JPEG-agent images with
general JPEG compression characteristics. The backbone
network is then trained with domain adaptation strategy to
localize the tampering boundary and region, and alleviate
the domain shift between uncompressed and JPEG-agent
images. Extensive experimental results on several public
datasets show that the proposed method outperforms or ri-
vals to other state-of-the-art methods in image forgery lo-
calization, especially for JPEG compression with unknown
QFs.

1. Introduction
For image forgery forensics, a fundamental task con-

sists in precisely localizing the forged regions, which is
more challenging with the presence of post-processing
operations, such as filtering, resampling and compres-
sion. Among these content-preserving manipulations,
JPEG compression are most widely used in social networks
to reduce transmission bandwidth or storage space. The
subtle tampering artifacts, however, would be eliminated af-
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Figure 1. The architecture of the self-supervised domain adap-
tation network, which is composed of a backbone network with
Siamese architecture and a compression approximation network.

ter strong JPEG compression, degrading the performance of
forgery forensic methods. On the other hand, the variety of
image tampering manipulations, e.g., splicing, copy-move,
removal and etc., also seriously influences the generaliza-
tion capability of forensic methods to unseen forgeries.

Typically, conventional hand-crafted feature based meth-
ods rely on the hypothesis of a specific manipulation ar-
tifact, and aim to expose the forgeries by exploring local
inconsistencies of color filter array (CFA) [14, 30], photo-
response non-uniformity noise (PRNU) [23, 8], JPEG
blocking artifacts [35, 19], texture units [25, 18], illumi-
nation [12, 6] and steganography-based local descriptors
[32, 10, 22]. Alternatively, most of the state-of-the-art im-
age forgery forensic methods [29, 27, 4, 34, 11, 24] re-
sort to deep learning technique due to its powerful fea-
ture representation capability. Taking advantages of mas-
sive training samples with multiple forgeries, these deep
learning based methods are able to perform much better in
image forgery localization than the conventional ones. On
the other hand, to achieve better robustness performance
against JPEG compression, deep learning based methods
commonly train the network models with targeted data aug-
mentation strategy with tampered JPEG images of various
quality factors (QFs). This, however, manifests deficiency

15034



in the following aspects: 1) undermining the boundary tran-
sition to some extents, which correspond to the high fre-
quency components discarded by JPEG compression, there-
fore, increasing the difficulty to capture intrinsic feature
representations of forgery manipulations; and 2) demand-
ing diverse JPEG samples to relieve the mismatch of JPEG
compression adopted between training and testing stages.
These two issues degrade the performance of deep learning
based method when conducting data augmentation in terms
of JPEG compression, especially in the case of small train-
ing set.

In this paper, a self-supervised domain adaptation net-
work, which is composed of a backbone network and a com-
pression approximation network (ComNet), is proposed for
JPEG-resistant image forgery localization as illustrated in
Figure 1. The key idea consists in customizing the ComNet
to approximate the JPEG compression operation through
a self-supervised learning task, generating JPEG-agent im-
ages with more generalizable JPEG compression character-
istics. Incorporated with ComNet, the backbone network
with Siamese architecture is trained through domain adap-
tation strategy to improve performance against JPEG com-
pression. The main contributions of this paper are summa-
rized as follows:

• A conditional random field (CRF) based attention
module is proposed to highlight the transition bound-
ary of forged region. Unlike the simplified CRF model
in [9] which is implemented with single spatial ker-
nel and recursive convolution, we construct a standard
CRF to better characterize local pattern correlation and
implement only one iteration of mean field approxima-
tion [21] for CRF inference.

• An encoder-decoder based ComNet is proposed to ap-
proximate the JPEG compression operation through a
self-supervised learning task, generating JPEG-agent
images with general JPEG compression characteris-
tics.

• In order to improve the performance against JPEG
compression, domain adaptation strategy is applied
to alleviate the domain shift between source (uncom-
pressed images) and target (JPEG-agent images).

2. Related Works
2.1. Hand-crafted Feature Based Approaches

Conventional hand-crafted feature based approaches
usually reveal the statistical dependency among pixels by
modelling natural images, and capture the statistical de-
viation due to image tampering operations based on this
statistical model. For example, in [38], a 2-D noncausal
Markov model was proposed to characterize the underly-

ing relationship of adjacent pixels for image forgery detec-
tion. In [32, 10], the spatial rich model (SRM) [15], which
is widely used in image steganalysis, was generalized to
extract residual-based feature for image forgery detection
and localization through the support vector machine (SVM)
classifier and multidimensional Gaussian model. Later, Li
et al. [22] improved [32] by taking advantage of the possi-
bility maps obtained with the statistical feature-based and
copy-move detectors, where the spatial color rich model
(SCRM) [16] was incorporated for splicing and erasing de-
tection. On the other hand, tampering operations may in-
evitably induce the variations of visual elements in images,
which can be effectively captured by local image descrip-
tors for forgery detection. In this context, [6] combined the
statistical characteristics extracted by various local descrip-
tors which explore texture, illumination, shape and color
features to detect the distortions caused by image splicing.

2.2. Deep Learning Based Approaches

Unlike the arduous process of feature engineering to con-
struct the hand-crafted features in conventional approaches,
deep learning based approaches can directly learn and op-
timize the feature representations for forgery forensics. In
[26], a new initialization strategy was proposed to force the
convolutional layer to learn residual features for forgery de-
tection. As an extension of [26], [27] proposed an improved
initialization strategy and adopted a Siamese network for
splicing detection and localization. Siamese network was
also utilized in Noiseprint [11] to capture camera model ar-
tifacts based on noise residual for forgery localization. Sim-
ilarly, a CNN-based forensic similarity network [24] is pro-
posed to determine whether a pair of image patches con-
tains the same or different forensic traces, i.e., the source
camera model and processing history. In general, all the
above methods conduct forgery localization on a block-
by-block basis, which is hard to generate fine-grained re-
sults. To tackle this issue, the network models perform well
in semantic segmentation are generalized to conduct pixel-
wise classification for forgery localization. In [29], a multi-
task fully convolutional network (MFCN) was trained with
ground truths of forged regions and boundaries for forgery
localization. More recently, in [4], based on resampling
and spatial features, a hybrid LSTM and encoder-decoder
network was proposed for pixel-wise forgery localization,
where the LSTM is utilized to capture the inconsistency in
transitions between fake and authentic patches. ManTra-
Net [34] formulated the forgery localization problem as lo-
cal anomaly detection, and captured general image manipu-
lation traces through a self-supervised learning task for clas-
sifying multiple manipulation types. In terms of data aug-
mentation, in [39], a manipulated image generation process
based on generative adversarial network (GAN) was pro-
posed to produce tampered images through blending tam-
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Figure 2. Architecture of the backbone network with the improved
CRF-based attention module. The structure of each residual unit
(Res) is shown in the dotted box, where each convolutional layer
(Conv) is followed by a batch normalization layer and a ReLU ac-
tivation function. The sizes of convolution kernels are denoted in
Conv RGB, Conv SRM and each Conv. c©, ⊕ and ⊗ represent
concatenation, element-wise summation and element-wise multi-
plication, respectively. The size of output feature maps in each Res
is specified as: height×width×channel. Res 3 and Res 5 adopt
kernels of stride 2 to perform downsampling.

pered regions in existing datasets.

3. Self-supervised Domain Adaptation Net-
work

In this Section, we elaborate three key designs of the
proposed self-supervised domain adaptation network in-
cluding: 1) backbone network; 2) compression approxi-
mation network (ComNet); and 3) domain adaptation strat-
egy. As illustrated in Figure 1, the backbone network fol-
lows the Siamese network architecture, which consists of
two parallel sub-networks with shared parameters. The un-
compressed images and JPEG-agent images generated with
ComNet constitute the source and target domains, respec-
tively.

3.1. Backbone Network

The architecture of the sub-network is illustrated in Fig-
ure 2. In specific, to capture more tampering artifacts
in spatial and residual domain, two parallel convolutional
layers are adopted to extract dual-domain features, where
the initialization strategy [26] is applied to the kernels in
Conv SRM. The next eight residual modules [17] are used
to extract the hierarchical features at different scales, fol-
lowed by an attention module to highlight the boundary of
forged regions. Inspired by [9] which casts the CRF as
attention model (CRF-Att) for characterizing local pattern
correlation, we propose an improved CRF-based attention
module (ICRF-Att) which incorporates with the differen-
tiable implementation of mean field approximation (MFA)
[21] to more fully exploits the local pattern correlation with
three spatial kernels and only one iteration of MFA for re-
ducing the computational cost.

We cast the attention map as a two-class problem. De-
note xi the random variable associated to pixel i in the atten-

Input image Edge ground truth ICRF-Att CRF-Att

Figure 3. Samples of the generated attention maps. From left
to right, each column shows the forged images, ground truths
of forged boundary, attention maps generated with ICRF-Att and
CRF-Att, respectively.

tion map, and the domain of xi is a set of labels L = {0, 1},
where xi = 1 and xi = 0 represent the forged and authentic
pixels, respectively. Let x = {x1, x2, · · · , xN} be a set of
label assignments, where N is the number of pixels. To ob-
tain the optimal x, we minimize the energy function E(x)
in the fully connected CRF model [21] as follows:

Min
xi

E(x) = Min
xi

(
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj)), (1)

where ψu is the unary potential that measures the cost
of per-pixel label assignment. ψu is typically defined as
ψu(xi) = −ln(p(xi)), where p(xi) represents the probabil-
ity of taking label xi at pixel i. ψp is the pairwise potential
that measures the penalty of assigning labels xi, xj to pixels
i, j simultaneously.

Due to the optimization of Eq. 1 needs to estimate the
exact Gibbs distribution of x, which is intractable in prac-
tice, MFA is adopted to model a simpler distribution Q(x),
where Q(x) can be expressed as a product of indepen-
dent marginal distributions, i.e., Q(x) =

∏
iQi(xi). Each

Qi(xi) is the variable we need to estimate, indicating the
probability for assigning label xi to pixel i. Qi(xi = l)
(l ∈ L) is then computed iteratively with the update equa-
tion in MFA as follows:

Qi(xi = l) =
1

Zi
exp(−ψu(xi)

−
∑
l′∈L

µ(l, l′)

K∑
m=1

w(m)
∑
j 6=i

k(m)(fi,fj)Qj(l
′)),

(2)

where k(fi,fj) represents the Gaussian kernel applied on
the feature vectors fi and fj corresponding to pixels i and
j. µ(., .) is the label compatibility function that captures
the compatibility between different pairs of labels. De-
note as F the input feature map of size 64×64×240, and
M = Q(x = l) the attention map of size 64×64×2, where
each channel represents the probability of forgery and au-
thenticity, respectively. M is generated by implementing
Eq. 2 as follows:

ψu = ln(σ(F ∗wu)), (3)
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Figure 4. Architecture of the compression approximation net-
work. The sizes of output feature maps for each convolution layer
(conv-layer) and deconvolution layer (deconv-layer) is specified
as: height×width×channel.

M = softmax(ψu− lin(w3 ∗ lin(w2 ∗ lin(w1 ∗ψu)))), (4)

where wu, w1, w2 and w3 are convolution kernels of sizes
240×3×3×2, 2×5×5×8, 8×1×1×2 and 2×1×1×2, re-
spectively. ∗ represents convolution operation. In this way,
wu summarizes the information in F across channels to
generate ψu of size 64×64×2. w1 implements the mes-
sage passing process in MFA, extracting local patterns in
a 5×5 region through 8 filters. w2 generates the weighted
sum of the filter outputs, and w3 learns the label compat-
ibility function. In additon, σ(x) = 1/(1 + exp(−x)),
lin(x) = x + b and softmax(·) represent sigmoid, linear
activation with bias b and channel-wise softmax functions,
respectively.

Denoted as M0 the first channel of M , due to training
with edge ground truth for the attention module, element
intensities surrounding forged boundaries are expected to
be larger in M0, representing higher probability of being
forged. M0 is then applied to refine F , leading to the
attention-aware feature H as follows:

Hc = Fc ⊗ (1 +M0), (5)

where c is the index of feature channel and ⊗ represents
element-wise multiplication. Finally, taking as input H ,
atrous spatial pyramid pooling (ASPP) [7] is used to ex-
ploit multi-scale features to generate the fine-grained local-
ization result. To illustrate the superiority of ICRF-Att, we
visualize M0 as shown in Figure 3. Due to better exploit-
ing local correlation, ICRF-Att more accurately delineates
the forged boundaries with rare false alarms comparing with
CRF-Att. In terms of efficiency, ICRF-Att could decrease
by two convolution operations per forward pass compared
with CRF-Att.

3.2. Compression Approximation Network

To improve the performance against JPEG compression,
we intend to construct a kind of JPEG-agent images with
general JPEG compression characteristics rather than those
related to a specific quality factor (QF). To this end, we

propose a compression approximation network, i.e., Com-
Net, to approximate the JPEG compression operation, irre-
spective of QF. This can be effectively learned from a self-
supervised learning task. In specific, as illustrated in Figure
4, based on the encoder-decoder network with skip connec-
tions [28] between mirrored layers, ComNet generates the
JPEG-agent image Ia from input uncompressed image I .
Note that I is a forged image without JPEG compression,
instead of an authentic one. The target image, i.e., real
JPEG image Ic, is compressed from I with a random QF
using a standard JPEG compression algorithm. According
to our experiment, L2 loss is less robust to outliers than L1

loss. Therefore, ComNet is then trained through minimiz-
ing L1 loss between Ia and Ic as follows:

Lcom =
1

N

N∑
i=1

|Iai − Ici |, (6)

where i is the index of pixel and N is the number of pix-
els. By incorporating with JPEG features involving multiple
QFs, the generated Ia with ComNet, i.e., the JPEG-agent
image, is expected to exhibit more general JPEG compres-
sion characteristics than the real JPEG image itself, which
is also able to generalize to JPEG images with unseen QFs.

3.3. Domain Adaptation Strategy

To perform JPEG-resistant image forgery localization,
instead of directly mixing the training set with JPEG or
JPEG-agent samples, domain adaptation [5] strategy is ap-
plied to the source and target domains, corresponding to the
uncompressed and JPEG-agent images, respectively. Do-
main adaptation facilitates to capture intrinsic tampering ar-
tifacts in source domain, and simultaneously achieve bet-
ter generalization ability to JPEG compression in target do-
main. The backbone network is trained with a combination
of three losses: 1) region loss (Lr) for performing pixel-
wise classification; 2) edge loss (Le) for generating the at-
tention map of forged boundary; and 3) domain loss (Ld)
for reducing domain shift and transferring effective knowl-
edge from source to target domain. Note that Lr and Le are
only computed within source domain. Denote as H and Ha

the attention-aware features in Eq. 5 extracted from uncom-
pressed and JPEG-agent images, respectively, the involved
losses are computed as follows:

Ld =
1

N

N∑
i=1

||Hi −Ha
i ||22, (7)

Le = −
1

N

N∑
i=1

1∑
c=0

(ŵcŷci log(M
c
i )), (8)

Lr = − 1

N

N∑
i=1

1∑
c=0

(wcyci log(p
c
i )), (9)
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Dataset Type Num. Size Format
IFC [1] training 441 800×600 PNG

DSO-1 [6] testing 100 2048×1536 PNG
Korus [20] testing 220 1920×1080 TIFF

Coverage [33] testing 100 489×380 TIFF
CASIA1 [13] testing 946 384×256 JPEG (QF=75,95,100)
Nim.16 [3] testing 564 3561×2516 JPEG (QF=75,95,99,100)

Wild Web [36] testing 9657 390×532 JPEG (QF=24∼100)

CASIA2 [13] testing 5124 473×322 JPEG (40%, QF=95,97,100)
+TIFF (60%)

MFC18dev1 [2] testing 3886 3077×2034 JPEG (75%, QF=53∼100)
+PNG (25%)

Table 1. The datasets involved in our experiments. The second and
third columns list the number and average resolution of images,
respectively.

where i is the index of spatial position, N is the number
of elements. pc and M c represent the probabilities of class
c for the softmax output of ASPP and the attention map,
respectively. ŷ and y represent the forged edge and region
ground truths, respectively. ŵc and wc are the weights of
class c corresponding to ŷ and y for avoiding model bias,
respectively. Finally, we minimize the joint loss function as
follows:

L = Le + Lr + α · Ld, (10)

where the hyper-parameter α controls the balance between
different tasks.

4. Experimental Results and Analysis

4.1. Dataset

To better show the generalization capability, we con-
duct cross-dataset evaluation to avoid dataset-related polar-
ization on nine datasets, which are summarized in Table
1. In specific, we train the proposed approach on IEEE
Forensics Challenge [1] (IFC) dataset containing only un-
compressed images tampered with splicing and copy-move
manipulations, while test the performance on other unseen
datasets. For testing datasets, DSO-1 [6] dataset focuses on
detecting splicing images containing people. Coverage [33]
dataset is used to detect copy-move manipulation among
multiple similar-but-genuine objects. Korus [20] dataset in-
cludes realistic forged images acquired by only four cam-
eras. Wild Web dataset [36] comprises real-world splic-
ing images collected from various social media, which is
more challenging due to multiple post-processing opera-
tions, such as compression and rescaling. Other datasets
cover various forgery scenarios involving splicing, copy-
move and removal, sometimes even a series of forgery ma-
nipulations and random post-processing operations are in-
cluded in one image. Five of these datasets include JPEG
compressed images, where the involved compression oper-
ations are not made public.

4.2. Training Settings

We implement the proposed network in TensorFlow. The
backbone network and ComNet are trained with the forged
images (PNG format) on IFC dataset. We draw uncom-
pressed patches I of size 256×256×3 which include 20% to
80% forged pixels, leading to 35,000 samples. For the Com-
Net, target JPEG patches (Ic) is compressed from I through
Matlab API function, using random QFs (QF=55, 65, 75,
85, 95 and 100). Firstly, we train the ComNet with Adam
optimizer, setting mini-batch size to 64. Taking as input
I , the pre-trained ComNet model generates the JPEG-agent
counterparts Ia. The backbone network is then trained with
I and Ia based on SGD optimization with a momentum
value of 0.9. For both network models, the initial learning
rates are set to 0.01 with 10% of decrement every 10 epochs,
and the weight decays are fixed to 6×10−3 during training
stages. Hyper-parameter α in (10) is set to 1. The optimal
α is derived from training data, where α = 1 achieves the
best performance among other settings.

4.3. Ablation Study

Before proceeding to comparative experiments, we con-
duct ablation study to investigate the effectiveness of the
involved components in our proposed network, i.e., the pro-
posed attention module (ICRF-Att), JPEG-agent image (Ia)
and domain adaptation (DA) strategy as shown in Table 2.
The localization performance is compared on Nim.16 [3],
DSO-1 and Wild Web datasets in terms of F1-score (F1) and
Matthews Correlation Coefficient (MCC) which are gener-
ally used in the previous studies.
ICRF-Att. It is ready to see that the network incorporated
with ICRF-Att consistently outperforms those without at-
tention model and with CRF-Att [9] by a clear margin.
JPEG-agent image (Ia). The network trained with the un-
compressed images (I) and Ia outperforms the one trained
with I and the real JPEG images (Ic), however, it turns out
to be unsatisfactory compared with the one training on I
only. This indicates that improper data augmentation pre-
vents the network from extracting more intrinsic feature
representation for forgery localization.
Domain adaptation (DA) strategy. By adopting DA be-
tween the source domain I and target domain Ic (DA-Ic

for short) or souce domain I and target domain Ia (DA-
Ia for short), a consistent performance gain is achieved in
comparison with the network trained on the same dataset
without DA. This is due to DA facilitates transferring prior
knowledge of capturing tampering artifacts from I to Ic or
Ia. Taking advantage of DA, DA-Ia outperforms DA-Ic by
3.2%, 2.7% and 1.4% in terms of MCC on Nim.16, DSO-
1 and Wild Web datasets, respectively, indicating more
general JPEG compression characteristics embedded in the
JPEG-agent image Ia. In addition, we compare the L2 do-
main loss with the ones computed via L1 (Ld L1) and maxi-

15038



Attention
model

CRF-Att [9] X
ICRF-Att X X X X X X X

W/o attention X

Training
data

Uncompressed image (I) X X X X X X X X X
JPEG-agent image (Ia) X X X X
Real JPEG image (Ic) X X

Domain
adaptation

(DA)

L2 loss X X
L1 loss X

MMD loss X
W/o DA X X X X X

Nim. 16
dataset

MCC 0.254 0.285 0.351 0.256 0.333 0.359 0.391 0.362 0.372
F1 0.295 0.315 0.378 0.287 0.362 0.387 0.416 0.387 0.396

DSO-1
dataset

MCC 0.712 0.742 0.805 0.590 0.774 0.795 0.822 0.792 0.824
F1 0.743 0.767 0.826 0.642 0.801 0.794 0.842 0.816 0.841

Wild Web
dataset

MCC 0.184 0.201 0.210 0.194 0.204 0.204 0.218 0.212 0.213
F1 0.222 0.239 0.249 0.246 0.249 0.252 0.264 0.254 0.257

Table 2. The localization performance comparisons for ablation study.

(a) (b) (c) (d)

Figure 5. Visualization of features extracted from JPEG compressed patches with different quality factors (QFs) through the network
models DA-Ia with JPEG-agent images ((a) and (c)) and DA-Ic with real JPEG images ((b) and (d)), respectively. Overlap represents the
overlapping feature points where the Euclidean distance between them is smaller than 0.4. The patches compressed with QF=65,70 and
QF=75,80 share the same original patches, respectively.

mum mean discrepancy (MMD) [31] (Ld M ) loss functions
as follows:

Ld L1 =
1

N

N∑
i=1

|Hi −Ha
i |, (11)

Ld M =
1

N

N∑
i=1

|| 1
Ns

Ns∑
j=1

Hi,j −
1

Nt

Nt∑
j=1

Ha
i,j ||22, (12)

where Ns and Nt represent the numbers of I and Ia within
a mini-batch, respectively, and other variables take the same
notations in Eq. 7. It is observed that L2 loss achieves the
best performance, which is more effective to alleviate the
domain shift for the proposed network.

To further demonstrate the generalization ability of the
proposed network, we compare the feature distributions of
patches (extracted from IFC dataset) compressed with dif-
ferent QFs for DA-Ia and DA-Ic, including seen (QF=65,
75) and unseen (QF=70, 80) QFs in the training set. In spe-
cific, among the Ic used to train the ComNet, we select two
groups of JPEG compressed forgery patches, where each
group consists of 2,000 patches compressed with QF65 and

QF75, respectively. We compress the corresponding orig-
inal patches of each group with QF70 and QF80, respec-
tively. For each QF, the extracted attention-aware features
H in Eq. 5 is projected to a 2-D space for visualization as
shown in Figure 5. We then show the isolated feature points
for each QF, and highlight the overlapping points if two fea-
ture points (i.e., two patches compressed with different QFs
from the same uncompressed patch) are overlapped, which
means the Euclidean distance is smaller than a threshold τ .
Considering that τ in [0.1, 0.7] gives similar results, we take
the median, i.e., τ = 0.4 as the threshold. It is observed that
much more overlapping points are achieved with the net-
work model DA-Ia than DA-Ic, indicating less deviation
of the extracted features between different QFs. Therefore,
the effect of QFs is largely suppressed when adapting to the
target domain of Ia, leading to better generalization ability
to the compression operations of unseen QFs.

4.4. Comparisons With Other State-of-the-art
Methods

To comprehensively evaluate the superiority of our
method, as illustrated in Table 3, 4 and 5, we compare it
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Dataset DSO-1 Coverage Korus CASIA1 CASIA2 Nim.16 MFC18dev1 AVERAGE
CAGI [19] 0.490 (5) 0.266 (8) 0.202 (9) 0.248 (7) 0.222 (5) 0.279 (4) 0.250 (4) 0.280 (6)
CFA1 [14] 0.155 (11) 0.142 (11) 0.365 (2) 0.119 (11) 0.106 (11) 0.157 (10) 0.109 (11) 0.165 (11)
NOI5 [37] 0.409 (7) 0.291 (7) 0.234 (7) 0.258 (4) 0.204 (6) 0.227 (7) 0.220 (5) 0.263 (8)
ITPM [22] 0.721 (4) 0.534 (1) 0.312 (5) 0.251 (6) 0.197 (7) 0.259 (5) 0.202 (6) 0.354 (4)
MFCN [29] 0.213 (10) 0.212 (10) 0.162 (10) 0.215 (8) 0.180 (9) 0.143 (11) 0.130 (10) 0.179 (10)
HLED [4] 0.227 (9) 0.251 (9) 0.221 (8) 0.182 (10) 0.154 (10) 0.219 (8) 0.185 (8) 0.206 (9)
DLLD [27] 0.486 (6) 0.336 (4) 0.156 (11) 0.256 (5) 0.184 (8) 0.257 (6) 0.199 (7) 0.268 (7)

ManTra-Net [34] 0.374 (8) 0.440 (3) 0.242 (6) 0.297 (1) 0.268 (2) 0.165 (9) 0.176 (9) 0.280 (5)
FS [24] 0.763 (2) 0.299 (6) 0.366 (1) 0.267 (3) 0.254 (3) 0.361 (3) 0.314 (3) 0.375 (2)

Noiseprint [11] 0.758 (3) 0.306 (5) 0.345 (3) 0.205 (9) 0.237 (4) 0.387 (2) 0.341 (1) 0.368 (3)
Proposed 0.822 (1) 0.493 (2) 0.318 (4) 0.282 (2) 0.311 (1) 0.391 (1) 0.328 (2) 0.421 (1)

Table 3. The localization performance comparisons of the propose method with other state-of-the-art methods in terms of MCC.

Dataset DSO-1 Coverage Korus CASIA1 CASIA2 Nim.16 MFC18dev1 AVERAGE
CAGI [19] 0.539 (5) 0.307 (8) 0.184 (9) 0.248 (5) 0.226 (5) 0.300 (4) 0.281 (4) 0.298 (6)
CFA1 [14] 0.290 (11) 0.223 (11) 0.363 (1) 0.157 (11) 0.154 (11) 0.158 (11) 0.191 (11) 0.219 (11)
NOI5 [37] 0.463 (8) 0.330 (5) 0.222 (7) 0.264 (3) 0.204 (7) 0.226 (8) 0.254 (6) 0.280 (7)
ITPM [22] 0.752 (4) 0.553 (1) 0.301 (5) 0.208 (7) 0.195 (8) 0.295 (5) 0.263 (5) 0.367 (4)
MFCN [29] 0.331 (10) 0.263 (10) 0.168 (10) 0.224 (6) 0.205 (6) 0.193 (10) 0.211 (10) 0.228 (10)
HLED [4] 0.339 (9) 0.303 (9) 0.218 (8) 0.200 (9) 0.187 (10) 0.245 (7) 0.240 (8) 0.247 (9)
DLLD [27] 0.535 (6) 0.312 (7) 0.137 (11) 0.252 (4) 0.188 (9) 0.265 (6) 0.222 (9) 0.273 (8)

ManTra-Net [34] 0.469 (7) 0.484 (3) 0.257 (6) 0.316 (1) 0.305 (2) 0.213 (9) 0.253 (7) 0.328 (5)
FS [24] 0.785 (2) 0.317 (6) 0.333 (3) 0.193 (10) 0.237 (3) 0.361 (3) 0.345 (3) 0.367 (3)

Noiseprint [11] 0.780 (3) 0.334 (4) 0.350 (2) 0.204 (8) 0.237 (3) 0.395 (2) 0.373 (1) 0.382 (2)
Proposed 0.842 (1) 0.516 (2) 0.327 (4) 0.275 (2) 0.331 (1) 0.416 (1) 0.359 (2) 0.438 (1)

Table 4. The localization performance comparisons of the propose method with other state-of-the-art methods in terms of F1.

with various state-of-the-art methods in terms of F1, MCC
and average precision (AP, i.e, the area under the precision-
recall curve), and also compute the average performance
over all datasets in the last column and the corresponding
rank of each method on each dataset in parenthesis. These
competing methods which can be divided into 1) the tradi-
tional hand-crafted feature based and 2) deep learning based
methods, are able to localize general image forgery ma-
nipulations. The former includes CAGI [19], CFA1 [14],
NOI5 [37] and ITPM [22], exploiting features based on
JPEG, CFA, noise level artifacts and the combination of
SCRM [16] and the patch matching detector, respectively.
The latter includes MFCN [29], HLED [4] and ManTra-
Net [34] which generalizes networks used in semantic seg-
mentation to perform pixel-wise forgery localization, and
DLLD [27], Forensic Similarity (FS) [24] and Noiseprint
[11] which capture statistical inconsistency through resid-
ual based and camera model based features. For FS, we
report the results of 10 times of repeated tests, where we
randomly select a reference patch each time. In the interest
of a fair comparison, except for the unsupervised methods
(CAGI, CFA1 and NOI5), FS, Noiseprint and ManTra-Net
are tested with their released pre-trained models, and all the
remaining data-driven methods are fine-tuned on the same
dataset as our method.

It is observed that our proposed method always ranks
the top two on each dataset, except for Korus [20] dataset,
where comparable performance is also achieved. Korus

dataset includes raw images acquired by only four spe-
cific camera models, which are not included in our training
set. While those deep learning based methods, whose per-
formances are superior to our proposed method on Korus
dataset, e.g., Noiseprint and FS, all take advantage of the
camera model based features. It is noted that our method
outperforms Noiseprint and FS by a clear margin on Cov-
erage (TIFF images), and CASIA1 (JPEG images) and CA-
SIA2 (JPEG+TIFF images) datasets. Comparing with the
others, these datasets involve relatively small-sized images
with average sizes of 489×380, 384×256 and 473×322
pixels, respectively. Such low resolution images tend to be
difficult to be detected by Noiseprint due to the extracted
features within an image are too scarce to allow correct clus-
tering by the expectation-maximization (EM) algorithm in
Noiseprint. For small-sized images, FS could not generate
fine-grained results due to the sliding-window size is fixed
to 128×128 or 256×256 pixels. Our method performs bet-
ter on CASIA2 than CASIA1 datasets, because CASIA2 in-
cludes 60% uncompressed images which are easier to be
detected. For JPEG compressed images, Noiseprint de-
ploys 46 networks, each of which is trained with JPEG im-
ages of a specific QF (QF55-QF100). In contrast, the pro-
posed method is trained through a single Siamese network
with uncompressed and JPEG-agent images, which greatly
reduces the computational cost. In general, our method
achieves the most superior average performance, outper-
forming the second best method Noiseprint by 5.3%, 5.6%
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Dataset DSO-1 Coverage Korus CASIA1 CASIA2 Nim.16 MFC18dev1 AVERAGE
CAGI [19] 0.517 (5) 0.216 (7) 0.131 (9) 0.170 (6) 0.185 (6) 0.272 (4) 0.263 (4) 0.251 (6)
CFA1 [14] 0.236 (11) 0.150 (1) 0.318 (1) 0.102 (11) 0.111 (11) 0.116 (11) 0.154 (11) 0.170 (11)
NOI5 [37] 0.384 (8) 0.241 (5) 0.164 (8) 0.205 (4) 0.159 (8) 0.227 (6) 0.238 (5) 0.231 (7)
ITPM [22] 0.764 (3) 0.510 (1) 0.238 (5) 0.314 (1) 0.292 (2) 0.228 (5) 0.221 (6) 0.330 (2)
MFCN [29] 0.280 (9) 0.171 (10) 0.127 (10) 0.164 (7) 0.166 (7) 0.140 (10) 0.166 (10) 0.173 (10)
HLED [4] 0.256 (10) 0.229 (6) 0.167 (7) 0.132 (8) 0.141 (9) 0.194 (8) 0.192 (8) 0.187 (9)
DLLD [27] 0.456 (6) 0.200 (9) 0.082 (11) 0.177 (5) 0.136 (10) 0.213 (7) 0.170 (9) 0.205 (8)

ManTra-Net [34] 0.432 (7) 0.463 (3) 0.210 (6) 0.271 (2) 0.266 (3) 0.161 (9) 0.211 (7) 0.288 (5)
FS [24] 0.799 (2) 0.206 (8) 0.278 (3) 0.128 (9) 0.187 (5) 0.319 (3) 0.304 (3) 0.317 (4)

Noiseprint [11] 0.728 (4) 0.247 (4) 0.288 (2) 0.128 (9) 0.195 (4) 0.332 (2) 0.335 (1) 0.322 (3)
Proposed 0.851 (1) 0.489 (2) 0.268 (4) 0.242 (3) 0.302 (1) 0.381 (1) 0.323 (2) 0.408 (1)

Table 5. The localization performance comparisons of the propose method with other state-of-the-art methods in terms of AP.
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Figure 6. Forgery localization results on testing datasets. From top
to bottom, each row shows the forged image, ground truth and heat
maps from the competing methods: the proposed one, Noiseprint,
FS, ITPM, ManTra-Net and CAGI. The black and white pixels
in a ground truth correspond to the forged and authentic pixels,
respectively.

and 8.6% in terms of MCC, F1 and AP, respectively. Fi-
nally, we compare the qualitative localization results of tam-
pering heat maps among the best six methods in terms of
average performance on all testing datasets in Figure 6, il-
lustrating the cases where we can more precisely localize
the forged regions.

4.5. Robustness on Extreme Compression Scenarios

To further verify the robustness performance of our
method against JPEG compression, we compare the perfor-
mance on extreme compression scenarios. Considering that
images are usually compressed with QF≥70 in most social
networks, e.g., Facebook (QF=71) and Wechat (QF=70),
QF<70 can be regarded as the extreme compression scenar-
ios in real-world cases. We compare our method with the

Dataset Korus Nim. 16
Quality QF=70 QF=60 QF=50 QF=70 QF=60 QF=50

ManTra-Net [34] 0.160 0.155 0.148 0.178 0.175 0.171
FS [24] 0.196 0.180 0.173 0.243 0.241 0.238

Noiseprint [11] 0.187 0.177 0.178 0.283 0.280 0.275
Proposed 0.221 0.212 0.208 0.317 0.299 0.280

Table 6. Robustness performance against JPEG compression in
terms of F1 score.

top-3 deep learning based methods (ManTra-Net, FS and
Noiseprint) in terms of F1 on Korus and Nim.16 datasets,
where the images are compressed with QF=50, 60, 70. As
illustrated in Table 6, our method still achieves the best ro-
bustness performance against JPEG compression with the
tested QFs.

5. Conclusion

In this paper, a self-supervised domain adaptation net-
work, which incorporates a backbone network with a com-
pression approximation network (ComNet), is proposed for
JPEG-resistant image forgery localization. Instead of data
augmentation with various real JPEG compressed images,
we generate JPEG-agent images through ComNet which
is trained with self-supervised learning to approximate the
JPEG compression operation. The JPEG-agent images ex-
hibit more generalizable characteristics of JPEG compres-
sion, and are applied to domain adaptation strategy for alle-
viating the domain shift between uncompressed and JPEG-
agent images, leading to better robustness performance
against JPEG compression. Extensive experiments are car-
ried out on several public datasets, which demonstrates the
superior generalization ability of the proposed method over
other state-of-the-art methods.
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