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Abstract

Panoptic segmentation as an integrated task of both
static environmental understanding and dynamic object
identification, has recently begun to receive broad research
interest. In this paper, we propose a new computationally
efficient LiDAR based panoptic segmentation framework,
called GP-S3Net. GP-S3Net is a proposal-free approach
in which no object proposals are needed to identify the ob-
jects in contrast to conventional two-stage panoptic sys-
tems, where a detection network is incorporated for cap-
turing instance information. Our new design consists of a
novel instance-level network to process the semantic results
by constructing a graph convolutional network to identify
objects (foreground), which later on are fused with the back-
ground classes. Through the fine-grained clusters of the
foreground objects from the semantic segmentation back-
bone, over-segmentation priors are generated and subse-
quently processed by 3D sparse convolution to embed each
cluster. Each cluster is treated as a node in the graph and its
corresponding embedding is used as its node feature. Then
a GCNN predicts whether edges exist between each cluster
pair. We utilize the instance label to generate ground truth
edge labels for each constructed graph in order to supervise
the learning. Extensive experiments demonstrate that GP-
S3Net outperforms the current state-of-the-art approaches,
by a significant margin across available datasets such as,
nuScenes and SemanticPOSS, ranking 1st on the competi-
tive public SemanticKITTI leaderboard upon publication.

1. Introduction

One of the main tasks in realizing autonomy in robotic

applications is scene understanding using the available data

collected from sensors such as camera, Light Detection

And Ranging (LiDAR) and RAdio Detection and Ranging

(RADAR). Scene understanding can be divided into differ-

ent tasks such as scene classification, object detection, se-
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mantic/instance segmentation and more recently panoptic

segmentation. In recent years, deep learning has been used

as the main solution to object detection and segmentation.

With more granular data available, specially from high res-

olution LiDARs, the task of semantic/instance segmenta-

tion has become a more vital part of any perception mod-

ule due to generating all the fundamental perceptual infor-

mation needed for robotic applications such as free space,

parking area and vegetation, in addition to all dynamic ob-

jects in 3D coordinates.

DS-Net

Ours

TORNADO-Net

Ground Truth

Figure 1: Comparison of our proposed method with DS-Net

[15] and TORNADONet [11] on SemanticKITTI bench-

mark [1]. DS-Net and TORNADONet suffer from over-

segmentation problem, while ours shows successful panop-

tic predictions.

Normally, the task of semantic segmentation and in-

stance segmentation are treated separately, using two dif-

ferent DNN models. In contrast, panoptic segmentation

combines semantic and instance segmentation tasks as ex-

plained in [19] by defining two different categories of model

predictions, namely, “things” and “stuff”. “Things” is re-
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ferred to all countable objects such as cars, pedestrians,

bikes, etc. and “stuff” is referred to uncountable seman-

tics (background) such as road, vegetation, parking. Then,

the panoptic task is defined by predicting the things and

stuff together in one unified solution. Although the panop-

tic segmentation definition seems plausible, the question of

“Is there a way to integrate independent semantic segmen-

tation and target recognition into a system so that the in-

stance level segmentation of objects can effectively use the

results of semantic segmentation?” has not been addressed

adequately in the literature.

In this paper we present a novel approach to solve

the panoptic segmentation problem solely based on Li-

DAR that can achieve state-of-the-art panoptic and se-

mantic segmentation results on various benchmarks such

as SemanticKITTI [1], nuScenes [2], and SemanticPOSS

[24]. Our method uses graph network to generate instances

directly from over-segmented clusters obtained by HDB-

SCAN [3] that takes in predicted foreground points from

the semantic segmentation backbone. Instead of learning

the offset vector of each cluster and obtaining instances

by re-clustering, a connectivity probability of each edge is

learned in the graph. Over-segmented clusters are aggre-

gated together by these connected edges to form instances.

Thus, conventional clustering problem is transformed into

a supervised edge classification problem. By doing so, we

introduce the following contributions:

• A flexible panoptic segmentation framework to benefit

from the best available semantic segmentation models

and their output.

• A novel clustering and graph convolutional neural net-

work that generates instance-level results (things and

their IDs).

• A seamless fusion of semantic and instance level re-

sults to generate panoptic segmentation predictions.

• A thorough experimental results of three major out-

door datasets and an ablation study to show the effec-

tiveness of the proposed solution.

2. Related work
Semantic segmentation Most point cloud semantic seg-

mentation methods can be categorized to projection-based,

point-based and voxel-based methods, by their method of

data processing. Projection-based methods aim to project

3D point clouds into 2D image space in either the top-

down Bird-Eye-View [35, 28], or spherical Range-View

(RV) [8, 23, 27] or multi-view format [11], and then pro-

cess with the standard 2D CNNs. Benefited from the quick

arrangement of unordered points and the speed of 2D CNN,

it is easy for projection-based methods to achieve real time

performance, although their accuracy is limited by the in-

formation loss during projection. Point-wise methods, such

as PointNet++[26], KPConv [30] and RandLA-Net [16],

process the raw 3D points without applying any additional

transformation or pre-processing. This kind of methods are

more suitable for small scale point clouds. However, for

large scale point clouds, due to large computation and mem-

ory requirements, it is usually difficult to make real time

inference. Voxel-based approaches transform a point cloud

into 3D volumetric grids in which 3D convolutions are used.

Theoretically, 3D convolution is a natural extension of the

2D convolution concept. 3D volumetric grids embedded in

Euclidean space can guarantee the shift invariant (or space

invariant). However, the high computational requirements

still constrain development of the voxel-based approaches.

Recently, several sparse convolution libraries, such as Torch

sparse, Minkowski Engine [6] and SPConv, have been de-

veloped to accelerate the convolution computation by fully

exploiting sparsity of point clouds. With the help of these

libraries, voxel-based methods such as (AF)2-S3Net [5],

Cylinder3D [36] and S3Net [4] have achieved state-of-the-

arts LiDAR semantic segmentation performance on public

datasets.

Instance segmentation Instance segmentation of point

clouds can be divided into two categories, i.e. proposal-

based and proposal-free methods. Proposal-based methods,

e.g. 3D Bonet [33] and GSPN [34], implement 3D bound-

ing box detection followed by a refinement in the bound-

ing box. The refinement network generates a point-wise

mask, which filters out the points not belong to the instance.

Proposal-free methods are based on clustering. The whole

scene is usually segmented into small blocks, and the em-

beddings of each block are learned and used in the final

clustering. PointGroup [18] clusters points towards the in-

stance centroid by learning the offsets of each block. Oc-

cuSeg [13] divides the whole scene into super-voxels and

uses a graph-based method for clustering.

Panoptic segmentation Panoptic segmentation unifies both

semantic segmentation and instance segmentation. Panoptic

segmentation can also be divided into proposal-based (top-

down) and proposal-free (bottom-up) methods. Proposal-

based methods such as EfficientLPS [29] and MOPT [17],

are two-stage approaches. They detect the foreground in-

stances first, then refine these instances and finally imple-

ment the semantic segmentation on the background stuff. In

contrast, proposal-free methods are usually single-staged.

They segment the scene semantically and identify the in-

stances based on the semantic segmentation result by using

a unified network. This kind of network usually consists

of a single backbone for feature extraction and two sepa-

rate branches for semantic and instance segmentation tasks,

which are also known as semantic head and instance head.

Panoster [10], LPSAD [22] and DS-Net [15] use this two
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separate branches structure. Among them, Panoster can use

KPConv [30] and SalsaNext [8] as its backbone. All these

three methods achieve competitive performance on outdoor

LiDAR datasets. Recently, some algorithms use graph to

represent the high level topological relationship between

foreground things and background stuff, e.g. Wu et al. [31]

proposed a bidirectional graph connection module to diffuse

information across branches, and achieved state-of-the-art

performance on the COCO and ADE20K panoptic segmen-

tation benchmarks.

3. Proposed approach

In this section, we first introduce the problem formula-

tion. Next, the proposed method, GP-S3Net, is presented

with detailed description of its components along with net-

work optimization details.

3.1. Problem statement

Here we consider a panoptic segmentation task in which

a LiDAR point cloud frame is given with a set of unordered

points (P,L) = ({pi, li}) with pi ∈ R
din and i = 1, ..., N ,

where N denotes the number of points in a point cloud scan.

Each point can be paired with features such as Cartesian

coordinates (x, y, z), intensity of returning laser beam (i),
colors (R,G,B), etc. Here, li ∈ R

2 represents the ground

truth labels corresponding to each point pi which can be

either “stuff” with a single class label L, or “things” with a

single class label L and an instance label J .

Our goal is to learn a function Fcls,inst(.,Φ) parameter-

ized by Φ that assigns a single class label L for all the points

related to “stuff” and, class label L and an instance label J
for all the points in the point cloud related to “things”. In

other words, Fpanoptic(.,Φ) assigns class and instance label

pair (ĉi, ˆinsti) to each point pi where applicable. To solve

this problem, we present GP-S3Net in which a proposal-

free design is leveraged to generate predictions for panoptic

segmentation benefiting from a novel GNN approach.

3.2. Network architecture

The panoptic segmentation of 3D point cloud usually si-

multaneously performs semantic segmentation and object

recognition on the point cloud, and uses the result of object

recognition as a mask to classify the instance of foreground

semantic categories (such as vehicles, pedestrians). We pro-

pose a cluster method based on graph neural network super-

vised learning to achieve adaptive object instance segmen-

tation. Through the fine-grained cluster of the foreground

class, the over segmentation prior is obtained, and then the

three-dimensional sparse convolution is used to embed each

cluster. This embedding is used as a feature of the graph

node to establish an edge between multiple clusters in the

same instance. Essentially, we use semantic information

to establish a graph structure. Since the instance label is

known, we can perform supervised learning on edges to

predict the existence of edges between two cluster embed-

dings. In essence, we convert an unsupervised task into a

supervised learning task. This method is applicable to all

panoptic segmentation, including point cloud, rgb image.

Semantic
Segmentation 

Backbone

Input 3D Point Cloud

Instance
Segmentation

Network

Panoptic
Fusion

Panoptic Segmentation 
Results

Figure 3: Overview of our proposed GP-S3Net model for

LiDAR panoptic segmentation

.
The overall pipeline of our proposed GP-S3Net is shown

in Figure 3. It includes a semantic segmentation segmenta-

tion backbone followed by a graph-based instance segmen-

tation network and panoptic fusion. A generic semantic Li-

DAR segmentation module takes in raw LiDAR point cloud

as input and outputs semantic masks which are directly used

in the new enhanced instance model. The instance model

then clusters the “things” semantic masks and encodes their

features into a unified feature vector. These features are fed

into a GCNN model followed by a merging step to create

the instance information. Finally, the output of the seman-

tic and instance segmentation network are fused (concate-

nated) without including any learned-based model. The fi-

nal output is panoptically labeled point cloud in which every

point has both a semantic and a instance label. The detailed

description of the network architecture is provided below.

3.2.1 Semantic segmentation backbone

For the semantic segmentation model we benefit from the

model introduced in [5]. (AF)2-S3Net consists of an end-

to-end 3D encoder-decoder CNN network that combines the

voxel-based and point-based learning methods into a unified

framework, resulting in highly accurate semantic segmen-

tation model with competitive results for various datasets

such as SemanticKITTI and nuScenes.

(AF)2-S3Net provides semantic segmentation results

using efficient feature attention and fusion at different

scales, making the model able to predict semantics for all

classes, especially smaller dynamic objects on the road.

This characteristic of (AF)2-S3Net makes it a viable

choice for the first part of the proposed panoptic framework

introduced in this paper.

3.2.2 Instance segmentation network

As shown in the top branch of Figure 2, our method first

uses the segmented point cloud as input and performs over-

segmentation by clustering on foreground classes (e.g., car,
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Figure 4: EdgeNet model

pedestrian). Then, the over-segmented clusters are fed into

a sparse convolutional neural network followed by a global

average pooling layer to embed the cluster points and their

corresponding features. Each point of the cluster has point-

wise normal features, intensity and inherited semantic prob-

abilities. All points in one cluster will be converted into

a 1 × K embedding vector. Since we use global average

pooling, the cluster embedding can compress any number

of points into a single point embedding vector of features.

We treat the clusters as graph nodes and build a fully con-

nected graph out of all clusters. The embedding vector is

thus regarded as the graph node feature. The edge features

are depicted in Figure 5, where the edge feature is defined

by the cosine similarity of two cluster embedding vectors

and the Euclidean distance of two clusters’ centroids.

Instance segmentation can be addressed by clustering the

objects’ semantic labels, however the clustering process is

not supervised friendly in which only a clustering radius can

be tuned. Therefore, it is difficult to exploit the instance la-

bels offered in most of the datasets. In our method, we con-

vert this unsupervised clustering task into a supervised edge

classification problem. First, the foreground class points are

passed though HDBSCAN so that each instance is divided

into several over-segmented clusters. Then, the clustered

points, which belong to the same instance object, are asso-

ciated using the instance ground truth labels, as illustrated in

Algorithm 1. Since we have built the fully connected graph,

as illustrated in the bottom branch of Figure 2, we can cre-

ate the ground truth labels of edges using the associating

relationship between cluster nodes. The edges between the

associated clusters are thus marked as 1, otherwise 0. Fi-

nally after getting the ground truth labels and features of

graph nodes and edges, we apply the edge classification us-

ing a graph convolutional neural network, named EdgeNet,

to predict fully connectected edge labels. After the predi-

tion, those over-segmented clusters are merged into a corre-

sponding instance node and the instance ID is projected to

each points inside the nodes as output.

Instance-level segmented regions are geometrically mu-

tual exclusive, thus we can leverage the connectivity of sub-

graph to describe the clusters that belongs to a single in-

stance. Therefore, the local connectivity can be described

by a binary adjacent matrix where 1 means connection ex-
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ists and two corresponding nodes belongs to the same in-

stance object. As a result, we can recover the instance points

from merging the connected cluster nodes to the same in-

stance group. In this manner, we predict the edges of a

fully connected cluster graph in a supervised learning fash-

ion. As depicted in Figure 4, EdgeNet model takes the

fully connected cluster graph as input and predicts the edge

class for each two pairs of cluster graph. We concatenate

the cluster node embedding features (N × 32), where N
is the number of clusters predicted by HDBSCAN, and the

node centroid feature (N × 3) as the input graph node fea-

ture (N × 35) of the EdgeNet model. The edge feature has

two components, the cosine similarity of the cluster graph

node feature and the euclidean distance of the cluster graph

node centroids. The fully connected cluster graph with node

and edge features are fed into two SageConv layers [12] to

perform neighborhood node feature aggregation. Then, the

starting node feature ns
i and ending node feature ne

i of a

given edge Ei, where i ∈ {1, 2, ..., N2}, are concatenated

as edge feature of the edge Ei with size of (1×64). Finally,

the edge features are passed into a fully connected layer and

the binary edge class labels are predicted. The details of the

EdgeNet GCNN architecture is presented in Table 1.

Stages Operation Layer Operation Layer (Fin, Fout) Filter Size Stride Output Size

Input Input Foreground Point Cloud - - - - Mx24

SE SparseConv layer Sparse Convolution + ReLU 24,64 3x3x3 1x1x1 Mx64

SE SparseConv layer Sparse Convolution + ReLU 64,32 3x3x3 1x1x1 Mx32

SE Sparse Global Pooling Average pooling - cluster-wise - Nx32

GNN Graph Conv Mean Aggregator SageConv + ReLU 35,64 - - Nx64

GNN Graph Conv Mean Aggregator SageConv 64,32 - - Nx32

GNN EdgeNet MLP + ReLU (32+32),32 - - (NxN)x32

GNN EdgeNet MLP + Softmax 32,2 - - (NxN)x2

output - - - - - (NxN)x2

Table 1: EdgeNet Design. We denote SE as Sparse Embed-

ding, GNN as Graph Neural Network, M and N are number

of foreground points and number of cluster, respectively.

(Fin, Fout) are the number of input and output features.

As our method relies on the oversegmentation process,

it might be possible that the predictions from the semantic

segmentation backbone are incorrect when the GNN thinks

multiple clusters with different semantics belong to a single

instance. Thus, we refine the semantics of each instance

with point-wise majority voting.

Graph edge labels generation The graph nodes are

obtained by running HDBSCAN on the foreground point

cloud. Here, we assume the points within the same cluster

(graph node) belong to the same instance. In order to super-

vise the edge classification of the graph, we construct the

binary ground truth (GT) edge label matrix, ledge ∈ B
N×N

where a True entry indicates the two nodes belong to the

same object, False indicates they do not, and N is the num-

ber of nodes. Note that this GT edge label is only needed

during training, and is obtained by associating each graph

node with the GT instance label. Detailed pseudo-code of

this operation can be found in Algorithm 1. In summary, we

build a correspondence between the cluster ID of the point

and its GT instance ID using the offset trick. In particular,

the most 32 bit is the GT ID and the least 32 bit is the cluster

ID for each entry in scombo. Thus, we can obtain the list of

nodes belong to the same object, and a permutation of each

node pair in the list will be marked as positive labels.

Algorithm 1: Cluster node association

Input: Things Points p ∈ R
M×3, Things Instance

Label l ∈ N
M ;

Output: Binary labels ledge ∈ B
N×N of fully

connected edge between each cluster;

c := hdbscan(p);
nCluster := len(set(c));
ledge := zeros(nCluster, nCluster);
d := {};

for i′gt in set(l) do
d[i′gt] := {}

end
offset := 232;

scombo := c+ offset ∗ l;
s′ := set(scombo);
s′gt := s′//offset;

s′pred := s′%offset;

for idx, i′gt in enum(s′gt) do
d[i′gt].append(s

′
pred[idx]);

end
for i′gt in d do

trueEdge := permute(d[i′gt]);
for (i, j) in trueEdge do

ledge[i, j] = True;

end
end

4. Experimental Results
In this section, we firstly introduce the three datasets that

we report the results on, followed by the quantitative met-
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rics we use. Secondly, we present our experimental setup

in detail. Further, the quantitative and qualitative results

together with ablation analysis on various clustering algo-

rithms as baselines are shown.

SemanticKITTI is the first available benchmark on

LiDAR-based panoptic segmentation [1]. It contains 22 se-

quences where sequence 00-10 are used for training and

validation (19,130 training frames and 4,071 validation

frames) and 11-21 are held out for testing (20,351 frames).

We validate and provide ablation analysis on sequence 08.

Each point in the dataset is provided with a semantic label

of 28 classes which are mapped to 19 classes for the task of

panoptic segmentation. Among these 19 classes, 11 of them

are stuff classes and 8 of them are things where the instance

IDs are available.

nuScenes is a multi-modal autonomous driving dataset

containing 1000 scenes where 700 are used for training,

150 for validation, and the rest for testing [2]. Since the

dataset does not provide point-level panoptic labels for Li-

DAR scans, we obtain the panoptic segmentation labels by

the following procedure. With semantic labels from the li-
darseg dataset and 3D bounding box annotations from the

detection dataset, we assign every point having the same se-

mantic inside each bounding box unique instance IDs. Due

to the test set labels being held out, we train the model on

the training split (28,130 frames) and evaluate on the val-

idation split (6,019 frames). Among 16 labeled classes in

lidarseg, 8 vehicle and human classes are things and the

rest are considered stuff.
SemanticPOSS is a dataset with data collected in

Peking University and uses the same data format as Se-

manticKITTI. It contains 2,988 LiDAR scans (six se-

quences) with point-wise semantic label and instance ID.

Sequence 00, 01, 03, 04 and 05 are used for training, and

sequence 02 is the validation set. 11 remapped classes

are used in panoptic segmentation, among which 3 classes

are things, and 8 classes are stuff. Comparing with Se-

manticKITTI and nuScenes, SemanticPOSS has a large

quantity of dynamic instances [24] thus challenging for

panoptic segmentation tasks.

Evaluation metric Mean Panoptic Quality (PQ) is used

as our main metric to evaluate and compare the results with

others. PQ can be further decomposed into SQ and RQ to

provide additional insights of the results as shown in Equa-

tion 1 [20]. These three metrics are calculated separately on

stuff and things classes, providing PQSt, SQSt, RQSt and

PQTh, SQTh, RQTh.

PQc =

∑
(p,g)∈TPc

IoU(p, g)

|TPc|︸ ︷︷ ︸
Segmentation Quality (SQ)

× |TPc|
|TPc|+ 1

2 |FPc|+ 1
2 |FNc|︸ ︷︷ ︸

Recognition Quality (RQ)

(1)

PQ =
1

n

n∑
c=1

PQc (2)

where n denotes the total number of classes, (p, g) represent

the prediction and ground truth, and |TPc|, |FPc|, |FNc|
are the set of true positive, false positives, and false negative

matches for class c respectively. A match is a true positive if

their IoU is larger than 0.5. In addition, PQ† is also reported

as suggested in [25].

4.1. Experimental setup

We train our model using SGD optimizer with momen-

tum of 0.9 and learning rate of 0.001, weight decay of

0.0005 for 150 epochs for all three datasets. Experiments

are done on NVIDIA V100 GPUs. Cross Entropy Loss is

used to train the edge classification for the GCNN, while the

semantic segmentation is supervised by losses presented in

[5]. Embedding size K for the graph node is set to 32.

We implement LPSAD as a baseline model and results

on SemanticKITTI validation set were matched as reported

in [22]. We also provide the quantitative and qualitative

results of this baseline model on nuScenes and Semantic-

POSS. In addition, to generate a better panoptic method

using range-image data, we train the TORNADO-Net [11]

(without the PPL block) for the task of panoptic segmenta-

tion as it represents a better range-image segmentation re-

sults. Further, we train DS-Net [15] on SemanticPOSS with

the official codebase released by the authors.

4.2. Quantitative evaluation

Starting from SemanticKITTI test results (the only avail-

able test benchmark), we can see that GP-S3Net is stand-

ing out as the best framework for panoptic segmentation

achieving PQ of 60.0%. Moreover, the method does not

suffer from any degradation in semantic segmentation re-

sults, topping all other methods at mIoU of 70.8%. Focus-

ing on the methods that do not use object proposals, the new

method, i.e., GP-S3Net, performs outstandingly better than

prior arts in terms of PQ such as LPSAD (+22.0%), Panos-

ter (+7.3%) and DS-Net (+4.1%). When we combine all

methods, as it is shown in Table 2, GP-S3Net can achieve

better results than EfficientLPS [29] by a small margin, but

provides much better semantic segmentation results, and all

without using any object proposal information which nor-

mally means access to bounding box information of dy-

namic objects.

To show the effectiveness of the proposed method in

other large-scale outdoor datasets, and to show the gener-

alization quality of GP-S3Net, we also provide the valida-

tion benchmark results for nuScenes and SemanticPOSS in

Tables 4 and 5, respectively. GP-S3Net outperforms the

prior-art in almost all the metrics for both datasets proving
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Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

RangeNet++ [23] + PointPillars [21] 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5 52.4
LPSAD [22] 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2 50.9
PanopticTrackNet [17] 43.1 50.7 53.9 78.8 28.6 35.5 80.4 53.6 67.3 77.7 52.6
KPConv [30] + PointPillars [21] 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0 58.8
Panoster [10] 52.7 59.9 64.1 80.7 49.4 58.5 83.3 55.1 68.2 78.8 59.9
DS-Net [15] 55.9 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7 61.6
EfficientLPS [29] 57.4 63.2 68.7 83.0 53.1 60.5 87.8 60.5 74.6 79.5 61.4
GP-S3Net [Ours] 60.0 69.0 72.1 82.0 65.0 74.5 86.6 56.4 70.4 78.7 70.8

Table 2: Comparison of LiDAR panoptic segmentation performance on SemanticKITTI[1] test dataset.

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

RangeNet++ [23] + PointPillars [21] 36.5 − 44.9 73.0 19.6 24.9 69.2 47.1 59.4 75.8 52.8
LPSAD [22] [Our Implementation] 37.4 44.2 47.8 66.9 25.3 32.4 65.2 46.2 58.9 68.2 49.4
PanopticTrackNet [17] 40.0 − 48.3 73.0 29.9 33.6 76.8 47.4 59.1 70.3 53.8
KPConv [30] + PointPillars [21] 41.1 − 50.3 74.3 28.9 33.1 69.8 50.1 62.8 77.6 56.6
TORNADO-Net [11] w/ Fusion 50.6 55.9 62.1 74.9 48.1 57.5 72.5 52.4 65.4 76.7 59.2
Panoster [10] 55.6 − 66.8 79.9 56.6 65.8 − − − − 61.1
DS-Net [15] 57.7 63.4 68.0 77.6 61.8 68.8 78.2 54.8 67.3 77.1 63.5
EfficientLPS[29] 59.2 65.1 69.8 75.0 58.0 68.2 78.0 60.9 71.0 72.8 64.9
GP-S3Net [Ours] 63.3 71.5 75.9 81.4 70.2 80.1 86.2 58.3 72.9 77.9 73.0

Table 3: Comparison of LiDAR panoptic segmentation performance on SemanticKITTI[1] validation dataset.

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

Cylinder3D [36] + PointPillars [21] 36.0 44.5 43.0 83.3 23.3 27.0 83.7 57.2 69.6 82.7 52.3
Cylinder3D [36] + SECOND [32] 40.1 48.4 47.3 84.2 29.0 33.6 84.4 58.5 70.1 83.7 58.5
DS-Net [15] 42.5 51.0 50.3 83.6 32.5 38.3 83.1 59.2 70.3 84.4 70.7
RangeNet++ [23] + Mask R-CNN [14] 45.2 53.7 55.7 80.2 39.2 48.6 79.4 55.2 67.6 81.5 61.7
PanopticTrackNet [17] 50.0 57.3 60.6 80.9 45.1 52.4 80.3 58.3 74.3 81.9 63.1
KPConv [30] + Mask R-CNN [14] 50.1 57.9 60.7 81.0 43.9 50.4 80.2 60.5 77.8 82.2 63.9
LPSAD [22] [Our Implementation] 50.4 57.7 62.4 79.4 43.2 53.2 80.2 57.5 71.7 78.5 62.5
TORNADO-Net [11] w/ Fusion 54.0 59.8 65.4 80.9 44.1 53.9 80.1 63.9 76.9 81.8 68.0
EfficientLPS [29] 59.2 62.8 70.7 82.9 51.8 62.7 80.6 71.5 84.1 84.3 69.4
GP-S3Net [Ours] 61.0 67.5 72.0 84.1 56.0 65.2 85.3 66.0 78.7 82.9 75.8

Table 4: Comparison of LiDAR panoptic segmentation performance on nuScenes[2] validation dataset.

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

LPSAD [22] [Our Implementation] 22.5 32.7 34.0 53.5 18.7 25.7 70.5 24.0 37.1 47.1 35.5
TORNADO-Net [11] w/ Fusion 33.7 43.3 46.0 68.4 41.2 49.6 83.1 30.9 44.7 62.9 44.5
DS-Net [15] 35.6 45.9 49.2 68.6 27.4 33.8 76.8 38.7 55.0 65.5 54.5
GP-S3Net [Ours] 48.7 60.3 63.7 61.3 61.6 71.7 86.4 43.8 60.8 51.8 61.8

Table 5: Comparison of LiDAR panoptic segmentation performance on SemanticPOSS[24] validation dataset.

the proposed framework can work across a wide range of

sensor setups and geometrical differences.

4.3. Qualitative evaluation

As shown in Figure 6, LPSAD [22] and TORNADO-Net

[11], which both are based on point offset predictions and

clustering, perform poorly in crowded scenes where they

have failed to differentiate instances of pedestrians and ve-

hicles (visible in nuScenes and SemanticKITTI samples).

In contrast, GP-S3Net, which is a graph-based approach, is

learned to separate most of the objects, regardless of their

closeness, with much less confusion in assigning instance

labels.

Another case is large objects like trucks as it is shown

in the SemanticPOSS sample. It is clear that neither of the

methods, i.e. LPSAD and TORNADO-Net, can solve the

problem of less-segmentation for larger objects. Similar is-

sues can be observed in SemanticKITTI as shown in Fig-

ure 1 on better benchmarks such as DS-Net [15]. However,

GP-S3Net can resolve this issue by assigning all those clus-

ters into on instance, in this case truck, correctly.
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Figure 6: Comparison of different models with GP-S3Net on three different datasets of SemanticKITTI, nuScenes, and

SemanticPOSS. Red circles demonstrate that our method performs better in many details than recent state-of-the-art models.

4.4. Ablation studies

To further demonstrate the effectiveness of our graph-

based network, we provide an ablation analysis in Table 6

comparing our baseline with our proposed method on val-

idation sequence of SemanticKITTI dataset. The baselines

are our semantic segmentation backbone followed by differ-

ent clustering algorithms with no instance head. It can be

observed that Meanshift [7], performs relatively better than

HDBSCAN [3], and DBSCAN [9] due to its robust ker-

nel function insensitive to the density change in the point

cloud. The proposed method outperforms all the baselines

by a large margin.

Architecture PQ PQTh RQTh SQTh

Baseline w/ DBSCAN [9] 49.4 40.5 51.3 78.4

Baseline w/ HDBSCAN [3] 53.4 50.1 63.1 78.5

Baseline w/ MeanShift [7] 55.8 55.7 66.7 82.5

Proposed 63.3 70.2 80.1 86.2

Table 6: Ablation study of the proposed method vs base-

lines evaluated on SemanticKITTI [1] validation dataset.

5. Conclusion

In this work, we proposed GP-S3Net, a novel one-stage

panoptic segmentation network. In addition to the strong se-

mantic segmentation backbone, GP-S3Net has an effective

instance network that takes in the clusters of the seman-

tic masks of the thing classes and constructs a graph with

node and edge features learned from sparse convolutions.

A GCNN is followed to predict whether an edge exists be-

tween each node pair. This novel approach has turned an

unsupervised clustering task into a supervised graph edge

classification problem where edges between two nodes in-

dicate them belonging to the same instance. Comprehen-

sive benchmarking results are presented on SemanticKITTI,

nuScenes and SemanticPOSS datasets, demonstrating the

state-of-the-art performance of GP-S3Net.
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