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Abstract

In this paper, we address the problem of video geo-
localization by proposing a Geo-Temporal Feature Learn-
ing (GTFL) Network to simultaneously learn the discrimi-
native features for the query video frames and the gallery
images for estimating the geo-spatial trajectory of a query
video. Based on a transformer encoder architecture, our
GTFL model encodes query and gallery data separately,
via two dedicated branches. The proposed GPS Loss and
Clip Triplet Loss exploit the geographical and temporal
proximity between the frames and the clips to jointly learn
the query and the gallery features. We also propose a
deep learning approach to trajectory smoothing by pre-
dicting the outliers in the estimated GPS positions and
learning the offsets to smooth the trajectory. We build
a large dataset from four different regions of USA; New
York, San Francisco, Berkeley and Bay Area using BDD
driving videos as query, and by collecting corresponding
Google StreetView (GSV) Images for gallery. Extensive
evaluations of proposed method on this new dataset are pro-
vided . Code and dataset details is publicly available at
https://github.com/kregmi/VTE.

1. Introduction
Image based geo-localization has attracted a lot of in-

terest in computer vision community, where a query im-
age is matched with geo-tagged reference images in the
gallery, and the GPS location of the best matching refer-
ence image is assigned to the query image. Existing works
in image geo-localization solve the same-view (ground to
ground) [26, 35, 44], as well as the cross-view (ground to
aerial) [2, 4, 12, 14, 17, 24, 25, 27, 32, 39] image match-
ing problems by learning robust features for the query and
the gallery set. With the increase in video data, there has
never been more urgency of geo-localizing the video clips,
where GPS trajectory corresponding to a query video is
determined. In this work, we explore the task of video
geo-localization for the same-view data, where both query

Figure 1: Sample geo-spatial trajectories for a subset of video
clips from San Francisco Area of BDD dataset [42]. The ground
truth trajectories are shown in green and their estimated geo-
trajectories obtained by the proposed method are shown in red.

videos and gallery images are from the ground views. More
specifically, given a query video recorded from a moving
camera, we want to determine the GPS coordinates of each
frame in the video.

One possible way to solve this problem is to treat each
frame in the video independently and apply frame-based
matching methods to determine the GPS location of each
frame. Earlier works in video geo-localization [9, 37] are
based on classical computer vision methods, where first the
SIFT descriptors [19] are computed for each frame in the
clip as well as for the images in the gallery set (reference
database). Then, for each frame in the query video the best
matching reference image is computed and its correspond-
ing GPS location is assigned to the query frame and the pre-
dicted GPS trajectory is obtained by connecting the frame
GPS locations. Vaca-Castano et al. [37] use Bayesian Fil-
tering to enforce temporal consistency on the estimated po-
sitions in order to obtain smooth trajectory. Recent works
[11, 13, 45] use 2D CNN networks to obtain frame-level
features instead of SIFT features for query frames and the
gallery images, and follow the same approach for image
matching. The features for each frame in the clip are ex-
pressed independent to each other, thus predicted GPS lo-
cations may not be smooth enough to represent a realistic
trajectory of the moving camera since no temporal close-
ness between the frames is exploited directly while learning
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the features for the clips.
In this paper, we propose to leverage the geo-temporal

proximity between the video frames while learning their
features, in order to enforce the predicted locations of the
consecutive video frames to be close to each other. Mo-
tivated by the recent success of deep learning methods in
video understanding and the effectiveness of transformer
networks [38] to incorporate long range context dependen-
cies between the inputs, we propose to use transformer
based architecture to learn feature representations for the
frames of the query videos. The network captures the co-
herent features for the video frames and hence provides
smoother predicted trajectories. In addition to exploiting
the temporal proximity between the frames within a clip,
we propose to use a novel GPS loss to learn smoother fea-
tures for clips that are geographically closer to each other.
Typical imagery captures areas containing vegetation, land-
marks and landscapes unique to those areas and can ex-
tend over a small geographical region. So, the clips over
this geographical region should share similar feature repre-
sentations. Thus, we propose to learn similar features for
video clips corresponding to the same geographical loca-
tions by constraining the training of our proposed network
by using GPS loss. Once the GPS locations for the query
video are estimated, earlier works used b-spline [9] and
minimum spanning tree based trajectory reconstruction al-
gorithms [37] to smooth the initial estimates of these GPS
positions. In this work, we propose a transformer encoder
based trajectory smoothing network to determine the out-
liers in a set of estimated GPS locations for the query clip,
and smooth the GPS values if they are determined to be
noisy by the network.

There is no publicly available large-scale dataset for
video geo-localization to evaluate the capability of the pro-
posed framework. The dataset of Vaca-Castano et al. [37]
consists of only 45 query videos making it impractical to
train deep learning methods. Heng et al. [11] use dataset
with image pairs that does not fit into our problem formu-
lation. Therefore, in this work, we build a new video geo-
localization benchmark dataset by utilizing Berkeley Driv-
ing Dataset (BDD) videos [42] and by collecting matching
Google StreetView (GSV) images. The BDD videos are
used as query videos and the GSV images form our gallery
set. The dataset covers four different regions of the USA;
San Francisco, Berkeley, Bay Area and New York. We pro-
vide evaluations on query videos from all four regions.

In summary, we make the following contributions in this
paper: (1) We propose a novel geo-temporal feature learn-
ing approach to learn coherent features for the query video
frames for the problem of video geo-localization; (2) We
propose a novel GPS loss to learn geographically smoother
features; (3) We propose a novel trajectory smoothing net-
work to refine the initial GPS predictions to obtain a smooth

trajectory; and (4) We build a new video geo-localization
dataset and provide extensive evaluations on query videos
from four different regions of the USA.

2. Related Work
2.1. Image and Video Localization

Early works on image based geo-localization [26, 35, 44]
employed the hand-crafted features for matching the query
and the gallery images from the same (ground) view. Re-
searchers followed up with cross-view image geolocaliza-
tion [17, 32, 14, 27, 2] and matched the features between
the aerial and ground images. The hand-crafted features for
geolocalization include Bag of words [32], VLAD descrip-
tors [14], and building facades [2].

Deep neural networks gained popularity in several re-
search areas, including image matching. A slew of works
[12, 40, 4, 39, 24, 18, 29, 30, 31] followed the deep-learning
trends for cross-view image matching between ground and
aerial images. Authors in [12] learn NetVLAD descriptors
for the images. Recent works propose triplet loss [39], in-
batch reweighting triplet loss [4] to learn discriminative fea-
tures. Regmi and Shah [24] utilize synthesized images to
obtain robust features for the query images, whereas Liu
and Li [18] leverage the orientation cues, and Shi et al. [29]
exploit the geometric and feature correspondences between
the query and gallery images.

With success of above image-based localization meth-
ods, natural extension is to explore video localization. How-
ever, a limited amount of research on video geo-localization
has been reported. Authors in [37, 9] estimate trajectories
of streetview videos by comparing the SIFT [19] features of
query and gallery frames. Recent work by Heng et al. [11]
explores cross-view matching for autonomous vehicle navi-
gation in street-view. Works by Hu and Hee Lee [13] predict
the trajectory of a moving ground vehicle by matching the
street-view panorama to aerial images, however assume that
the initial pose (position and heading) of the moving vehicle
is known. Earlier works by [3, 21] perform street view navi-
gation of agents by streetview-to-streetview matching using
reinforcement learning. The scope of these works is limited
to learning image based features, and these approaches do
not explore joint feature learning by exploiting the tempo-
ral proximity between the frames in the query video. In this
paper, we propose transformer-encoder based deep neural
network to learn temporally coherent features for the query
frames and use them for the task of video geo-localization
over large geographical area.

2.2. Trajectory Smoothing
Earlier work by Hakeem et al. [9] discarded the noisy

outliers from the GPS predictions and used the remaining
GPS points as control points for a b-spline to interpolate the
remaining locations to smooth the trajectories. Chazal et
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al. [5] propose data-driven trajectory smoothing framework
by moving the noisy GPS points to the barycenter of their
nearest neighbors in feature space. Authors in [37] smooth
the noisy trajectories by using a Minimum Spanning Trees
(MST) based trajectory reconstruction algorithm and elimi-
nate trajectory loops or noisy estimations. Recent work by
Hu et al. [13] utilize visual odometry readings of the ve-
hicle in Particle Filter algorithm [33] to smooth the initial
predictions of the vehicle location.

Different from the previous works, we propose a
transformer-encoder based deep neural network to deter-
mine the offsets in the noisy predictions with confidence
scores for the predictions, and add the offsets to the noisy
predictions to smooth the trajectories.

2.3. Attention based Networks and Applications
The inception of Transformer network [38] based on at-

tention mechanisms for long term sequence modelling to
solve the language translation task has gained a lot of pop-
ularity and has been widely used in different applications.
Fu et al. [8] propose dual attention network with position
and channel attention modules for scene segmentation task.
Different applications of attention network include text to
speech synthesis [16], text summarization [28], object lo-
calization [7], audio-visual event localization [41], video
action localization [6, 23]. Different from previous works,
we extend the attention mechanism to the task of video geo-
localization to learn temporally coherent features for the
query video as well as to the task of trajectory smoothing.

2.4. Geolocalization Datasets
The existing geolocalization datasets can be broadly

grouped into two categories: same-view and cross-view im-
age datasets. Earlier works by [43, 10] build street-view
image datasets to conduct the same-view image match-
ing. Some popular datasets for image-based localiza-
tion with ground and satellite pairs include CVUSA[46],
CVACT[18], Vo and Hays [39], and UCF-OP [24]. Tian
et al. [34] collect cityscale streetview and bird’s eye view
image pairs; whereas Zheng et al. [47] collect image from
three platforms: synthetic drones, satellites and ground
cameras.

The video dataset by Majdik et al. [20] was collected
by flying a camera-mounted micro aerial vehicle (MAV)
recording the scene from 10-20 meters above the ground
and capturing the frontal view of the buildings. They build a
reference set of images from Google Street-View data, how-
ever, their dataset is limited to a 2 km trajectory in down-
town Zurich, Switzerland. Yu et al. [42] collect large scale
driving dataset, BDD, covering four different regions of the
USA; New York, San Francisco, Berkeley and Bay Area.

In this work, we utilize the driving videos from BDD
dataset as query videos. We then build a reference set of im-
ages for corresponding BDD videos by collecting Google

Encoders

BDD frames
b1, ., ., ., bn

GSV Images
g1, ., ., ., gn

Geo-Temporal 
Attention Module

Geo Attention 
Module

BDD features
bf1, ., ., ., bfn

GSV features
gf1, ., ., ., gfn

Max-Pooling Max-Pooling

bclip gclipLtriplet-clip

Ltriplet-frame

LGPS

Frame 
embeddings

Frame 
embeddings

Frame Embeddings

Multi-Head 
Self Attention

LayerNorm

MLP

⨁

⨁

BDD/GSV Features

Attention Module

LayerNorm

Figure 2: Geo-Temporal Feature Learning (GTFL) Network:
Given a set of n frames for BDD (query) and corresponding n
frames for GSV (gallery), frame embeddings are obtained using
Encoders (VGG-16 network). Then, the Geo-Temporal Attention
and Geo-Attention modules learn coherent feature representations
for BDD and GSV frame embeddings respectively. The frame-
based features are aggregated using Max-pooling operation to ob-
tain the representative clip features, bclip and gclip. The Frame
Triplet loss and GPS loss are applied on frame level features, and
the Clip Triplet loss is applied on clip features. Detailed architec-
ture for Attention module is shown on the right where BDD/GSV
features are learnt for the frame embeddings.

Street View using the GPS annotations of BDD videos.
Thus, we broaden the applicability of BDD dataset to ad-
vance the research on video geo-localization.

3. Method
In this work, we leverage the temporal relationships be-

tween the frames in a query video to learn their features for
the task of video geo-localization. We learn the representa-
tions of the query video frames and gallery images differ-
ently. The query video frames exhibit temporally smooth
transition between consecutive frames, therefore the neigh-
boring frames can be exploited to learn better features for
the current frame. The gallery images, on the other hand,
are collected from Google StreetView (GSV) and are more
discrete and have non-uniform changes between the frames
in a trajectory; thus only geographical relationships be-
tween the GSV frames is explored. We first obtain embed-
dings for query and gallery images using encoders, and sub-
sequently improve the feature embeddings by employing
transformer based attention networks. Finally, we smooth
the estimated geo-locations of the query frames by utilizing
a transformer based trajectory smoothing network.

3.1. Geo-Temporal Feature Learning Network
The proposed geo-temporal feature learning network is

shown in Figure 2 and explained in detail next.
Encoders: Assume we are given a query BDD video clip
of n frames, B = [b1, b2, ..., bn] and corresponding GSV
images G = [g1, g2, ..., gn]. The encoders, as shown in Fig-
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ure 2, are used to obtain the embeddings for the input frames
in our pipeline. The encoders are 2D CNN networks with
VGG-16 architecture with NetVLAD [1] as final layer and
shared weights1. We use the pre-trained weights from the
network trained on Pittsburgh 250k dataset [36] and fine-
tune them on our dataset. Thus obtained frame embeddings
are utilized in the next stage of the pipeline.
Geo-Temporal Attention and Geo-Attention Modules:
The attention modules, Geo-Temporal Attention module
(upper branch) and Geo-Attention module (lower branch),
have similar architectures, as shown in the right panel in
Figure 2. The attention module consists of multi-head atten-
tion and feed-forward (MLP) layers similar to transformer
encoder. We utilize 2 heads and 2 encoders in our attention
modules.

The geo-temporal attention module exploits the tempo-
ral relationship between the frames in the video clip to learn
good frame features. Each feature is learnt by attending to
all the frames of the query video. On the other hand, the
geo-attention module learns individual features by attend-
ing onto itself only. The modules are called ‘Geo-’ mod-
ules because the geo-locations of the frames are exploited
in learning the features for the query video frames and the
reference frames. This is done by using the GPS loss during
the training, which is further explained next.

3.2. Loss Functions
We next explain the loss functions used to train the 2D

CNN and the Attention blocks in our proposed architecture.
We apply the triplet loss on the frame features as well as on
the clip features and additional novel GPS loss to regularize
the training.
Frame Triplet Loss: Consider the frame fea-
tures [bf1, bf2, ..., bfn] for a query BDD video with
frames [b1, b2, ..., bn], and the feature embeddings
[gf1, gf2, ..., gfn] for corresponding matching GSV im-
ages [g1, g2, ..., gn]. Also, consider the GSV images
[g′1, g

′
2, ..., g

′
n] from a different location with feature rep-

resentations as [g′f1, g
′
f2, ..., g

′
fn]. For the BDD feature

bfi, the GSV feature gfi is a positive feature and the
GSV feature g′fi is the negative feature. Now, if dpi is
the Euclidean distance between the positive feature pairs
(bfi, gfi) and dni is the Euclidean distance between the
negative feature pairs (bfi, g

′
fi), the objective of the frame

triplet loss is to minimize dpi as well as maximize dni.
Thus, the frame triplet loss for query clip is computed as
the sum of triplet losses for the individual frames of the
clip, represented by the Equation 1.

Ltriplet−frame =

n∑
i=1

max(0,m+ dpi − dni), (1)

1Note that we performed experiments with better network like Resnet;
since VGG-16 is pre-trained on Pittsburgh data set it performs better than
Resnet pre-trained on ImageNet.

where, m is the margin and n is the length of the video clip.
Clip Triplet Loss: As shown in Figure 2, we apply max-
pooling on the frame features of query video and the set of
features for the GSV frames to obtain the representative fea-
tures bclip and gclip. We observe that for a small window of
8 frames, the clip frames contain highly overlapping field
of views and thus the clip features contain the representa-
tive features of the given location. Thus, the clip features
for BDD and GSV can additionally be used into the training
instead of just employing individual frame features. There-
fore, along with the frame triplet loss, we propose to use
clip triplet loss to optimize the training.

Assume bclip and gclip are BDD and GSV clip features
respectively for a given geo-location, their features are con-
sidered to be positive feature pairs and their feature distance
can be represented as dp−clip. Similarly, if g′clip is the GSV
clip feature at a different geo-location, it is considered as a
negative feature for bclip and the feature distance between
bclip and g′clip is represented as dn−clip. The clip triplet loss
is computed as shown in Equation 2.

Ltriplet−clip = max(0,m+ dp−clip − dn−clip), (2)

where, m represents the margin.
GPS Loss: In addition to using frame triplet loss and clip
triplet loss, we propose a new loss, GPS loss to further im-
prove the training of our proposed GTFL network. The
intuition behind the GPS loss is that the clips (or images)
closer to each other in geographical distance are also simi-
lar in feature representations compared to the clips (or im-
ages) that are further apart in geographical distance. This is
because each geographical location may have unique land-
marks, landscapes and vegetation representing that region,
which can spread over a small nearby area, however, this
won’t be valid in regions that are far away. GPS loss acts as
an additional supervision to the training since most feature
learning is done on image features using triplet losses.

The GPS loss is formulated as follows. Given GPS info
for each frame, we compute the geodesic distance between
the frames using the Algorithm for Geodesics [15]. We also
compute their feature distances using the learnt feature rep-
resentations. Let bf1 and bf2 refer to feature representa-
tions for two frames, and let (lat1, lon1) and (lat2, lon2)
be their GPS locations respectively. The geographical dis-
tance between two GPS points, dgps is computed using the
algorithm in [15]. Similarly, their feature distance dfeat is
obtained as shown in Equation 3.

dfeat =|| bf1 − bf2 ||22, (3)

We then hypothesize that the normalized feature distance
between the frames should be proportional to their normal-
ized geographical distance as shown in Equation 4.

dfeat ∝ dgps, (4)
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To verify this, we compute the feature distances dfeats
for the images and the physical distances dgps for their GPS
positions. We visualize these distances in a scatter-plot and
fit a line through the points and establish a linear relation-
ship between dfeats and dgps with slope 1.077 and intercept
of -0.2313; as reported in the Supplementary material.

We then minimize the L1 distance between the normal-
ized feature distance and the normalized gps distance as
shown by Equation 5.

LGPS =|| dfeat − dgps ||1, (5)

Any deviation in difference between the feature distance
and GPS distance is penalized while training the network.
Total Loss: The overall expression for the total loss func-
tion is the sum of Equations 1, 2 and 5, as shown in Equation
6.

Ltotal = Ltriplet−frame + λ1 ∗Ltriplet−clip + λ2 ∗LGPS ,
(6)

where, λ1 and λ2 are the hyperparameters for the loss terms.

3.3. Trajectory Smoothing Network
The proposed GTFL network shown in Figure 2 is used

to obtain the feature representations for the BDD query
video frames and the GSV reference frames. The geo-
location of each query frame is estimated by matching in-
dividual features to the frame features of the images in
gallery set. The sequence of estimated geo-locations for
the query frames represents the trajectory of the moving
camera that captured the query video. The predicted tra-
jectory may not be smooth because even though the query
features are learnt jointly, the GPS positions are estimated
independently by matching query frame features with the
reference image features. Due to some incorrect matches or
some outliers, the resultant GPS trajectory may lack tempo-
ral smoothness. We, thus, propose a trajectory smoothing
method to refine the noisy GPS locations. Our approach for
temporal smoothing is to determine the noisy GPS values
in a set of predicted GPS locations for a query clip. A con-
fidence score along with an offset value for each estimated
GPS location is determined such that the addition of the off-
set to the noisy trajectory will result in a smooth trajectory.

The trajectory smoothing network consists of architec-
ture as shown in Figure 3. It consists of linear projection
(fc) layer, Transformer encoder layer followed by two paral-
lel heads: a regression head (fc-layer) and a prediction head
(fc-layer). The linear projection layer is a fully connected
layer that maps a GPS location (2D) to a higher dimensional
embedding; a 512 dimensional feature vector. The trans-
former encoder works on higher dimensional representa-
tions for the geo-locations and learns to correct GPS values
in the input trajectory. The architecture of the transformer
encoder layer is similar to the attention module shown in

Transformer Encoder Module
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(fc-layer) 

(512             2)
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1
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2
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n
  (Noisy)
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(512            2)
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(2               512)
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p
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, ... , p
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Figure 3: Proposed Trajectory Smoothing Network: The noisy
GPS sequence [GPS1, GPS2, ..., GPSn] is input to the network
to compute the error offsets [∆GPS1,∆GPS2, ...,∆GPSn] and
the confidence scores [p1, p2, ..., pn] for each input value. The
offsets are added to only those GPS values in the input sequence if
they are deemed to be noisy by their confidence scores.

Figure 2, right panel. The learnt embeddings from the trans-
former encoder are projected back to 2-D GPS space using
the regression head. The regressed values represent the nor-
malized values of the offset in GPS error. Also, the learnt
embeddings from the transformer are input to the prediction
head (fc-layer) that predicts the confidence score whether a
GPS location in the input sequence is noisy.

Let [GPS1, GPS2, ..., GPSn] be the predicted geo-
locations for the query frames [b1, b2, ..., bn]. The es-
timated geo-locations for majority of the query frames
are close to each other, with some possible outliers
that account for large errors in localization of the clip.
The trajectory smoothing network determines the offset
[∆GPS1,∆GPS2, ...,∆GPSn] for each input GPS val-
ues, as well as the confidence scores [p1, p2, ..., pn]. De-
pending on the confidence score, the ∆GPS is added to the
noisy inputs to obtain the smoothed version of the GPS val-
ues; using the Equation 7. The confidence score threshold
is kept at 0.5.

GPS′
i = GPSi + pi.∆GPSi. (7)

4. Experimental Setup
This section provides details about the datasets used and

the experimental setups followed in our work.

4.1. Datasets
Since there is no existing large dataset to work on video

geo-localization problem, we utilize the video clips of BDD
dataset [42] provided by Yu et al. as query clips. The BDD
dataset is a large-scale driving dataset collected over four
different regions of the USA, New York (NY), Berkeley,
San Francisco (SF) and Bay Area. The videos are around
40 seconds in length. The dataset provides geo-location
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Table 1: The GPS window of each region under consideration and the area of each region in square kilometers and the number of clips
considered from each of the regions from BDD dataset. We employ video sequences only from San Francisco area for training and video
sequences from all four areas for testing as shown in the last column of this table.

Regions Latitude Range Longitude Range Area (square kms) # dataset pairs
train test

San Francisco [37.65 , 37.81] [-122.5, -122.38] 188.06 750 95
Bay Area [37.419279, 37.507089] [-122.258048, -122.1054] 131.69 0 81
Berkeley [37.72409913, 37.897474] [-122.312608, -122.100853] 359.24 0 51
New York [40.7073, 40.7381] [-74.01486, -74.0072] 18.26 0 106
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Figure 4: The frames from a BDD sequences at times T = 3, 6, 9, 12, 15 and 41 (Left Panel, Top); and GSV images corresponding to the
same GPS locations (Left Panel, Bottom). The plot of the trajectory (green curve) along with the frame locations (red and blue dots) for
different times on the aerial map (Right Panel). Numbers 3, 6, 9, 12, 15 and 41 marked with blue dots on aerial map illustrate the position
of moving camera at respective times.

(GPS) annotations for the driving trajectories annotated at
1frame/second. The dataset consists of diverse scene types
such as city streets, residential areas and highways. In this
work, we consider the BDD video clip as a query, and esti-
mate its corresponding GPS trajectory.

To solve trajectory estimation problem, a reference
database of gallery images with known GPS is needed. The
feature representations of the query is matched with the
gallery image features, and the location of the gallery fea-
ture with the highest similarity to the query is selected as the
estimated location of the query. Since BDD dataset doesn’t
provide the gallery set, we use the GPS annotations of
BDD videos to download corresponding Google StreetView
(GSV) images at those locations and build a gallery set. For
each query location, we download four GSV images, with
camera headings of 0, 90, 180 and 270 degrees. We then
manually annotate the dataset to select the image that has
the highest overlap with the BDD query frames.

We select different GPS windows for constructing the
dataset as shown in Table 1. We collect a total of about
750 BDD-GSV pairs (query videos and gallery image) for
training and 333 pairs for testing that spreads over 697.25
km2 area. Data from San Francisco area is used for both
training and testing, whereas the other three regions, Bay
Area, Berkeley and New York are used only for testing.

A sample sequence of BDD and GSV frames from the
dataset is shown in Figure 4. The upper row in left panel
shows BDD frames at time instances T = 3, 6, 9, 12, 15
and 41 and their corresponding GSV frames are shown in
the lower row. We can observe high similarity and over-

lap in fields of views between the BDD and GSV frames;
justifying that we are successful in constructing a meaning-
ful dataset employing BDD video frames and GSV images.
The right panel shows the camera location at different time
instances with (red and blue) dots on an aerial map; and the
green curve connecting them demonstrates the path that the
camera takes.

4.2. Implementation Details
In this section, we present the implementation details of

our transformer based architecture for geo-temporal feature
learning and trajectory smoothing networks. We use Py-
Torch [22] for the implementations.

Geo-Temporal Feature Learning Network: The GTFL
network consists of encoders followed by attention mod-
ules as shown in Figure 2. The encoders are VGG-16 net-
works, with NetVLAD layer as the final layer, and shared
weights for both branches. We use the pretrained weights
of the network trained on Pittsburgh 250k dataset to ini-
tialize the parameters of the network and fine-tune them
on our dataset. The output of frame-encoder network is
a 32,768-dimensional feature representation for each input
frame. Geo-temporal attention and geo-attention modules
consist of encoder modules of Transformer network. We
use 2 attention heads and 2 encoder layers for both mod-
ules. The weights are randomly initialized.

We use triplet losses on the frame features, and the clip
features as well as the proposed GPS loss on the frame fea-
tures. λ1 and λ2 are the balancing factors between the losses
and their values are set at 10 and 10 respectively. The query
and gallery features are represented by 512-dim. vectors.
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Trajectory Smoothing Network: The trajectory smooth-
ing network consists of a fully-connected layer that maps
2-dimensional GPS values to 512 dimensional represen-
tations, followed by the encoder module of transformer.
The transformer encoder consists of four attention heads
and two encoder layers. The output of the transformer
encoder is passed through two parallel heads, fully con-
nected layers that map the 512-dimensional representations
to 2-dimensional values of offset regression and confidence
score prediction. During the training, we employ data aug-
mentation by feeding noisy GPS values and artificially per-
turbed GPS values as input to the network. We observe that
by artificially perturbing some ground truth GPS values and
using them as input provides the network with strong guid-
ance that not all GPS location are noisy, and only some need
modifications, whereas the rest should be kept unchanged.

5. Results
We present extensive evaluation of our proposed method

demonstrating the effectiveness of collectively learning the
clip features to estimate a smoother trajectories for the
query videos.

5.1. Evaluation Metric
We provide evaluation in terms of localization error as

well as recall accuracy. For localization error, we first com-
pute the distance in meters between the estimated GPS posi-
tions of the query video frames and their ground truth GPS
locations. Average of the error distances for the frames pro-
vides the localization error for the query clip.

Recall accuracy is reported in terms of recall at top-K
and recall at distance threshold. For recall accuracy at top-
K, a matching is successful if the correct match is within
a set of K closest images, in Euclidean distance of their
features. For recall accuracy at distance threshold, a query
is correctly localized if its distance in meters to its ground
truth position is within the threshold distance.

5.2. Quantitative Evaluation
We present the quantitative evaluation of the baselines

and our proposed method in terms of localization error and
recall accuracy.
Localization Error: We compare our proposed approach
with the baseline 2D CNN and 3D CNN architectures as
well as with an IBL method by Zemene et al. [45]. The
baseline networks are explained next.

The 2D CNN baseline consists of VGG-16 architecture
with NetVLAD [1] as the final layer and uses the pretrained
weights, same as the Encoders explained in section 3.1. We
conduct the evaluation employing the raw features obtained
using the pretrained weights and report the results in first
row of Table 2. We next finetune the 2D CNN baseline on
our dataset. The features for each frame in the query video
clip are learnt independently and their GPS locations are

Table 2: Comparison of proposed approach with baseline meth-
ods in terms of localization error (meters). 2D CNN : Evaluation
using raw features from pretrained VGG network. 2D CNNf :
VGG network fine-tuned on our dataset. Smoothing∗ : Smoothing
by Interpolation.

Methods SF Bay Area Berkeley NY

2D CNN 2516 4686 7020 1818
2D CNN + Smoothing 2290 3999.17 5425 1292

2D CNNf 2091.66 4509.15 6687.61 1332.08
2D CNNf + Smoothing 1710.54 4112.15 4565.46 1222.88

[45] 1742.39 4257.08 5031.35 1164.83
[45] + Smoothing∗ 1327.77 3253.06 3755.98 935.78

3D CNN 4247.09 6183.71 6677.93 1572
3D CNN + Smoothing 3848.83 5201.65 6503.96 1399.17

Proposed 300.47 524.28 424.79 493.43
Proposed + Smoothing 128.94 206.32 161.51 285.41

predicted using the query features. The predicted locations
are smoothed using the proposed smoothing network. The
results are presented in the second row of Table 2. Next,
we use a recent image based localization (IBL) method by
Zemene et al. [45] to conduct evaluation on our dataset.
We also perform trajectory smoothing by Interpolation as
a baseline. First, a GPS is determined an outlier if its dis-
tance to all other GPS positions in the trajectory is larger
than a threshold. Then, a new GPS value is assigned to it by
interpolating the GPS values of the previous and next frame.
The results are presented in the third row of Table 2.

We also conduct the baseline experiment using 3D CNN
architecture to learn the feature embeddings for the query
frames. Here, the ResNet R3D-18 is used with the modi-
fication that the temporal dimension is preserved; meaning
the output for N input frames in a clip will have N features.
But these features are learnt by considering the neighbor-
ing frames as well, since the kernel size of 3 for temporal
dimension is considered. The results are presented in the
fourth row of Table 2. Since the network is trained from
scratch, it performs worse compared to 2D CNN baseline
with fine-tuning.

Finally, we present the results for the proposed method
in the fifth row of Table 2. For our proposed method where
the network is able to consider all the frames in the input
to generate their individual features, the results are signifi-
cantly better than the baseline networks. Also, smoothing of
the trajectory helps to reduce the localization error further.
Recall Accuracy: We next report the comparison of our
proposed method with the baseline method (2D-CNN) and
SOTA-IBL method (Zemene et al. [45]) in terms of recall
accuracies. We present the top-K recall accuracy for K =
1 to 100 in Figure 5a. Here, we visualize the recall ac-
curacy plot for all four regions. We observe that our pro-
posed method performs significantly better than the base-
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Figure 5: Comparison of proposed approach with baseline 2D
CNNf and Zemene et al. [45] in terms of recall accuracies.

(a) (b)
Figure 6: Trajectory smoothing example for a query clip from
Berkeley region. (a) shows the ground truth (green curves) and the
predicted trajectories before smoothing (blue curves). (b) show the
ground truth (green curves) and the predicted smooth trajectories
(red curves).

line methods. We also report recall accuracy with respect
to distance threshold in Figure 5b. We observe that the pro-
posed method is better than the baselines for all values of
distance thresholds. The recall accuracy plots illustrate the
superiority of our proposed approach to video geo-location
compared to the frame based baseline networks.

5.3. Qualitative Evaluation
Figure 1 shows the geo-spatial trajectories predicted by

our proposed method on subset of videos from San Fran-
cisco Area and their comparison with the ground truth tra-
jectories. The green curves represent the ground truth tra-
jectories for the camera while the red curves are the trajec-
tories predicted by our proposed method. These qualitative
results demonstrate the capability of the proposed method
in large-scale video localization.

We also present a trajectory smoothing example in Fig-
ure 6. Figure 6a presents a noisy trajectory (blue curve)
obtained by using the proposed GTFL network. The tra-
jectory smoothing network refines the noisy trajectory re-
sulting in the smooth trajectory as shown in Figure 6b. We
observe significant impact of trajectory smoothing network
in obtaining smoother predicted trajectory. Additional qual-
itative results are provided in the Supplementary material.

5.4. Ablation Study
We conduct ablation studies to understand the impact of

different loss functions used in our experiments. We also
conduct ablations on the parameters of trajectory smoothing
network to determine the best hyperparameters. We report
ablations on feature dimensions of GTFL network and the
contribution of NetVLAD layer in Supplementary material.

Table 3: Ablation study of GPS errors in meters with respect to
different losses during the training. TLf : Frame Triplet loss; TLc

: Clip Triplet loss; GL : GPS Loss.

Losses SF Bay Area Berkeley NY

TLf 704.16 1172.99 1253.6 978.51

TLf + TLc 524.81 692.34 819.54 836.13

TLf + TLc + GL 300.47 524.28 424.79 493.43

Table 4: Ablation on the number of heads in self-attention module
and the number of transformer encoder layers.

Parameters SF Bay Area Berkeley NY

Heads = 2, Layers = 1 158.07 233.86 189.54 307.91
Heads = 2, Layers = 2 144.21 211.59 168.61 292.24
Heads = 4, Layers = 2 128.94 206.32 161.51 285.41
Heads = 4, Layers = 4 129.46 227.78 183.97 312.57

Ablation on Losses: For this ablation, we conduct the ex-
periments with different combinations of loss functions for
our proposed method. The results after the application of
the trajectory smoothing on the predicted GPS are shown.
The results are presented in Table 3. The numbers suggest
that utilizing the clip triplet loss helps in obtaining better
GPS estimation compared to with only frame triplet loss;
and the use of GPS loss further helps the network to learn
discriminative features for the clips and the localization er-
ror decreases further.
Ablation on parameters for Trajectory Smoothing Net-
work: For this ablation, we conduct experiments for
smoothing the predicted GPS trajectory by varying the
number of layers of transformer encoder network and vary-
ing the number of heads in the self-attention layer. The re-
sult is shown in Table 4. We observe that the best results are
obtained for heads = 4 and layers = 2.

6. Conclusion
In this paper, we have presented a novel application of

transformer based networks for long-term feature learning
between the frames of a query video clip for the task of
video geo-localization as well as for geo-trajectory smooth-
ing. We formulated novel GPS loss and validated its contri-
bution in learning better features for the query and gallery
frames. We built a new benchmark dataset for video geo-
localization and report significant improvement of proposed
method over frame based feature learning approach where
the temporal relations between the frames are not captured
and over 3D-CNN baseline where only short term temporal
information is incorporated.
Acknowledgements: The authors would like to thank Amir
Roshan Zamir and Gonzalo Vaca-Castano for their help
with their dataset; and Yonatan Tariku Tesfaye and Eyasu
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