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Abstract

Visual storytelling and story comprehension are uniquely
human skills that play a central role in how we learn about
and experience the world. Despite remarkable progress in
recent years in synthesis of visual and textual content in
isolation and learning effective joint visual-linguistic rep-
resentations, existing systems still operate only at a super-
ficial, factual level. With the goal of developing systems
that are able to comprehend rich human-generated narra-
tives, and co-create new stories, we introduce AESOP: a
new dataset that captures the creative process associated
with visual storytelling. Visual panels are composed of clip-
art objects with specific attributes enabling a broad range
of creative expression. Using AESOP, we propose foun-
dational storytelling tasks that are generative variants of
story cloze tests, to better measure the creative and causal
reasoning ability required for visual storytelling. We fur-
ther develop a generalized story completion framework that
models stories as the co-evolution of visual and textual con-
cepts. We benchmark the proposed approach with human
baselines and evaluate using comprehensive qualitative and
quantitative metrics. Our results highlight key insights re-
lated to the dataset, modelling and evaluation of visual sto-
rytelling for future research in this promising field of study.

1. Introduction
“Examples are the best precept” – Aesop, The Two Crabs

Storytelling is integral to human experience. Starting
from when we are very young, stories help shape our un-
derstanding of the world around us, and the people that in-
habit it. Through stories, we encode a wide range of shared
knowledge, including common sense physics, cause and ef-
fect, human psychology, and morality [52]. Storytelling and
story comprehension are closely linked in that both involve
the construction of rich mental models, comprising scenes,

*A portion of this work was done during Hareesh Ravi’s internship at
Adobe Research.

inanimate objects and their properties, as well as characters
and their intentions [36]. Consequently, stories are crucial
to mental development in humans. We postulate that ma-
chine intelligence requires comparable skills, particularly
when interacting with people.

Though there have been some works on understanding
and modelling natural language stories [55, 57, 68], there
is limited work on aligning stories with the visual world
[33, 34]. When there is no visual information available
as part of a story, such as in novels, people still inher-
ently visualize the events in real-time to disambiguate de-
tails and make inferences about the story [95] with ease.
Humans draw upon deep world knowledge, grounded in
visual-linguistic stories and experience that we’ve accumu-
lated from a young age. Therefore, it is likely worthwhile
to similarly ground machine comprehension and synthesis
of stories in the visual world.

Much of the current work on joint understanding of vi-
sion and language hinges on learning to describe factual in-
formation about objects and scenes in an image. Particu-
larly, the text, and benchmarks associated with images in
popular datasets such as MSCOCO [47], Flickr [87] and Vi-
sual Genome [42] focus on superficial factual descriptions,
rather than a narrative. Moreover, the few existing visual
story datasets [33, 30] lack coherence and diversity [64] that
are key to a good story. Also, these datasets assume visual
storytelling as a perceptive process rather than a creative
process. For example, in [33], crowd workers wrote natural
language stories given a sequence of images from photo al-
bums. Such a process leads to superficial and disjoint stories
[3, 34] that focus on connecting text to image rather than on
forming a coherent narrative. The limitation of such a pro-
cess is evident when people are shown the story panels in
random order. For over a third of the stories in [33], hu-
man observers are unable to find the “true” order of events,
calling into question the value of such datasets for studying
stories. Another limitation is that the task is to generate text
for a sequence of given images, with story writers having no
control over the visual input. Consequently, a trained model
is required only to produce a “feasible” text for a given im-
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Elaine was worried that John didn’t eat healthy. "John, would
you like an apple instead? Maybe you should schedule a
physical” she said. John told her to mind her own business

That night John had a heartache on the living room. Elaine
called an ambulance and John had to stay in the hospital for
many days. He finally was well enough to come home.

John and Elaine bought bikes and ate lunch at the park
sometimes. John discovered apples weren't too bad and
Elaine was happy John was taking better care of them both.

Heartfelt Advice 
(Themes: sad, drama, moral)

Figure 1. Example story from our AESOP dataset with title and genres. The narrative is interesting, coherent and follows a clear causal arc
with introduction and a moral at the end. The visual depiction of the story, including the changes in the expression of the characters, shows
clear coherence and supports the narrative.

age sequence. The converse task, to generate visual input
that would match the given text story, is markedly absent in
the literature. Though some recent works developed tech-
niques for generating visual input from text [41, 73, 61] they
still focus on factual information extraction rather than nar-
rative understanding.

In this paper, we propose AESOP: a novel dataset that
captures the creative process associated with visual story-
telling. An example story from our dataset is shown in Fig-
ure 1. To ensure stories are diverse and creative, we ask
workers to create both the visual and textual parts of the
story simultaneously from scratch. Inspired by [94, 73], our
dataset employs abstract visual scenes, with a broad set of
choices for objects and attributes needed for visual story-
telling. Examples of the wide range of stories created from
this diverse, yet finite palette, appear in supplementary ma-
terials.

Current visual storytelling research has dealt with tasks
such as storytelling, generation [30, 33] and illustration [64]
or cloze tasks in [34] that primarily focus on cross–modal
retrieval or generation. We discuss the limitations of such
tasks and propose alternate tasks on AESOP that measure
a system’s ability to comprehend and create stories from
a true multimodal perspective requiring the perception and
creation of both visual and textual modalities, that is absent
in existing literature. The objective is for a system to be a
creative assistant, by either autonomously or interactively
assisting in creative processes like storytelling with visual,
linguistic and narrative reasoning abilities.

Our contributions are as follows:
(1) AESOP,1 a novel abstract visual storytelling dataset

that captures the creative process associated with visual sto-
rytelling resulting in diverse, coherent and creative stories
compared to existing datasets.

(2) We propose novel story comprehension tasks on AE-
SOP that demands multimodal, abstract, creative and causal
reasoning ability from visual storytelling systems. Further,

1Reference to Aesop, the Greek Fabulist and Storyteller.

we propose a novel generalized story comprehension frame-
work that models stories in our dataset as the co-evolution
of visual and textual concepts.

(3) We quantitatively and qualitatively compare the pro-
posed method and tasks with existing baselines and mo-
tivate our design choices through comprehensive ablation
study. To the best of our knowledge, ours is the first work
to study stories by aligning abstract visual and textual con-
cepts and propose a comprehensive dataset, task and model
to study important factors that govern visual storytelling.We
will make the dataset publicly available2 to promote future
research in this promising and challenging field of study.

2. Related Works

2.1. Vision and Language Integration

There has been extensive research in multimodal data
understanding with large and comprehensive datasets [47,
87]. Modelling techniques are usually based on joint
embedding space learning [44, 23], text to image re-
trieval/generation [82, 84, 78, 61, 45] or image to text gen-
eration/retrieval [86, 5, 29, 78, 39, 51, 37] tasks. Some re-
cent works [50, 74, 16, 19] have proposed large multimodal
pretraining networks based on the Transformers [77] archi-
tecture that obtain state of the art results on more than one
specific image-text understanding task.

There has been increasing interest in modelling the sub-
jective attributes of image–text representation learning by
associating an emotion label [71], hashtags [18], person-
alization [22] and cross–modal coherence labels [2] with
image-text pairs. Other works along the same line in-
clude [91, 85]. Images are composed by clip–art objects
in [62, 73, 94, 41] where the aim is to model image–text re-
lationship from the perspective of abstract visual reasoning.

All these works focus on factual information extraction
from an image (or vice versa) using descriptive text whereas

2https://github.com/Hareesh-Ravi/AESOP
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human language and reasoning is more abstract and sub-
jective. Moreover, visual scene understanding is portrayed
as a static problem where text is used to describe a single
static image whereas Cognitive and Neuroscience literature
[60, 52, 27] suggests that visual perception is an abstract
and temporal process.

Videos provide the necessary temporal information to
model visual scene understanding. Datasets for video-
text alignment span movies [65, 13] to instructional videos
[92, 72] including large pretrained multimodal transformers
[24, 72, 53, 93, 58] for joint representation learning. Previ-
ous works on video captioning include [80, 70, 79].

Though these works address the temporal aspect of vi-
sual scene understanding, text describes the video in a fac-
tual manner rather than imitating the abstract and subjec-
tive aspects of day-to-day human discourse. Moreover,
these works primarily perform text generation conditioned
on videos or retrieve videos as a whole conditioned on the
text but do not model the co-evolution of visual and textual
modalities for scene or story creation.

2.2. Stories

Text Only: Narrative understanding has been extensively
studied in natural language [12, 67]. Some works focus
on story understanding from the perspective of learning
scripts [66] while [11, 8, 17, 59] perform unsupervised
learning of event schemas and narrative chains from sto-
ries. Recent datasets such as ROCstories [55] have accel-
erated deep learning for story comprehension research via
datasets, standardized cloze style tasks and metrics. To-
wards this, [89] proposed a hierarchical plot plus story
generator while [32] use common sense knowledge base
conceptNet for story comprehension. Similarly [76] pro-
posed a scene graph approach to story generation while
[56] extended the dataset to provide causal event annotation
to study causality in stories. Other similar works include
[14, 54, 4, 90]. Although these works have extensively stud-
ied natural language stories, visualization of the stories as a
function of a model’s ability to comprehend stories has not
been investigated provided that human communication and
perception are inherently multimodal.
Visual Storytelling: Visual Storytelling was introduced in
[33] with the VIsual StoryTelling (VIST) dataset. It con-
tains sequences of five images spanning an average of 7.9
hours obtained from flickr albums, aligned with one sen-
tence describing each image forming a story. A CNN-RNN
baseline was shown to create meaningful stories. Following
that, many works [48, 88, 81, 83, 31] addressed visual story-
telling with techniques ranging from learning a joint embed-
ding space to adversarial reward-based algorithms. There
has also been research on the more challenging story illus-
tration task proposed in [64, 15]. Following this work, [46]
proposed a GAN framework for story generation instead of

illustration, evaluated on cartoon dataset [35]. Other sim-
ilar works include [40] that aligns photo streams with text
segments of a blog while [1] formulate the problem of sort-
ing jumbled images and captions to form a coherent story
on the VIST dataset. [9] propose a variational recurrent net-
work for step wise illustration of cooking recipes.

It is shown in [64, 48, 3] that visual coherence in the
sequence of images in VIST dataset is highly variant and
sometimes non-existent considering the long average time
span between events [33]. Consequently, the stories are too
abstract with limited grounding, increasing the ambiguity
in details that could go between two consecutive images or
time instants. Also, these techniques model relationship be-
tween sentences in a story and then map each sentence to
one image as constrained by the dataset, restricting its ap-
plicability to model a general coherent narrative.

3. AESOP Dataset

AESOP is built with the following three guiding principles:
Creativity Over Perception: Treating storytelling as
merely a perceptive process limits creativity, inhibits diver-
sity and result in stories that show sup-par temporal and
causal coherence [64, 3]. In VIST, the ‘stories’ are writ-
ten given semi-randomly chosen sequences of images. In
AESOP, we ask crowd workers to create both the visual and
textual parts of a story simultaneously from scratch, giving
a lot more freedom for creative expression. We also limit
the requirements, instructions and constraints to encourage
creativity in the authors.
Causal and Coherent Narratives: Stories are at minimum
a causal sequence of events described in a coherent man-
ner. For multimodal stories, such as ours, the need for co-
herence extends beyond just text. Since the stories in AE-
SOP are created entirely from scratch instead of relying on
prompts, they also exhibit themes with narrative arcs. To
capture these, we also ask the story creators to provide each
story with a title and genre (selected from a predefined list).
Among other things, this can enable the training of models
to produce genre- and title-conditioned stories.
Constrained World Knowledge: Comprehending stories
using real-world images requires modelling the vast amount
of implicit real-world knowledge represented in the images
[21]. We seek to limit the complexity of the worlds our au-
thors can create by simplifying the visual palette available
to them. Inspired by [94, 41, 73, 62], we choose a clip–art
based scene representation to depict the stories. As outlined
in [94], usage of clip–art objects bypasses the step of ob-
ject detection, localization and instance segmentation that
would otherwise be required. Even with the visual simpli-
fications, the diversity and creativity of stories and their ac-
companying illustrations are exceptional (refer supplemen-
tary materials).
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3.1. Data Acquisition Setup

Workers from Amazon Mechanical Turk authored our
stories using a web interface that is an extension of the drag-
and-drop tool used to generate the ‘abstract scenes’ portion
of the VQA dataset [6], which is, in turn, an extension of
the tool in [94]. We extend the number of clip art primitives
from 149 to 158 and add two new backgrounds kitchen and
beach, in addition to the park and living room backgrounds.
Unchanged from [6], scenes in AESOP consist of 20 human
characters with deformable limbs representing various ages,
genders and races with 9 different possible expressions for
each, and 30 animals and birds with various fixed poses for
each animal. With our new object additions, it now includes
48 unique large objects related to outdoor and indoor scenes
including sun, cloud, sofa, TV etc. and 60 unique small
objects such as ball, cup, pizza etc. The large and small
objects can also have sub-types depending on the type of
object. In total, there are 158 unique objects that make up
the visual parts of the story. Our final tool allows choosing
and changing background, dragging objects onto the can-
vas, changing size, type, and depth of these objects and
changing limb positions of each human figure. All objects,
scenes and other configurations for our final tool are given
in detail in the supplementary materials. To ensure that the
scene can be accurately reproduced from the story, we pro-
vided fixed names for each human figure which the workers
were asked to use. (They were also free to use common
nouns such as ‘a old man and his daughter’ instead.) We
enforce some minimum constraints to dissuade low-effort
submissions. First, the stories must contain at least one hu-
man in each scene so that the stories are human-centric. We
also require a minimum number of changes between scenes
so that not all the visual panels are identical. In addition
to the visual story, the workers are also asked to provide a
suitable free-form title and choose multiple themes from a
list of predefined themes.

Stories in AESOP are made of 3 image-text panels with
the visual parts generated by the drag-and-drop interface de-
scribed above. We collected a total of 7, 062 stories mak-
ing up 21, 186 abstract visual scenes and corresponding text
created from scratch. More data statistics are provided in
the appendix.

3.2. AESOP Vs. Other datasets

We comprehensibly analyze AESOP to study how it over-
comes the limitations of existing vision–language and vi-
sual storytelling datasets highlighted in Sec. 1 and Sec. 2.
Diversity: Verbs in text can be used to provide a notion of
diversity in a dataset [3]. Compared to VIST [33], MSCOCO
[47] and Flickr [87], the AESOP dataset shows more fre-
quent use of verbs (Table 1). Furthermore, verbs in our
dataset are also more diverse and longer-tailed with top-30
verbs providing a much smaller percentage coverage com-

Dataset Verb
Freq.

Top 30 Non-Visible Verbs Visible Verbs

Worry Wonder Sit Walk

AESOP 0.198 0.589 556.0 93.5 1412 1110.1
VIST 0.017 0.669 9.8 2.3 130.9 64.3
MSCOCO 0.026 0.724 0.1 0.1 683.5 1991.5
Flickr 0.012 0.723 0.1 0.4 524.6 675.0
ANC 0.184 0.563 143.6 196.1 264.4 269.1

Table 1. Comparison with other datasets. Verb Frequency is the
percentage of verbs over all words in the text. Top 30 verbs is the
percentage of top 30 verbs over all verbs. Visible and Non-visible
verbs indicate the frequency of select words per million words.

Figure 2. An example story from VIST (top) and AESOP (bottom)
with two consecutive panels highlighted in Blue. Swapping the
highlighted panels in VIST gives a story that is indistinguishable
from the original showing lack of causality and coherence. In our
dataset, swapping these panels would lead to a meaningless story.

pared to these datasets. Following [3], we use the the Amer-
ican National Corpus ANC [43] for reference to what we can
expect from a “natural” text. We can clearly see that AE-
SOP most closely resembles the distribution and frequency
of verbs in ANC. Furthermore, if we look at the charac-
teristics of the verbs in existing datasets, most of them are
visible verbs [3] that have visual grounding like sit and talk.
Though this is understandable in the context of image cap-
tioning, it is undesirable in a storytelling VIST dataset. We
believe this is due to the acquisition process being percep-
tive in nature. On the other hand, AESOP has more affective
and non-visible verbs such as worry and wonder as there are
no constraints on the creative flow in visual storytelling.
Coherence and Causality: To establish the extent of
causality and coherence in AESOP compared to VIST, we
perform a user evaluation where we asked humans to pick
the correct story between the ground truth and a jumbled
version of the story for 500 randomly chosen stories from
both datasets. In the jumbled version of the story, two
consecutive panels are swapped (excluding the first panel).
Only 65.8% of stories from VIST were identified correctly
while 95% of stories in our dataset were identified correctly
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showing that stories in our dataset have clear causality and
coherence. An example story from each dataset is shown in
Figure 2. It is hard to tell the correct order of panels in the
VIST story, whereas in the AESOP example it is clear that
pain from the dance is a result of the dance indicating clear
causality.

4. Towards comprehension and co-creation of
visual stories with AESOP

We describe two well-defined tasks that take preliminary
steps towards the grand goal of creating models that are
truly capable capable of comprehending and creating sto-
ries. We posit that a fundamental requirement of such a
model is the ability to continue and conclude a story started
by a human. This setup, while being easy to train and eval-
uate, demands the models to maintain the consistency in the
arrangement of objects and characters, and also be able to
advance the story as suggested by the causal, motivational
and narrative development in the prior story states. To this
end, we define the following two tasks:

4.1. Assistant Illustrator

The Assistant Illustrator is required to generate the miss-
ing visual panel given the other two visual and all three
textual panels. The aim of this task is to condition the vi-
suals on existing panels while still measuring its ability to
be visually reasonable and coherent as function of the in-
put story. This can also be thought of as a generative vari-
ant of image-cloze task discussed in [34]. A human base-
line example for assistant illustrator is shown in Figure 4.
Even though many possible scenes can satisfy the story con-
straints, the objects and characters that are grounded in story
often share consistent location, expressions and poses, un-
less explicitly mentioned in the text, making the original
illustration a reliable ground truth for training purposes.

4.2. Assistant Writer

This is the text-equivalent of Assistant Illustrator where
one of the textual panels is masked and the model completes
the story by generating the missing text. This way, stories
are grounded by some context to make evaluation more rea-
sonable in contrast to Visual Storytelling [33]. A human
baseline example for this task is shown in Figure 5. Note
how the text is semantically similar to the original as a result
of the conditioning on other visual and textual panels. This
could also be thought of as a generative multimodal variant
of the story cloze task [57, 34]. We believe this task ensures
models rely explicitly on causality and cross–modal coher-
ence compared to visual storytelling as the generations are
not open–ended with no story specific context.

For both Assistant Illustrator and Writer, any of the three
visual or text panels can be masked and predicted. However,

Mike tried to retrieve the
ball but tripped and fell
into the pond.

hv_i

hw_i

Dec
State

CROSS
MODAL

ATTENTION

Mike was playing football
with his best friend in the
park one day.

He unknowingly hit the
ball behind is friend into
the pond.

MASK

VISUAL ENCODER

SEP SEP

Mike was

TEXT ENCODER

He MikeMikepondday. SEP SEP pond

SOG

MULTIMODAL ATTENTION

EOG

MULTIMODAL ATTENTION

OBJECT DECODER

ATTRIBUTE DECODER

Figure 3. AESOP model architecture containing a Text and Panel
Encoders, followed by cross–modal attention and hierarchical de-
coders to generate a visual panel. (Zoom in for details)

we limit our results, examples and analysis to completing
the final missing panel for ease of presentation and com-
parison with human baselines. Results for arbitrary panel
masking are present in the supplementary materials.

We note that even without additional annotations, AESOP
can support various other tasks such as cross–modal gen-
eration instead of completion et cetera. As models make
progress in the above tasks, we envision the creation of var-
ious new tasks using AESOP, fueling the development of
models that can tackle more challenging storytelling tasks,
making strides towards the creation of a truly intelligent and
creative assistant. We discuss some possibilities in Sec 9.

5. AESOP Model
Following the approach of [41, 73, 62], we treat visual

panels as a sequence of objects and attributes. Our overall
model is shown in Figure 3.

5.1. Abstract Visual Representation

We encode each visual token (an object) by encoding
what the object is, where it is placed, and how it is placed
to represent the state of that object. A visual panel is repre-
sented as V = [v0, v1, v2, ..., vnmax] where each vi = (oi, xi,
yi, zi, flipi, posei, expri). We fix nmax to be a maximum
of 15 in our experiments. Hereafter, we refer to nmax as
just n for ease and each panel can have a varying number of
objects less than or equal to n. Here oi ∈ [0, 290) is the ob-
ject identifier, xi ∈ [0, 700), yi ∈ [0, 400) gives the location
of the center of the object in the panel, zi ∈ [0, 5) indicates
size of the object, flipi ∈ {0, 1} indicates whether the ob-
ject is facing left or right, posei ∈ [0, 20) is the pose and
expri ∈ [0, 10) indicates one of the nine possible expres-
sions for human clip-arts. The first token v0 indicates one
of the four possible backgrounds added to the object vocab-
ulary. Its attributes are all 0s. For human pose, we cluster
the deformable rotation values (in radians) of the 9 inde-
pendent parts such as torso, top and bottom arms, top and
bottom legs for both left and right sides using K-means
clustering [49] over the entire training set. We empirically
fix 20 as the number of poses and ensure it covers most
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of the scenarios in the data. Though it would be better to
predict the rotation values directly to model variety and cre-
ativity, pose estimation and generation are hard problems
[25] and out of the scope of this paper. The order of ob-
jects is decided by the order in which they are placed on the
scene by the renderer to create a scene [73, 62]. This en-
sures farthest objects like sun, cloud, boat are rendered first
followed by other objects. Each object is then encoded as

what(vi) = LN(oemb(oi) + g(word(oi)))

where(vi) = LN(floc([xi; yi; zi; flipi]))

how(vi) = LN(pemb(posei) + eemb(expri))

f(vi) = what(vi) + where(vi) + how(vi),

(1)

where oemb, pemb, eemb are embedding layers similar to
word embedding layers, LN is the layer normalization and
floc is a linear layer. Values xi, yi, zi, and flipi are nor-
malized to be between 0 and 1 before embedding. We tried
using embedding layers for location values as well similar
to [62] but obtained better performance with this approach.

5.2. Story Encoder

Let [V1, V2, V3] be the sequence of visual panels that
correspond to the sequence of text panels [S1, S2, S3].
Then we represent the entire story using sequences of visual
and textual tokens as [f(v11), ..., f(v1n), f(v

2
1), ..., f(v2n),

f(v31), ..., f(v3n) ] and [g(w1
1), ..., g(w1

n), g(w
2
1), ..., g(w2

n),
g(w3

1), ..., g(w3
n)] respectively where g(wj

i ) is the word em-
bedding corresponding to the ith word in the jth text. For
brevity, we lose the superscript that indicates the panel num-
ber and represent the entire story as a sequence of visual
and textual tokens. To use the same model for all tasks, we
simply replace the sequence of tokens responsible for the
missing panel with a special ⟨MASK⟩ token. Between the
panels, we add a ⟨SEP⟩ token and in the beginning and the
end ⟨SOS⟩ and ⟨EOS⟩ tokens respectively.

The story encoder consists of a visual, text and a cross–
modal encoder. The visual and textual encoders are sepa-
rate Bidirectional GRUs [7], that encode modality specific
coherence in the story. While the text encoder learns plausi-
ble story lines, the visual encoder learns plausible visual se-
quences. Next, we perform cross–modal attention between
the encoded representations of the visual and textual tokens
to provide cross–modal context (more details in supplemen-
tary materials).

5.3. Panel Decoder

Visual Panel: We pose generation of the masked visual
panel as [73] prediction of the following sequence V =
[v0, v1, v2, ..., vn]. We use two GRUs one to track the se-
quence of objects and another to track the state of the visual
panel. The hidden state of both the GRUs are initialized
with the final hidden states of the visual and text encoders.

At each time step, the object decoder combines the state of
objects predicted so far and attention over object and word
representations from inputs, to predict the current object.
Then the attribute decoder uses the predicted object along
with current state of the scene to attend over objects in pre-
vious scenes and words in the text to predict attributes of
the current object as a single 33–dim vector, 4 for xi, yi, zi
and flipi, 20 for poses and 9 for expressions. The dimen-
sions corresponding to where attributes are clamped to be
between 0 and 1 while softmax function is applied for pose
and expression classification. Further details are provided
in supplementary materials.

Harry and Ryan were friends. On a holiday they went
walking in to a forest, enjoying the beauty of  nature.
Suddenly they saw animals are coming at them. They
became frightened.

Harry ran up to a tree and climbed up quickly. He didn't
think of Ryan. Ryan had no idea how to climb the tree.
Ryan had heard that animals don't prefer dead bodies.So
he fell to the ground and held his breath.

Animals sniffed him and thought he was dead. So, they went on their way. Harry asked Ryan "What did they whisper in your ear?"
Ryan replied "Animals asked me to keep away from friends like you"

Figure 4. Examples of Assistant Illustrator result by Ground truth,
Human Baseline, Proposed model and Unimodal are shown.

Text Panel: To generate missing text panel, we simply
replicate the object decoder from the visual panel generator.
Only modification is the vocabulary size for final classifica-
tion of the word. The text panel decoder is trained using
regular Maximum Likelihood objective. During inference,
nucleus sampling [28] is used to generate the final text.

6. Baseline Models
Since there are no directly applicable existing techniques

that we can compare against, we compare against baselines
and ablated versions of the proposed model.
Repeat: Most visual scenes have slight changes in pose and
expression while the majority of the background objects re-
main the same. Hence, we evaluate a baseline that simply
copies the previous panel to the missing one for Assistant
Illustrator. This model is not applicable to the Assistant
writer mode as text changes considerably between panels.
Unimodal: Visual unimodal model excludes the text en-
coder, cross–modal encoder and the text decoder attention
modules. For text, we fine-tune a pretrained GPT-2 model
[63] on in–filling task [20], to generate the masked text.
One-to-One: To show the effect of modelling stories as a
sequence of events, we also train a model that generates the
masked visual/textual panel given the textual/visual panel
independently without story context.
Pixel Model: In this model, the abstract visual represen-
tation in the proposed model is replaced with a pretrained
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Model↑ BG ↑ O-IOU ↑ Loc ↑ Dep ↑ Flip ↑ Pose ↑ Expr ↑ Scene↑ B–1↑ B–4 ↑ M ↑ R–L ↑ C ↑

Proposed

Il
lu

st
ra

to
r

90.1 66.5 0.73 92.2 89.2 30.4 41.3 4.1

W
ri

te
r

26.28 1.96 9.02 22.1 17.9
Unimodal 89.8 68.5 0.71 92.2 89.5 33.3 37.9 4.2 10.06 0.41 6.7 10.4 5.7
One-to-one 68.3 18.0 0.42 46.4 26.1 5.42 7.32 1.2 23.04 1.72 7.2 10.8 7.2
Pixel 52.3 15.7 0.25 21.5 10.6 3.54 5.12 1.0 8.62 0.73 5.4 7.98 4.32
Human 95 72.6 0.86 73.7 70.6 23.7 38.2 4.0 21.08 1.84 11.1 15.1 18.2
Repeat 90 79.3 0.91 94.6 90.1 36.9 37.8 5.1 – – – – –

Table 2. Results of all models on Assistant Illustrator and Assistant Writer modes. For Assistant Illustrator, we provide accuracy over
entire test set for prediction of BG (background) Dep (z value), Flip, Pose and Expr (Expression). Loc is the location similarity while
O-IOU is the intersection over union between predicted and ground truth set of objects. Metrics for object attributes are calculated only if
the predicted object is present in ground truth. Scene is the scene similarity metric. For Assistant Writer mode, B–1 indicates BLEU–1,
B–4 is BLEU–4, M is METEOR, R–L is ROUGE–L and C is CIDEr.

ResNet–18 [26] network and visual attention modules per-
form spatial attention similar to [73]. We fine–tune the
ResNet–18 encoder along with the overall model.
Human Baseline: We ask human workers to perform the
same tasks for a human baseline.

The girls went to the beach for a ballet class. It was their
first time taking a beach ballet class.

Harry has a chair on the beach so he sat on the chair and
watched them train 

the women played very good to add their self in the
school .  it was a great day for all .

The weather is so cool and the day so suitable for exercising that the
three of them end up smiling and practising their favorite sitting yoga
poses.

They started practicing their poses. They followed the
lead of the instructor.

The students chuckled after the last move because they
realized how out of shape they were! That made them
very tired!

Figure 5. Examples of Assistant Writer result by Ground truth,
Human Baseline, Proposed model and Unimodal are shown.

7. Evaluation

Given the subjective and abstract nature of the story-
telling task, it is unclear how to design automatic metrics
that can faithfully quantify a system’s ability to create or
comprehend a story. However, to support fast prototyping
and give a rough sense of correctness of predictions, we use
the following metrics for the tasks.
Assistant Illustrator: Following the works of [41, 73, 62]
we use accuracy of prediction for oi, zi, flipi, posei and
expri and background. For location we use the Absolute
Similarity from [62]. Scene Similarity metric proposed in
[41] is used for overall score, but treat pose and expression
as ‘full’ targets instead of weighed by 0.5. We emphasize
these factors because variations in pose and expression con-
vey significant subjective story content (in contrast to de-
scriptive scenes as used in [41]).
Assistant Writer: For text generation, we use existing met-
rics BLEU-k, METEOR, CIDEr and ROUGE-L [69].

User Study: Though the proposed completion tasks are
more constrained than generic open-ended storytelling
tasks, automatic evaluation based on absolute metrics is
nevertheless unreliable due to ambiguity (consider, e.g. the
human baseline in Figure 4). Hence, we have performed
extensive user studies to compare the results of different
baselines to more fairly assess the models. Specifically, we
sample 500 random stories from the test set and ask humans
to do the same task. An independent user group performs
pairwise comparisons of each of the baselines, including the
human baseline. Comparison is done along each of three
dimensions, defined as follows: 1) Coherent: Is the gener-
ated content consistent with the preceding content? 2) Rel-
evant: Is the generated content relevant to the correspond-
ing content from alternate modality in the same panel?, and
3) Meaningful: Is the generated content sensible? E.g.,
A meaningful representation of a living room will depict a
sensible living room scene but may or may not show a good
coherence with prior panels.

Experiment Meaningful Relevant Coherent Overall

Human 77.2 84.5 81.8 87.1
Proposed 6.6 7.1 7.0 7.6
No preference 16.2 8.4 11.2 5.3

Proposed 29.4 32 30.8 35.8
Unimodal 26.2 23.6 24 27.8
No preference 44.4 44.4 45.2 36.4

Human 68.8 85.2 80 86.5
Repeat 7.2 4.6 6.6 5.3
No preference 24 10.1 13.4 8.2

Table 3. Results of user study comparing models pairwise along
three dimensions for Assistant Illlustrator. Values are given in %
and overall indicates the overall preference between the two shown
models.

8. Results
Assistant Illustrator: We see from Table 2 that the simple
‘Repeat’ baseline gives higher scores for all metrics com-
pared to the full model or even human baseline when using
automatic metrics for scene similarity. This is mainly be-
cause for over 80% of the stories in the dataset, the back-
ground is unchanged. Moreover, many scene objects do not
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change their position or attributes throughout the story.We
perform pairwise comparison of 4 models using human
judges to further understand the reliability of the quanti-
tative metrics and truly evaluate the performance of these
models. The results are shown in Table 3. In contrast to
the the observation in Table 2, we can see in the user study
that human baseline clearly outperforms the ‘Repeat’ base-
line by a large margin. This underscores the need for more
reliable automatic metrics for this complex task. Addition-
ally, according to user study, we can see that even though
our proposed model is better than simplest baselines, it is
far behind the human level performance.

Assistant Writer: In the assistant writer mode, we can
see how the full model achieves better score than baselines
including human baseline for BLEU and ROUGE-L scores.
The proposed model with visual information, has explicit
object and attribute embeddings that ensures no characters
are missed in the text thereby getting higher scores for these
metrics. However learning to generate coherent narratives
while also being relevant to visual information is hard for
the model causing its METEOR and CIDEr scores to fall.
In user study for the Assistant writer mode (refer supple-
mentary materials), we observe that both human and GPT–2
versions outperform the proposed model significantly. We
believe this to be because of the difficulty in learning lan-
guage modelling by our model from scratch on the rela-
tively small dataset. It generated grammatically incorrect
text making it less preferable.

9. Discussion
Model Limitations and Future Work: Though the pro-
posed model is able to capture cross–modal relevance and
visual coherence better than baselines, it is far from achiev-
ing human level performance. Even with an abstract and
constrained visual world, the diversity and creativity in the
stories make this a complex task. This is because human
creators still act upon years of accumulated world knowl-
edge to create each story, which is difficult to capture us-
ing generic models based on existing literature. The cur-
rent model learns to copy from previous panels or create
new scenes if required by text but struggles to populate
new scenes (more examples in supplementary materials).
A natural extension to our model is to add pretrained lan-
guage or multimodal models to initialize the network for
better language–vision alignment and to ease the burden
in learning language coherence. Further, given the mini-
mal changes between visual panels in the stories, it might
be reasonable to model visual panel completion as predict-
ing scene changes rather than absolute scenes. Addition-
ally, adding a variational generative component that is con-
ditioned on the state of the story would provide creative
abilities to the model. We also plan to add title and genre
information to the encoders to condition the story state on

user–defined context.
Inadequacies of Automatic Metrics: AESOP has empha-
sized the inability of automatic metrics to capture true no-
tion of correctness for stories by contrasting the user evalu-
ation results with those in Table 2. Evaluation of vision and
text models is already a tremendous challenge [38, 75, 10],
which is made further difficult by creative aspects of sto-
rytelling in AESOP. We will plan to provide a platform to
perform human evaluation using the defined dimensions in
a standardized manner using Mturk to allow for a fair com-
parison with our baseline models.
Complexity of AESOP: Compared to closely related works
such as [73, 62] for abstract scene generation, AESOP is
highly complex. Tan et. al. in [73] consider scene gen-
eration on a dataset with descriptive and grounded text
and considerably fewer (58 vs 158 in AESOP) objects and
scenes. Similarly Radevski et. al.[73], only require spatial
location prediction of objects for the same dataset. In com-
parison, AESOP not only requires grounding deformable
limbs, more objects, expressions and backgrounds but also
require models to do so using non-descriptive, inexact text
that do not directly refer to objects in the scene. (Instead
of text in [73]: ‘Mike is holding a hotdog. Jenny is walk-
ing towards Mike’, AESOP has: ‘Mike is having a picnic
with his friends’). On the text-side, AESOP shows similar
spike in complexity compared to closely related story-text
generation tasks [33, 57], where the requirements are either
ill–posed [33] or framed as an easier retrieval setup [57].
Further possibilities with AESOP: The rich annotations
that we have collected in AESOP allows for creation of
many other tasks beyond the two described in the main
paper. These include panel generation from story-text
(Illustrator–mode), VIST-style story generation using pan-
els (Writer–mode), controllable story generation using dif-
ferent title/theme prompts etc. We also envision collection
of auxiliary annotations that can enable tasks such as col-
laborative story-writing, story question–answering (Who is
the main character in the story? How is Emily likely to feel
after this?) and others. We hope such developments will
make strides towards the creation of a truly intelligent and
creative assistant for writers and illustrators.

Concluding Remarks: With the introduction of the AESOP
dataset, we have established a new frontier in abstract vi-
sual storytelling. The AESOP dataset together with the tasks
and initial baselines explored in this paper have paved a
way towards the development of models capable of not only
comprehending and creating visual stories but also working
alongside humans to create powerful visual narratives.
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