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Abstract

Reconstructing dynamic, time-varying scenes with com-
puted tomography (4D-CT) is a challenging and ill-posed
problem common to industrial and medical settings. Ex-
isting 4D-CT reconstructions are designed for sparse sam-
pling schemes that require fast CT scanners to capture
multiple, rapid revolutions around the scene in order to
generate high quality results. However, if the scene is
moving too fast, then the sampling occurs along a lim-
ited view and is difficult to reconstruct due to spatiotem-
poral ambiguities. In this work, we design a reconstruc-
tion pipeline using implicit neural representations coupled
with a novel parametric motion field warping to perform
limited view 4D-CT reconstruction of rapidly deforming
scenes. Importantly, we utilize a differentiable analysis-by-
synthesis approach to compare with captured x-ray sino-
gram data in a self-supervised fashion. Thus, our result-
ing optimization method requires no training data to re-
construct the scene. We demonstrate that our proposed
system robustly reconstructs scenes containing deformable
and periodic motion and validate against state-of-the-art
baselines. Further, we demonstrate an ability to recon-
struct continuous spatiotemporal representations of our
scenes and upsample them to arbitrary volumes and frame
rates post-optimization. This research opens a new av-
enue for implicit neural representations in computed to-
mography reconstruction in general. Code is available at
https://github.com/awreed/DynamicCTReconstruction.

1. Introduction
Computed-tomography (CT) is a mature imaging tech-

nology with vital industrial and medical applications [20,
13, 8]. CT scanners capture x-ray data or sinograms by

scanning a sequence of angles around an object. Recon-
struction algorithms then estimate the scene from these
measured sinograms. CT imaging in both 2D and 3D of
static objects is a well-studied inverse problem with both
theoretical and practical algorithms [21, 37, 1].

However, reconstruction of dynamic scenes (i.e. scene
features changing over time), known as dynamic 4D-CT,
is a severely ill-posed problem because the sinogram aggre-
gates measurements over time which yields spatio-temporal
ambiguities [12, 24, 51, 52, 30]. Analogous to motion blur,
a static or quasi-static scene is only captured for a small
angular range of the sinogram (motion blur analogy: short
exposure), and this mapping is a function of the amount of
scene motion relative to the CT scanner’s rotation speed.
Traditional CT reconstruction algorithms have limited capa-
bility to address 4D-CT problems due to difficulty account-
ing for this motion. Yet solving these 4D-CT problems is
critically important for a range of applications from clinical
diagnosis to non-destructive evaluation for material charac-
teristics and metrology.

4D-CT reconstruction techniques have been proposed in
the literature to handle periodic motion [33, 24] as well as
more general nonlinear, deformable motion [51, 52, 30].
While the latter methods achieve state-of-the-art for de-
formable motion, they typically assume slow motion rela-
tive to the scanner rotation speed. Specifically, these algo-
rithms assume sparse measurements of the object that span
the full angular range (0− 360◦) and typically require mul-
tiple revolutions around the sample to reconstruct images
at each time step. This approach is called sparse view CT
in the literature [31]. However, this setting is not always
practical such as when the object motion is too fast for the
scanner to make multiple revolutions. Instead, an alterna-
tive approach is to collect measurements over partial angu-
lar ranges in a single revolution – which is the more chal-
lenging limited-view reconstruction [43]. Even in the static
case, the limited-view problem is challenging due to miss-
ing information often leading to significant artifacts [18].
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Figure 1. Given a sinogram, we jointly estimate a scene template and motion field to reconstruct the 4D scene. Here, we warp a 3D
Shepp Logan template to reconstruct its linear translation in time. We simulate sinogram measurements from this 4D scene and compute
a loss with the given sinogram. This loss is backpropagated to the implicit neural representation (INR) network weights and motion field
parameters until convergence.

Key Contributions: In this paper, we propose a novel,
training-data-free approach for 4D-CT reconstruction that
works especially well in limited-view scenarios. Our
method, illustrated in Figure 1, consists of an implicit neu-
ral representation (INR) [29] model that acts as the static
scene prior coupled with a parametric motion field to es-
timate an evolving 3D object over time. The reconstruc-
tion is then synthesized into sinogram measurements using
a differentiable Radon transform to simulate parallel-beam
CT scanners. By minimizing the discrepancy between the
synthesized and observed sinograms, we are able to opti-
mize both the INR weights and motion parameters in a self-
supervised, analysis-by-synthesis fashion to obtain accurate
dynamic scene reconstructions without training data.

Validation: We are primarily interested in general, in-
situ CT imaging where the scanned object cannot be frozen
in time and the motion dynamics are arbitrary (e.g., non-
periodic) and cannot be predicted (e.g., [17]). However, ac-
quiring 4D-CT data is challenging and one of the primary
bottlenecks for research in 4D-CT reconstruction. While
this is partly due to the expense and logistics of accessing
CT scanners and data, it is also because acquiring ground
truth in the 4D case is exceptionally challenging. While
there are examples of real CT data [51, 52], these datasets
are specific to particular scanners and sampling schemes.

In order to evaluate our method on an in-situ imaging
task and highlight our method’s ability to resolve 4D scenes
from limited angles, we introduce a synthetic dataset for
parallel beam CT. This dataset is generated with an accu-
rate physics simulator for material deformation and used
to benchmark ours and competing state-of-the-art methods.
Further, while not our target application, we also evaluate

our method’s performance on a medical imaging task of
reconstructing a periodically deforming thoracic cavity us-
ing simulated x-ray measurements from real thoracic recon-
structions. We observe that our method outperforms com-
petitive baselines on both of our datasets.

2. Related Work
3D-CT Sparse and Limited View Reconstruction:

Traditional CT reconstruction is a mature imaging prob-
lem with applications in security, industrial and healthcare.
For sparse-view 3D-CT, common techniques include the
algebraic reconstruction technique (ART) and the filtered
backprojection algorithm (FBP) [2, 21]. Model-based ap-
proaches have been proposed for the limited angle case
[18, 49]. More recently, deep-learning based approaches
utilize training data [14, 22, 19, 53, 49, 3, 25] to estimate
scenes from sparse-view or limited angles. For a more com-
prehensive characterization on limited-angle tomography,
we refer the reader to [10]. In our paper, we are interested in
the 4D-CT problem, particularly for limited view sampling.

4D-CT for Periodic Motion: When recovering peri-
odic motion, such as the breathing phases of clinical pa-
tients, several methods [24, 33, 48] gate measurements into
phase/amplitude cycles to help reconstruct 3D image vol-
umes. This gating limits the number of angular measure-
ments per phase and can induce motion artifacts due to
phase error [41]. Similar to our approach, these meth-
ods sometimes include parametric motion models for more
general non-periodic motion (e.g., heart + breathing mo-
tion) [41, 38, 40]. These motion models perform image reg-
istration between estimated phase images, but typically re-
quire either enough phase gated measurements or relatively

2259



slow motion to work effectively. In contrast, our approach
does not require phase information for reconstruction.

4D-CT for Deformable Motion: State-of-the-art (SOA)
4D-CT reconstruction methods jointly estimate the scene
and motion field parameters [51, 30, 52] to solve for non-
periodic deforming scenes. The authors of [30] show that
quickly rotating the CT scanner and sampling sparse an-
gular views in an interlaced fashion enables the capture of
high-fidelity images. In [51], the authors introduce low-
discrepency sampling and jointly solve for the motion flow-
field and scene volume. This work was extended in [52]
by using the low-discrepency sampling and adapting the re-
construction algorithm to dynamically upsample temporal
frames when the motion is rapidly changing the measured
object. Importantly, all these methods require quickly rotat-
ing the CT scanner to capture sparse angular measurements
that span 360 degrees, a constraint we do not require.

Implicit Neural Representations (INR): Recently, co-
ordinate based multi-layer perceptrons, or INRs, have found
success in the imaging domain. These architectures learn
functions that map input coordinates (e.g., (x, y, z)) to
physical properties of the scene (e.g., density at (x, y, z)).
These networks coupled with differentiable renderers have
demonstrated impressive capabilities for estimating 3D
scenes [29, 28, 27, 54]. Our method is inspired by [29],
who estimate a continuous 3D volume density from a lim-
ited set of 2D images. More recently, [6, 7, 9, 36, 55]
exploit the NeRF architecture to solve problems like view
synthesis, texture completion from impartial 3D data, non-
line-of-sight imaging recognition, etc. In [34], the authors
introduced a method to jointly learn a scene template and
warp field for transforming the template through time for
RGB video frames. Our work is similar in approach, as
we also learn a scene template and then a continuous map-
ping through time. However our application is wildly differ-
ent by leveraging 4D-CT measurements and incorporating
a differentiable Radon transform into our pipeline. Concur-
rently at the time of writing this paper, recent work in [45]
demonstrates the potential of INRs to solve ill-posed inverse
problems in the tomographic imaging domain. However,
this paper only considers 3D static scenes whereas we con-
sider 4D scenes and under limited view sampling.

3. 4D-CT Forward Imaging Model
The primary task of this paper is to reconstruct 3D scenes

in time from CT measurements (i.e. sinograms). In this sec-
tion, we formulate our forward imaging model and the key
assumptions our algorithm makes for reconstructing scenes
from CT angular projections. Next, in section 4, we dis-
cuss our algorithmic pipeline to recover 4D scenes (i.e. 3D
volume in time) from CT sinograms.

Mathematically, in a parallel-beam CT configuration, the
three dimensional Radon transform models the CT mea-

surement of a dynamic scene at a particular viewing angle
as follows:

pθ(r, z) =

∫∫
σ(x, y, z, t)δ(x cos(θ(t))+y sin(θ(t))−r)dxdy,

where σ(x, y, z, t) is scene’s linear attenuation coefficient
(LAC) at coordinates (x, y, z) and time (t), θ(t) is the view
angle at time t, and δ(·) is the Dirac delta function [21].
The result of this transform, pθ(r, z), is the summation of
the scene’s LAC at view angle θ, detector pixel r and height
z. In other words, {pθ(r, z)|(r, z) ∈ R2} is the 2D projec-
tion of the 3D volume σ(x, y, z, t) at the view angle θ and
time t. We assume the scene’s LAC remains fixed for single
projection, such that ||σ(x, y, z, t+dt)−σ(x, z, y, t)||1 = 0
where dt is the exposure time of the CT scanner.

3.1. Modeling Assumptions:

Here we discuss the main assumptions made by our syn-
thetic dataset and reconstruction algorithm.

Parallel-Beam Geometry: Our first key assumption is
that we assume a parallel-beam geometry, the geometry
usually used by synchrotron CT scanners. Synchrotron
scanners have vital applications for medical and industrial
applications [32, 23, 15], and we expect our algorithm to
be useful in these domains. Our reconstruction geometry
would need to be modified to reconstruct CT measurements
from cone-beam or helical measurements, typically used in
medical imaging applications. The required modification is
replacing our Radon transform with a differentiable volume
ray tracer, for example those shown in [29, 34]. We leave
this modification of our algorithm to future work.

Data Pre-Processing: We assume CT measurements
have undergone pre-processing to account for beam hard-
ening and truncation. First, we consider the development
of our algorithm for synchrotron systems which employ a
monochromatic x-ray source and are therefore not affected
by beam hardening. In cases where the effect is unavoid-
able, many methods exist for correcting beam hardened
measurements and subsequently enabling high quality re-
constructions [16, 4]. Truncation is not common in scien-
tific and industrial imaging, but when present in measure-
ments, methods exist for correcting it [50].

Limited View Sampling: Previous 4D-CT methods as-
sume either phase-based information or a sparse set of an-
gular samples in order to reconstruct the scene. However,
objects undergoing general deformations are not amenable
to phase gating and sparse sampling schemes require scan-
ner rotation speed to be fast relative to scene motion. Our
method relaxes these assumptions — we do not require a
specialized sampling scheme or phase information for re-
construction. Rather, we assume only that the scene is cap-
tured sequentially between start and stop angles and that
motion is static for the duration of the scanner’s exposure
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Figure 2. Left: Sparse view sampling used by baseline methods
[30, 51, 52]. Right: Limited view sampling scheme we address
with our method. Reconstructing objects from limited views is
traditionally considered more challenging than from sparse views.
We illustrate this fact on the far right of the figure where we show
SART [2] reconstructions of the Shepp-Logan phantom [42] from
20 limited views versus 20 sparse views. Note the superior struc-
tural recovery of the phantom under sparse view sampling.

time. Consequently, our sampling method requires fewer
revolutions of the turntable during a single scan, and we
show that we outperform state-of-the-art methods under this
sampling scheme. This fact implies our method will enable
slower CT scanners to capture moving objects at a fidelity
that was impossible with existing methods. In Figure 2, we
illustrate the differences between limited view and sparse
view sampling for CT imaging.

4. System Architecture

As described earlier, limited view 4D CT is an ill-posed
problem both due to scene motion as well as the incomplete
data captured from dense angular sampling. Our key insight
is to leverage implicit neural representations to jointly learn
continuous functions of the scene volume and its evolution
in time. In this section, we present our algorithmic pipeline
consisting of three main parts: (1) an INR to estimate a
template reconstruction of the static 3D volume LACs; (2)
a parametric motion field that warps the template in time;
and (3) a differentiable Radon transform to synthesize an
estimate of the sinogram measurements. This pipeline is
optimized jointly via analysis-by-synthesis with the ground
truth sinogram measurements in a self-supervised fashion.

Template Estimation: In order to estimate a template
of our measured volume’s LACs, we use an implicit neu-
ral representation architecture, as illustrated in the upper
left portion of Figure 1. Specifically, we use a multi-layer
perceptron (MLP), denoted by the function σ̃φ, that maps
scene coordinates (x, y, z) to a template reconstruction of
the scene’s LACs σ̃(x, y, z), such that σ̃φ : (x, y, z) 7→
σ̃(x, y, z) — we denote the tunable parameters of the MLP
as φ. Note that σ̃ 6= σ, i.e., this template reconstruction does
not equal the actual reconstruction of the scene’s LACs until

we use the parametric motion field to warp the template to
be consistent with the measurements given in the sinogram.
In implementation, we input a grid of (x, y, z) coordinates.
Specifically, let V ∈ Rβ3×3 be a voxel representation of the
scene, and the scene boundaries defined as [−1, 1]3. For our
experiments, we set β = 80 and sample our INR with 803

linearly spaced coordinates at each iteration. Importantly,
we perturb these coordinates randomly within their voxel to
ensure the INR learns the scene’s continuous representation.

Our INR architecture is inspired by [29] — we use 4
fully-connected MLP layers with ReLU activiations. We
use Gaussian random Fourier feature (GRFF) [47] to ran-
domly encode input coordinates with sinusoids of a ran-
dom frequency. Formally, let v = (x, y, z) be a coordi-
nate from the input grid. Its GRFF is computed as γ(v) =
[cos (2πκBv), sin (2πκBv)], where cos and sin are per-
formed element-wise; B is a vector randomly sampled from
a Gaussian distributionN (0, I), and κ is the bandwidth fac-
tor which controls the sharpness of the output from the INR.
Similar to [47], we find that tuning the κ parameter regular-
izes our reconstruction. As shown in the supplemental ma-
terial, setting κ too low prevents the INR from fitting high
frequency content in the scene. Conversely, setting it too
high causes the INR to fit spurious features in the measured
sinogram resulting in poor reconstruction quality.

Motion Estimation: To map the estimated
template LAC to the sinogram measurements,
we introduce a parametric motion field to warp
the template to different time values (i.e., σ̃ →
σ(x, y, z, t0), σ(x, y, z, t1), . . . , σ(x, y, z, tN )). Specif-
ically, we define a tensor C ∈ Rβ3×k×3. This tensor
contains k polynomial coefficients at each scene voxel in
β3 in the 3 spatial dimensions (x, y, z). Next, we define
N time samples linearly spaced within [0, 1] where N
is the number of angular measurements as ti=0···N−1.
To warp a voxel to a specific time ti, we compute the
polynomial W (C, ti) = C0t

0
i + C1t

1
i · · ·Ckt

k
i , where

W (C, ti) ∈ Rβ3×3 is the warp field of the scene at ti,
and Ck is C(:, k, :). We generate scene frames using
a differentiable grid sampling function as introduced in
[35], warp fn(W (C, ti), σ̂) = σ(x, y, z, ti). Typically, we
observe that polynomials of order k = 5 are sufficient for
describing the deformable and periodic motion present in
our empirical studies.

Hierarchical motion model: We observed that attempt-
ing to estimate the warp field at the full volume of β3 re-
sults in poor motion reconstruction. To address this is-
sue, we introduce a hierarchical coarse-to-fine procedure
for estimating motion. Specifically, our initial motion field
at a base resolution α such that Cα ∈ Rα3×k×3 where
α < β. We iteratively increase α throughout training (e.g.
23 → 43 → 83 → 163 → . . . ) and use linear upsampling
to progressively grow our warp field like Cαi+1

= U(Cαi
)
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where U : Rα3
i 7→ Rα

3
i+1 . This strategy encourages our op-

timization to first recover simple motion and then iteratively
recover more complex deformations.

Differentiable Radon Transform: After estimating a
sequence of LAC volumes σ(t0), . . . , σ(tN ) by applying
our motion field W to the LAC volume template σ̃, we then
project the LAC volumes through the CT forward imaging
model to synthesize CT measurement using the 3D Radon
transform. Thus we can compare our synthesized measure-
ments to the ground truth CT measurements provided by the
captured sinograms. To enforce a loss, we implement the
3D Radon transform in an autograd enabled package so that
the intensity of each projected pixel is differentiable with
respect to the viewing angle. We backpropagate derivatives
through this operation and update the INR and motion field
parameters for analysis-by-synthesis.

The weights of the INR and the coefficients of the para-
metric motion field are updated via gradient descent to min-
imize our loss function

min
φ,C

λ1
∣∣∣∣Rθ(t)(σ(x, y, z, t)−Rθ(t)(GT )∣∣∣∣1

+λ2TV(C), t ∈ [0, 1].
(1)

The first term in our loss function is an L1 loss between our
synthesized and given sinogram measurements. Addition-
ally, we regularize the motion field by penalizing the spatial
variation of the coefficients. The weight of λ2 governs the
allowed spatial complexity of the motion field. Higher val-
ues create smoother warp fields but may underfit complex
motion, and low values allow fitting of complex motion but
are more prone to noisy solutions.

Continuous Volume and Time Representation: Due to
memory constraints, we sample our INR at resolution of 803

points during optimization. However, similar to [29], we
randomly perturb these points at each iteration, encourag-
ing our INR to learn a continuous mapping from (x, y, z) to
scene LAC. This continuous mapping property is useful be-
cause it allows us to query our INR at an arbitrary resolution
post-optimization. Similarly, we sample our motion field at
random times t during the optimization which encourages
the polynomial coefficients to fit a continuous representa-
tion of the scene motion. We use this fact to upsample our
scenes to arbitrary frame rates post-optimization. Due to
the parameteric representation of the motion field, we are
constrained to simple trilinear interpolation for upsampling
the field itself. We find that this works well in practice, but
is something to be addressed in future work.

Using the upsampling functionality, we show that we
can optimize our scene on a set of relatively low-resolution
measurements (e.g. 803) at 10 time frames, and then up-
sample the measurements to 2563 at 90 time frames (256×
256×256×90), making our method practically viable while
also bypassing substantial GPU memory requirements. We
demonstrate this fact in Section 6 and supplemental videos.

5. Implementation
Datasets: We benchmark our algorithm and competing

SOA methods on a dynamic 4D-CT dataset of object defor-
mation that we created (D4DCT Dataset). This dataset rep-
resents a time-varying object deformation to demonstrate
damage evolution due to mechanical stresses over time for
the study of materials science and additive manufacturing.
The deformation by the damage evolution provides crucial
information about the performance and safety of the mate-
rial of interest, more accurate, physics-based simulation is
needed. To this end, we generated dataset using the material
point method (MPM) [39] to accurately represent deforma-
tion of a type of aluminum under various loading condi-
tions. We then simulated 4D sinogram data with the pro-
vided angular ranges of 180 and 720 degrees where the
number of uniformly spaced projections is 90 and the de-
tector row size is 80. The dimension of the ground truth
volume is 803 and the number of ground truth frames for
algorithm evaluation is 10. We plan to open source this
dataset to encourage reproducibility in 4D-CT research.

We also benchmark our algorithm on thoracic CT data
[5]. This dataset contains volumetric reconstructions of the
chest cavity at 10 breathing phases. There is motion present
due to periodic functions of the diaphragm and heart. We
project the 10 reconstructions from an 803 volume into sino-
gram space with 90 uniform angular projection between 0
and 180 degrees to emulate the real sinogram data.

Comparisons: To our knowledge, we are the first
method to propose solving 4D CT in the limited angle
regime without the use of motion phase information. How-
ever, we benchmark against two baseline methods typically
used for sparse angular views on our limited angle datasets:
TIMBIR [30] and Warp and Project [52]. TIMBIR uses
sparse angular views with interleaved sampling to recover
4D-CT reconstructions. Warp and Project jointly solves for
motion and the object reconstruction from sparse angular
views. We note that these methods are expected to perform
poorly in our limited angle sampling regime as both are de-
signed for sparse sampling in time. We also benchmark the
datasets with the filtered back projection (FBP) method for
static 3D CT. This method is not designed to account for
motion and serves to illustrates the degrading effects mo-
tion has on reconstruction performance. We note that we
utilize source code for both [30] and [52] given to us by the
authors for running our experiments.

Algorithm Implementation Details: Our algorithm is
implemented in PyTorch to run on two Titan X GPUs for 15
minutes per recovery of an 803 LAC volume in time from a
given sinogram. We use a Fourier Feature value of κ = 1 or
κ = 1.5, as well as the ADAM optimizer [26] with learning
rate .001, λ1 = 1, and λ2 = 0.001 for all experiments.
In the supplemental material, we present a detailed list of
network layers and parameters for full reproduction. We run
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Figure 3. (A) Reconstruction results of our method and competing baseline methods on two objects (Left: Object Alum#1. Right: Object
Alum#2.) from our aluminum deformation dataset at the beginning (T = 0.00) and end (T = 1.00) of the deformation. On the left, two
plates compress the center mass of the object, and on the right, the center of the object is squeezed by two bars. In each tile, we display 3D
rendering of the object to the left, and on the right, a white 2D inlet containing an XY slice through the center of the object. The PSNR of
each frame is shown in white at the upper right corner of each method’s tile. (B) Ablation of key motion field regularization components.

TIMBIR on a one P100 GPU for an average of 2 minutes per
803 scene. Warp and Project ran on a laptop with 16 GB of
RAM and ran for approximately 6 hours to reconstruct 803

scenes in our dataset.

6. Experimental Results

Here we benchmark the performance of our algorithm
against baselines on our D4DCT dataset and the thoracic
dataset. While we show these results at a resolution of
803 to compare with our baselines, we also demonstrate our
ability to upsample our results to a more practical CT reso-
lution of 2563. In addition, we show the ability to upsam-
ple our videos to arbitrary frame rates in the supplemental
videos. Finally, we show ablations on our method and and
its sampling schemes at the end of this section.

D4DCT Dataset: As shown in Figure 3(A) and sum-
marized in Table 1, our proposed method drastically out-
performs competing methods in peak signal-to-noise ra-

Object Ours TIMBIR[30] Warp[52] FBP
Alum#1 22.68/0.95 10.95/0.08 15.12/0.72 9.29/0.08
Alum#2 24.50/0.96 10.74/0.04 14.22/0.65 10.65/0.07
Alum#3 26.47/0.98 11.23/0.06 16.01/0.76 14.82/0.12
Alum#4 26.01/0.98 11.06/0.04 15.65/0.77 9.76/0.06
Alum#5 26.56/0.98 11.39/0.06 16.31/0.76 13.00/0.11
Alum#6 24.66/0.97 10.98/0.04 15.37/0.72 9.03/0.05
Thorax 22.45/0.90 14.82/0.61 8.27/0.17 15.36/0.63

Table 1. Summary of the results shown in Figures 3 and 4 bench-
marking our algorithm against two SOA methods and the FBP
method. We report PSNR/SSIM metrics averaged over 10 recon-
structed estimated and ground truth frames. Alum #3-#6 results
are shown in the supplemental material.

tio (PSNR) and structural similarity index (SSIM) on the
D4DCT dataset. Our method recovers the geometry and
deformation of the aluminum object accurately in time. We
encourage the reader to refer to the supplemental videos of
these reconstructions to see the full deformations over time.

We observe that our method is not without flaws —
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Figure 4. The top row shows ground truth XY slices of the tho-
racic cavity at three different breathing phases (i.e., inhalation and
exhalation states). We show results of our method and TIMBIR in
the middle and bottom rows respectively. On the right, we show
our volumetric reconstruction of the chest cavity. Please see sup-
plemental materials for a video of this reconstruction.

GT

Figure 5. The INR model outperforms conventional CT recon-
struction methods [21, 2] in static 3D reconstructions. We show
transverse slices of the 3D Shepp-Logan for viewer reference.

our reconstructions contain artifacts on the surface of the
aluminum object. However, we notice that the compet-
ing methods of Figure 3(A) contain much more severe ar-
tifacts. These artifacts exist because the limited view sam-
pling scheme prevents these methods from constructing suf-
ficient initial estimates of the object at each time step; these
algorithms expect a sparse set of samples in order to form
these initial reconstructions, as shown in 2. We believe
our method performs significantly better in this sampling
scheme because we optimize a single reconstruction that is
warped through time, meaning our optimization leverages
the full angular range to reduce artifacts.

Thoracic CT Data [5]: In Figure 4, we display our re-
construction results for 3 breathing phases of our thoracic
CT data. In the upper half of each transverse slice, the top
portion of the diaphragm is observed progressively rising
and occupying more of the scene at each breathing phase.

Our method recovers this motion and the overall geometry
of the thoracic cavity. We encourage the reader to view the
supplemental material videos to view the full reconstruc-
tions in time. Compared to the TIMBIR reconstruction,
we observe that our method preserves sharper details and
achieves a better estimate of the motion. We also bench-
marked the Warp and Project method on this data, but the
reconstruction quality was subpar as noted quantitatively in
Table 1. This may be due to the fact that its code imple-
mentation is optimized for sparse angular sampling and not
robust to limited angular sampling.

6.1. Ablation Studies

INR Reconstruction: Using an INR in our reconstruc-
tion pipeline allows us several key advantages. First, we
observe that our INR outperforms conventional reconstruc-
tion methods on 3D scene reconstructions. In Figure 5,
we tasked an INR and the two conventional reconstruction
methods (SART and FBP), the 3D reconstruction technique
used by our 4D-CT baselines [52, 30], to reconstruct a 3D
Shepp-Logan phantom. The INR is implemented as a MLP
and takes GRFF features of (x, y) coordinates as input to
predict the LAC at each coordinate. The scene is projected
to sinogram space with the Radon transform and compared
to the given limited view measurements to enforce a loss
via gradient updates of the INR weights. We observed that
the INR gave better reconstruction PSNR. We also tested
this performance in the presence of additive noise and still
observe better performance under these conditions. We be-
lieve this performance gap extends to the 4D problem since
our 4D reconstruction results drastically outperform base-
lines methods that use SART and FBP.

Secondly, our INR allows us to upsample the scene to
arbitrary resolutions in the post-optimization, as shown in
Figure 6. Impressively, our INR yields sharp results that
resemble ground truth at the high resolution of 2563 despite
being optimized on data at the low resolution of 803. Fur-
ther, we observe that it qualitatively and quantitatively out-
performs naive trilinear upsampling methods. However, our
method is not perfect and fails to capture fine details like ar-
teries at the high resolution. This is possibly because these
subtle details were too degraded at the optimization resolu-
tion 803 for the INR to recover this structure.

Parametric Motion Field Regularization: We regular-
ize our motion field both by choosing an appropriate order
for its polynomial equation and with the hierarchical motion
model. In Figure 3(B), we illustrate the importance of these
methods on the final reconstruction quality of our scenes.
Of these two methods, the coarse-to-fine ablation affected
the largest change on the reconstruction PSNR with a 6 dB
performance improvement. This result is expected as the
motion field recovery is extremely ill-posed — simplifying
its initial estimation ensures the motion field does not imme-
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Figure 6. We demonstrate an ability to effectively upsample our scenes to arbitrary resolutions by sampling our INR’s continuous represen-
tation, and these upsampled scenes outperform naive upsampling using trilinear interpolation. In this experiment, we use the thoracic data
to 803 as ground truth (first column), and performed scene reconstruction with our method (second column). In the third column, we show
the ground truth thoracic data at its native resolution 2563. In the last two columns from left to right, we show the results of upsampling
our 803 reconstruction with a trilinear interpolation, and upsampling by querying our INR (i.e., MLP) at dense (x, y, z) coordinates.

diately overfit to noisy solutions. For the warp field polyno-
mial, we observed that a parametric motion field with low
order polynomials underfits non-linear motion, and thus re-
quired order 3 or higher for satisfactory performance.

Effects of Angular Sampling on Performance: We ob-
serve enhanced reconstruction performance of our tested
methods when we increase the angular range for a fixed
number of projections (i.e., make the samples more sparsely
situated). As an example, we compared our method’s and
TIMBIR’s reconstruction of an aluminum object (Alum#5)
measured with 90 projections within 180 degrees — our
method reconstructed the object to 25.30 dB compared with
TIMBIR’s 11.20 dB. When we the increased the angular
range to 720 degrees, we measured 27.69 dB and 16.28 dB
for our method and TIMBIR, respectively. We provide visu-
alizations of this experiment in the supplemental material.

7. Discussion

We demonstrate that our proposed algorithm outper-
forms SOA methods in reconstructing limited view 4D-CT
measurements of deformable motion. These results have the
potential to enable CT scanners to measure rapidly moving
scenes with a fidelity that was previously unattainable. Gen-
erally, this research has the potential to enable more efficient
CT scans in industrial and clinical settings.

We also address two limitations of our work. First, we
only consider a parallel-beam scanning geometry. While
this makes our method directly applicable to synchrotron
scanners, our method needs to be modified to reconstruct
cone-beam data. Several other works provide implementa-
tions of differentiable ray tracers capable of modeling this

geometry [46, 11], but we leave this modification to future
work. Second, we show promising results of upsampling
our scenes post-optimization. However, the efficacy of this
upsampling needs to be further explored and compared with
running the optimization at the full resolution. Even so,
we believe the upsampling results we show are a promising
method for achieving super-resolution in memory-hungry
regimes — a few very recent works also show impressive
super-resolution results with INRs [44, 45]. We hope our
work sparks interest in dynamic 4D-CT reconstructions that
leverage INRs in the future.
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