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Figure 1: Overview. HuMoR is a 3D Human Motion model for Robust estimation of temporal pose formulated as a condi-
tional variational autoencoder. (Left) The proposed approach can operate on many input modalities and is designed to handle
partial and noisy observations. (Middle/Right) A test-time optimization fits 3D motion and shape to an input sequence using
HuMoR as a prior; additional outputs include the ground and person-ground contacts (colored as ground plane and contacts).

Abstract

We introduce HuMoR: a 3D Human Motion Model for
Robust Estimation of temporal pose and shape. Though
substantial progress has been made in estimating 3D hu-
man motion and shape from dynamic observations, recov-
ering plausible pose sequences in the presence of noise
and occlusions remains a challenge. For this purpose,
we propose an expressive generative model in the form
of a conditional variational autoencoder, which learns
a distribution of the change in pose at each step of a
motion sequence. Furthermore, we introduce a flexi-
ble optimization-based approach that leverages HuMoR
as a motion prior to robustly estimate plausible pose and
shape from ambiguous observations. Through extensive
evaluations, we demonstrate that our model generalizes
to diverse motions and body shapes after training on a
large motion capture dataset, and enables motion recon-
struction from multiple input modalities including 3D key-
points and RGB(-D) videos. See the project page at
geometry.stanford.edu/projects/humor.

1. Introduction

As humans, we are constantly moving in, interacting
with, and manipulating the world around us. Thus, applica-
tions such as action recognition [79, 80] or holistic dynamic

indoor scene understanding [15] require accurate percep-
tion of 3D human pose, shape, motion, contacts, and inter-
action. Extensive previous work has focused on estimat-
ing 2D or 3D human pose [13, 52, 53], shape [57, 26, 67],
and motion [37] from videos. These are challenging prob-
lems due to the large space of articulations, body shape,
and appearance variations. Even the best methods struggle
to accurately capture a wide variety of motions from vary-
ing input modalities, producing noisy or overly-smoothed
motions (especially at ground contact, i.e., footskate), and
struggle with occlusions (e.g., walking behind a couch as
in Fig. 1).

We focus on the problem of building a robust human mo-
tion model that can address these challenges. To date, most
motion models directly represent sequences of likely poses
— e.g., in PCA space [55, 77, 70] or via future-predicting
autoregressive processes [75, 76, 61]. However, purely
pose-based predictions either make modeling environment
interactions and generalization beyond training poses dif-
ficult, or quickly diverge from the space of realistic mo-
tions. On the other hand, explicit physical dynamics mod-
els [63, 43, 69, 62, 12, 11] are resource intensive and re-
quire knowledge of unobservable physical quantities. While
generative models potentially offer the required flexibility,
building an expressive, generalizable and robust model for
realistic 3D human motions remains an open problem.

To address this, we introduce a learned, autoregressive,
generative model that captures the dynamics of 3D human
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motion, i.e., how pose changes over time. Rather than de-
scribing likely poses, the Human Motion Model for Robust
Estimation (HuMoR) models a probability distribution of
possible pose transitions, formulated as a conditional vari-
ational autoencoder [72]. Though not explicitly physics-
based, its components correspond to a physical model: the
latent space can be interpreted as generalized forces, which
are inputs to a dynamics model with numerical integration
(the decoder). Moreover, ground contacts are explicitly pre-
dicted and used to constrain pose estimation at test time.

After training on the large AMASS motion capture
dataset [51], we use HuMoR as a motion prior at test time
for 3D human perception from noisy and partial observa-
tions across different input modalities such as RGB(-D)
video and 2D or 3D joint sequences, as illustrated in Fig. 1
(left). In particular, we introduce a robust test-time opti-
mization strategy which interacts with HuMoR to estimate
the parameters of 3D motion, body shape, the ground plane,
and contact points as shown in Fig. 1 (middle/right). This
interaction happens in two ways: (i) by parameterizing the
motion in the latent space of HuMoR, and (ii) using Hu-
MoR priors in order to regularize the optimization towards
the space of plausible motions.

Comprehensive evaluations reveal that our method sur-
passes the state-of-the-art on a variety of visual inputs in
terms of accuracy and physical plausibility of motions un-
der partial and severe occlusions. We further demonstrate
that our motion model generalizes to diverse motions and
body shapes on common generative tasks like sampling and
future prediction. In a nutshell, our contributions are:

• HuMoR, a generative 3D human motion prior modeled
by a novel conditional VAE which enables expressive
and general motion reconstruction and generation,

• A subsequent robust test-time optimization approach that
uses HuMoR as a strong motion prior jointly solving for
pose, body shape, and ground plane / contacts,

• The capability to operate on a variety of inputs, such as
RGB(-D) video and 2D/3D joint position sequences, to
yield accurate and plausible motions and contacts, exem-
plified through extensive evaluations.

Our work, more generally, suggests that neural nets
for dynamics problems can benefit from architectures that
model transitions, allowing control structures that emulate
classical physical formulations.

2. Related Work
Much progress has been made on building methods to

recover 3D joint locations [60, 53, 52] or parameterized 3D
pose and shape (i.e., SMPL [48]) from observations [78].
We focus primarily on motion and shape estimation.

Learning-Based Estimation. Deep learning approaches
have shown success in regressing 3D shape and pose from
a single image [39, 34, 58, 25, 24, 87, 16]. This has led
to developments in predicting motion (pose sequences) and
shape directly from RGB video [35, 89, 68, 74, 18]. Most
recently, VIBE [37] uses adversarial training to encourage
plausible outputs from a conditional recurrent motion gen-
erator. MEVA [50] maps a fixed-length image sequence to
the latent space of a pre-trained motion autoencoder. These
methods are fast and produce accurate root-relative joint po-
sitions for video, but motion is globally inconsistent and
they struggle to generalize, e.g., under severe occlusions.
Other works have addressed occlusions but only on static
images [7, 90, 64, 22, 38]. Our approach resolves difficult
occlusions in video and other modalities by producing plau-
sible and expressive motions with HuMoR.

Optimization-Based Estimation. One may directly opti-
mize to more accurately fit to observations (images or 2D
pose estimators [13]) using human body models [20, 4, 8].
SMPLify [8] uses the SMPL model [48] to fit pose and
shape parameters to 2D keypoints in an image using pri-
ors on pose and shape. Later works consider body silhou-
ettes [41] and use a learned variational pose prior [57]. Op-
timization for motion sequences has been explored by sev-
eral works [3, 33, 47, 88, 83] which apply simple smooth-
ness priors over time. These produce reasonable estimates
when the person is fully visible, but with unrealistic dynam-
ics, e.g., overly smooth motions and footskate.

Some works employ human-environment interaction and
contact constraints to improve shape and pose estima-
tion [28, 47, 29] by assuming scene geometry is given.
iMapper [54] recovers both 3D joints and a primitive scene
representation from RGB video based on interactions by
motion retrieval, which may differ from observations. In
contrast, our approach optimizes for pose and shape by us-
ing an expressive generative model that produces more nat-
ural motions than prior work with realistic ground contact.

Human Motion Models. Early sophisticated motion mod-
els for pose tracking used a variety of approaches, including
mixtures-of-Gaussians [32], linear embeddings of periodic
motion [55, 77, 70], nonlinear embeddings [19], and non-
linear autoregressive models [75, 81, 76, 61]. These meth-
ods operate in pose space, and are limited to specific mo-
tions. Models based on physics can potentially generalize
more accurately [63, 43, 69, 62, 12, 11, 86], while also es-
timating global pose and environmental interactions. How-
ever, general-purpose physics-based models are difficult to
learn, computationally intensive at test-time, and often as-
sume full-body visibility to detect contacts [63, 43, 69].

Many motion models have been learned for computer an-
imation [10, 40, 66, 42, 46, 31, 73] including recent recur-
rent and autoregressive models [27, 23, 30, 84, 44]. These
often focus on visual fidelity for a small set of characters
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and periodic locomotions. Some have explored generating
more general motion and body shapes [91, 59, 1, 17], but in
the context of short-term future prediction. HuMoR is most
similar to Motion VAE [44], however we make crucial con-
tributions to enable generalization to unseen, non-periodic
motions on novel body shapes.

3. HuMoR: 3D Human Dynamics Model
The goal of our work is to build an expressive and gen-

eralizable generative model of 3D human motion learned
from real human motions, and to show that this can be
used for robust test-time optimization (TestOpt) of pose and
shape. In this section, we first describe the model, HuMoR.
State Representation. We represent the state of a moving
person as a matrix x composed of a root translation r ∈ R3,
root orientation Φ ∈ R3 in axis-angle form, body pose joint
angles Θ ∈ R3×21 and joint positions J ∈ R3×22:

x = [ r ṙ Φ Φ̇ Θ J J̇ ], (1)

where ṙ, Φ̇ and J̇ denote the root and joint velocities, re-
spectively, giving x ∈ R3×69. Part of the state, (r,Φ,Θ),
parameterizes the SMPL body model [48, 65] which is a dif-
ferentiable function M(r,Φ,Θ, β) that maps to body mesh
vertices V ∈ R3×6890 and joints JSMPL ∈ R3×22 given
shape parameters β ∈ R16. Our over-parameterization al-
lows for two ways to recover the joints: (i) explicitly from
J, (ii) implicitly through the SMPL map M(·).
Latent Variable Dynamics Model. We are interested in
modeling the probability of a time sequence of states

pθ(x0,x1, . . . ,xT ) = pθ(x0)

T∏
t=1

pθ(xt|xt−1) , (2)

where each state is assumed to be dependent on only
the previous one and θ are learned parameters. Then
pθ(xt|xt−1) must capture the plausibility of a transition.

We propose a conditional variational autoencoder
(CVAE) which formulates the motion pθ(xt|xt−1) as a la-
tent variable model as shown in Fig. 2. Following the orig-
inal CVAE derivation [72], our model contains two main
components. First, conditioned on the previous state xt−1,
the distribution over possible latent variables zt ∈ R48 is
described by a learned conditional prior:

pθ(zt|xt−1) = N (zt;µθ(xt−1), σθ(xt−1)) , (3)

which parameterizes a Gaussian distribution with diagonal
covariance via a neural network. Intuitively, the latent vari-
able zt represents the transition to xt and should therefore
have different distributions given different xt−1. For ex-
ample, an idle person has a large variation of possible next
states while a person in midair is on a nearly deterministic

trajectory. Learning the conditional prior significantly im-
proves the ability of the CVAE to generalize to diverse mo-
tions and empirically stabilizes both training and TestOpt.

Second, conditioned on zt and xt−1, the decoder pro-
duces two outputs, ∆θ and ct. The change in state ∆θ de-
fines the output distribution pθ(xt|zt,xt−1) through

xt = xt−1 + ∆θ(zt,xt−1) + η, η ∼ N (0, I). (4)

We find the additive update ∆θ improves predictive accu-
racy compared to direct next-step prediction. The person-
ground contact ct is the probability that each of 8 body
joints (left and right toes, heels, knees, and hands) is in con-
tact with the ground at time t. Contacts are not part of the
input to the conditional prior, only an output of the decoder.
The contacts enable environmental constraints in TestOpt.

The complete probability model for a transition is then:

pθ(xt|xt−1) =

∫
zt

pθ(zt|xt−1)pθ(xt|zt,xt−1). (5)

Given an initial state x0, one can sample a motion sequence
by alternating between sampling zt ∼ pθ(zt|xt−1) and
sampling xt ∼ pθ(xt|zt,xt−1), from t = 1 to T . This
model parallels a conventional stochastic physical model.
The conditional prior can be seen as a controller, producing
“forces” zt as a function of state xt−1, while the decoder
acts like a combined physical dynamics model and Euler
integrator of generalized position and velocity in Eq. (4).

In addition to this nice physical interpretation, our model
is motivated by Motion VAE (MVAE) [44], which has re-
cently shown promising results for single-character loco-
motion animation, also using a VAE for pθ(xt|xt−1). How-
ever, we find that directly applying MVAE for estimation
does not give good results (Sec. 5). We overcome this by ad-
ditionally learning a conditional prior, modeling the change
in state and contacts, and encouraging consistency between
joint position and angle predictions (Sec. 3.1).
Rollout. We use our model to define a deterministic rollout
function, which is key to TestOpt. Given an initial state x0

and a sequence of latent transitions z1:T , we define a func-
tion xT = f(x0, z1:T ) that deterministically maps the mo-
tion “parameters” (x0, z1:T ) to the resulting state at time T .
This is done through autoregressive rollout which decodes
and integrates xt = xt−1 + ∆θ(zt,xt−1) at each timestep.
Initial State GMM. We model pθ(x0) with a Gaussian
mixture model (GMM) containing K = 12 components
with weights γi, so that pθ(x0) =

∑K
i=1 γ

iN (x0;µiθ, σ
i
θ).

3.1. Training

Our CVAE is trained using pairs of (xt−1, xt). We consider
the usual variational lower bound:

log pθ(xt|xt−1) ≥ Eqφ [log pθ(xt|zt,xt−1)]

−DKL(qφ(zt|xt,xt−1) ‖ pθ(zt|xt−1)). (6)
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Figure 2: HuMoR CVAE Architecture. During training, given the previous state xt−1 and ground truth current state xt, the
model reconstructs x̂t by sampling from the encoder distribution. At test time we can (i) generate the next state from xt−1
by sampling from the prior distribution and decoding, (ii) infer a latent transition zt with the encoder, or (iii) evaluate the
likelihood of a given zt with the conditional prior.

The expectation term measures the reconstruction error of
the decoder. The encoder, i.e. approximate posterior, is in-
troduced for training and parameterizes a Gaussian distribu-
tion qφ(zt|xt,xt−1) = N (zt;µφ(xt,xt−1), σφ(xt,xt−1)).
The KL divergence DKL(· ‖ ·) regularizes its output to be
near the prior. Therefore, we seek the parameters (θ, φ)
that minimize the loss function

Lrec + wKLLKL + Lreg (7)

over all training pairs in our dataset, where Lrec + wKLLKL
is the lower bound in Eq. (6) with weight wKL, and Lreg
contains additional regularizers.

For a single training pair (xt−1, xt), the reconstruction
loss is computed asLrec = ||xt−x̂t||2 from the decoder out-
put x̂t = xt−1 + ∆θ(zt,xt−1) with zt ∼ qφ(zt|xt,xt−1).
Gradients are backpropagated through this sample using the
reparameterization trick [36]. The regularization loss con-
tains two terms: Lreg = LSMPL +wcontactLcontact. The SMPL
term LSMPL = Ljoint + Lvtx + Lconsist uses the output of the
body model with the estimated parameters and ground truth
shape [ĴSMPL

t , V̂t] = M(r̂t, Φ̂t, Θ̂t, β):

Ljoint = ||JSMPL
t − ĴSMPL

t ||2 (8)

Lvtx = ||Vt − V̂t||2 Lconsist = ||Ĵt − ĴSMPL
t ||2. (9)

The loss Lconsist encourages consistency between regressed
joints and those of the body model. The contact loss
Lcontact = LBCE + Lvel contains two terms. The first su-
pervises ground contact classification with a typical binary
cross entropy; the second regularizes joint velocities to be
consistent with contacts Lvel =

∑
j ĉ
j
t ||v̂t||2 with v̂t ∈ ˆ̇Jt

and ĉjt ∈ ĉt the predicted probability that joint j is in ground
contact. We set wcontact = 0.01 and wKL = 4e−4.

The initial state GMM is trained separately with
expectation-maximization on the same dataset used to train
the CVAE.
Implementation Details. To ease learning and improve
generalization, our model operates in an aligned canonical
coordinate frame at each step. All networks are 4 or 5 layer
MLPs with ReLU activations and group normalization [82].
To combat posterior collapse [49, 44, 72], we linearly an-
neal wKL during training [9]. Following [44], we also use
scheduled sampling [6] to enable long-term generation by
making the model robust to its own errors. Additional de-
tails are available in the supplementary.

4. Test-time Motion Optimization
We next use the space of motion learned by HuMoR as a

prior in TestOpt to recover pose and shape from noisy and
partial observations while ensuring plausibility.

4.1. Optimization Variables

Given a sequence of observations y0:T , either as
2D/3D joints, 3D point clouds, or 3D keypoints, we seek
the shape β and a sequence of SMPL pose parameters
(r0:T ,Φ0:T ,Θ0:T ) which describe the underlying motion
being observed. We parameterize the optimized motion us-
ing our CVAE by the initial state x0 and a sequence of
latent transitions z1:T . Then at T (and any intermediate
steps) xT = f(x0, z1:T ) is determined through model roll-
out using the decoder as previously detailed. Compared
to directly optimizing SMPL [3, 8, 33], this motion repre-
sentation naturally encourages plausibility and is compact
in the number of variables. To obtain the transformation be-
tween the canonical coordinate frame in which our CVAE is
trained and the observation frame used for optimization, we
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additionally optimize the ground plane of the scene g ∈ R3.
All together, we simultaneously optimize initial state x0, a
sequence of latent variables z1:T , ground g, and shape β.
We assume a static camera with known intrinsics.

4.2. Objective & Optimization

The optimization objective can be formulated as a max-
imum a-posteriori (MAP) estimate (see supplementary),
which seeks a motion that is plausible under our generative
model while closely matching observations:

min
x0,z1:T ,g,β

Emot + Edata + Ereg. (10)

We next detail each of these terms which are the motion
prior, data, and regularization energies. In the following, λ
are weights to determine the contribution of each term.
Motion Prior Emot. This energy measures the likelihood
of the latent transitions z1:T and initial state x0 under the
HuMoR CVAE and GMM. It is Emot = ECVAE + Einit where

ECVAE = −λCVAE

T∑
t=1

logN (zt;µθ(xt−1), σθ(xt−1))

Einit = −λinit log

K∑
i=1

γiN (x0;µiθ, σ
i
θ). (11)

ECVAE uses the learned conditional prior and Einit uses the
initial state GMM.
Data Term Edata. This term is the only modality-dependent
component of our approach, requiring different losses for
different inputs: 3D joints, 2D joints, and 3D point clouds.
All data losses operate on SMPL joints or mesh ver-
tices obtained through the body model [JSMPL

t ,Vt] =
M(rt,Φt,Θt, β) using the current shape β along with
the SMPL parameters (rt,Φt,Θt) contained in xt =
f(x0, z1:t) transformed from the canonical to observation
(i.e. camera) frame. In the simplest case, the observations
yt are 3D joint positions (or keypoints with known corre-
spondences) and our energy is

Edata , E3D
data = λdata

T∑
t=0

J∑
j=1

||pjt − yjt ||2 (12)

with pjt ∈ JSMPL
t . For 2D joint positions, each with a detec-

tion confidence σjt , we use a re-projection loss

Edata , E2D
data = λdata

T∑
t=0

J∑
j=1

σjt ρ(Π(pjt )− yjt ) (13)

with ρ the robust Geman-McClure function [8, 21] and Π
the pinhole projection. If an estimated person segmentation
mask is available, it is used to ignore spurious 2D joints.

Finally, if yt is a 3D point cloud obtained from a depth map
roughly masked around the person of interest, we use the
mesh vertices to compute

Edata , EPC3D
data = λdata

T∑
t=0

Nt∑
i=1

wbs min
pt∈Vt

||pt − yit||2 (14)

where wbs is a robust bisquare weight [5] computed based
on the Chamfer distance term.
Regularizers Ereg. The additional regularization consists of
four terms Ereg = Eskel + Eenv + Egnd + Eshape. The first two
terms encourage rolled-out motions from the CVAE to be
plausible even when the initial state x0 is far from the opti-
mum (i.e. early in optimization). The skeleton consistency
term uses the joints Jt directly predicted by the decoder
during rollout along with the SMPL joints:

Eskel =
T∑
t=1

(
λc

J∑
j=1

||pjt − pj,pred
t ||2 + λb

B∑
i=1

(lit − lit−1)2
)

with pjt ∈ JSMPL
t and pj,pred

t ∈ Jt. The second summation
uses bone lengths l computed from Jt at each step. The sec-
ond regularizer Eenv ensures consistency between predicted
CVAE contacts, the motion, and the environment:

Eenv =

T∑
t=1

J∑
j=1

λcvc
j
t ||p

j
t−p

j
t−1||2+λchc

j
t max(|pjz,t|−δ, 0)

where pjt ∈ JSMPL
t and cjt is the contact probability out-

put from the model for joint j. The contact height term
weighted by λch ensures the z-component of contacting
joints are within δ of the floor in the canonical frame.

The final two regularizers are priors on the ground and
shape. We assume the ground should stay close to initializa-
tion Egnd = λgnd||g−ginit||2. Finally, β should stay near the
neutral zero vector similar to [28, 57]: Eshape = λshape||β||2.
Initialization & Optimization. We initialize the temporal
SMPL parameters r0:T ,Φ0:T ,Θ0:T and shape β with an ini-
tialization optimization using Edata and Eshape along with two
additional regularization terms. Epose =

∑
t ||z

pose
t ||2 is a

pose prior where zpose
t ∈ R32 is the body joint angles repre-

sented in the latent space of the VPoser model [57, 28]. The
smoothness term Esmooth =

∑T
t=1

∑J
j=1 ||p

j
t−p

j
t−1||2 with

pjt ∈ JSMPL
t smooths 3D joint positions over time. After-

wards, the initial latent sequence zinit
1:T is computed through

inference with the CVAE encoder. Our optimization is im-
plemented in PyTorch [56] using L-BFGS and autograd;
with batching, a 3s RGB video takes about 5.5 min to fit.
We provide further details in the supplementary material.

5. Experimental Results
We evaluate HuMoR on (i) generative sampling tasks

and (ii) as a prior in TestOpt to estimate motion from 3D
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Future Prediction Diversity
Model Contact ↑ ADE ↓ FDE ↓ APD ↑
MVAE [44] - 25.8 50.6 85.4
HuMoR 0.88 21.5 42.1 94.9
HuMoR (Qual) 0.88 22.0 46.3 100.0

Table 1: (Left) Future prediction accuracy for 2s AMASS
sequences. Contact classification accuracy, average dis-
placement error (cm), and final displacement error (cm) are
reported. (Right) Sampling diversity over 5s rollouts mea-
sured by average pairwise distance (cm).

and RGB(-D) inputs. We encourage viewing the supple-
mentary video to appreciate the qualitative improvement
of our approach. Additional dataset and experiment details
are available in the supplementary document.

5.1. Datasets

AMASS [51] is a large motion capture database contain-
ing diverse motions and body shapes on the SMPL body
model. We sub-sample the dataset to 30 Hz and use the rec-
ommended training split to train the CVAE and initial state
GMM in HuMoR. We evaluate on the held out Transitions
and HumanEva [71] subsets (Sec. 5.3 and 5.4).
i3DB [54] contains RGB videos of person-scene interac-
tions involving medium to heavy occlusions. It provides
annotated 3D joint positions and a primitive 3D scene re-
construction which we use to fit a ground plane for com-
puting plausibility metrics. We run off-the-shelf 2D pose
estimation [13], person segmentation [14], and plane detec-
tion [45] models to obtain inputs for our optimization.
PROX [28] contains RGB-D videos of people interacting
with indoor environments. We use a subset of the qualitative
data to evaluate plausibility metrics using a floor plane fit to
the provided ground truth scene mesh. We obtain 2D pose,
person masks, and ground plane initialization in the same
way as done for i3DB.

5.2. Baselines and Evaluation Metrics

Motion Prior Baselines. We ablate the proposed CVAE to
analyze its core components: No Delta directly predicts the
next state from the decoder rather than the change in state,
No Contacts does not classify ground contacts, No LSMPL

does not use SMPL regularization in training, and Stan-
dard Prior usesN (0, I) rather than our learned conditional
prior. All of these ablated together recovers MVAE [44].
Motion Estimation Baselines. VPoser-t is the initialization
phase of our optimization. It uses VPoser [57] and 3D joint
smoothing similar to previous works [3, 33, 88]. PROX-
(RGB/D) [28] are optimization-based methods which oper-
ate on individual frames of RGB and RGB-D videos, re-
spectively. Both assume the full scene mesh is given to en-

force contact and penetration constraints. VIBE [37] is a re-
cent learned method to recover shape and pose from video.
Error Metrics. 3D positional errors are measured on joints,
keypoints, or mesh vertices (Vtx) and compute global mean
per-point position error unless otherwise specified. We re-
port positional errors for all (All), occluded (Occ), and vis-
ible (Vis) observations separately. Finally, we report bi-
nary classification accuracy of the 8 person-ground contacts
(Contact) predicted by HuMoR.
Plausibility Metrics. We use additional metrics to measure
qualitative motion characteristics that joint errors cannot
capture. Smoothness is evaluated by mean per-joint accel-
erations (Accel) [35]. Another important indicator of plau-
sibility is ground penetration [63]. We use the true ground
plane to compute the frequency (Freq) of foot-floor pene-
trations: the fraction of frames for both the left and right
toe joints that penetrate more than a threshold. We measure
frequency at 0, 3, 6, 9, 12, and 15 cm thresholds and report
the mean. We also report mean penetration distance (Dist),
where non-penetrating frames contribute a distance of 0 to
make values comparable across differing frequencies.

5.3. Generative Model Evaluation

We first evaluate HuMoR as a standalone generative
model and show improved generalization to unseen motions
and bodies compared to MVAE for two common tasks (see
Table 1): future prediction and diverse sampling. We use
2s AMASS sequences and start generation from the first
step. Results are shown for HuMoR and a modified HuMoR
(Qual) that uses JSMPL as input to each step during rollout
instead of J, thereby enforcing skeleton consistency. This
version produces qualitatively superior results for genera-
tion, but is too expensive to use during TestOpt.

For prediction, we report average displacement error
(ADE) and final displacement error (FDE) [85], which
measure mean joint errors over all steps and at the final
step, respectively. We sample 50 2s motions for each initial
state and the one with lowest ADE is considered the predic-
tion. For diversity, we sample 50 5s motions and compute
the average pairwise distance (APD) [2], i.e. the mean joint
distance between all pairs of samples.

As seen in Tab. 1, the base MVAE [44] does not gener-
alize well when trained on the large AMASS dataset; our
proposed CVAE improves both the accuracy and diversity
of samples. HuMoR (Qual) hinders prediction accuracy, but
gives better diversity and visual quality (see supplement).

5.4. Estimation from 3D Observations

Next, we show that HuMoR also generalizes better when
used in TestOpt for fitting to 3D data, and that using a mo-
tion prior is crucial to plausibly handling occlusions. 3s
AMASS sequences are used to demonstrate key abilities:
(i) fitting to partial data and (ii) denoising. For the former,
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Positional Error Joints Mesh Ground Pen
Method Input Vis Occ All Legs Vtx Contact Accel Freq Dist
VPoser-t Occ Keypoints 0.67 20.76 9.22 21.08 7.95 - 5.71 16.77% 2.28
MVAE [44] Occ Keypoints 2.39 19.15 9.52 16.86 8.90 - 7.12 3.15% 0.30
HuMoR (Ours) Occ Keypoints 1.46 17.40 8.24 15.42 7.56 0.89 5.38 3.31% 0.26
VPoser-t Noisy Joints - - 3.67 4.47 4.98 - 4.61 1.35% 0.07
MVAE [44] Noisy Joints - - 2.68 3.21 4.42 - 6.5 1.75% 0.11
HuMoR (Ours) Noisy Joints - - 2.27 2.61 3.55 0.97 5.23 1.18% 0.05

Table 2: Motion and shape estimation from 3D observations: partially occluded keypoints (top) and noisy joints (bottom).
Positional Error (cm) is reported w.r.t. the input modality. Acceleration is m/s2 and penetration distance in cm.

Figure 3: Fitting to partial 3D keypoints. HuMoR captures
non-periodic motions like jumping, crouching, and kicking.

Figure 4: From RGB-D (top) TestOpt with HuMoR outputs
3D motion, the ground plane, and contacts (bottom).

TestOpt fits to 43 keypoints on the body that resemble mo-
tion capture markers; keypoints that fall below 0.9m at each
timestep are “occluded”, leaving the legs unobservable at
most steps. For denoising, Gaussian noise with 4cm stan-
dard deviation is added to 3D joint position observations.

Tab. 2 compares to VPoser-t and to using MVAE as the
motion prior during optimization rather than HuMoR. We
report leg joint errors (toes, ankles, and knees), which are
often occluded, separately. The right side of the table re-
ports plausibility metrics. HuMoR gives more accurate
poses, especially for occluded keypoints and leg joints. It
also estimates smoother motions with fewer and less severe
ground penetrations. For denoising, VPoser-t oversmooths
which gives the lowest acceleration but least accurate mo-
tion. TestOpt with HuMoR gives inherently smooth results
while still allowing for necessarily large accelerations to fit
dynamic observations. Notably, HuMoR predicts person-
ground contact with 97% accuracy even under severe noise.
Qualitative results are shown in Fig. 1 and Fig. 3.

5.5. Estimation from RGB(-D) Observations

Finally, we show that TestOpt with HuMoR can be ap-
plied to real-world RGB and RGB-D observations, and out-
performs baselines on positional and plausibility metrics es-
pecially from partial and noisy data. We use 3s (90 frame)
clips from i3DB [54] and PROX [28]. Tab. 3 shows results
on i3DB which affords quantitative 3D joint evaluation. The
top half compares to baseline estimation methods; the bot-
tom uses ablations of HuMoR in TestOpt rather than the
full model. Mean per-joint position errors are reported for
global joint positions and after root alignment.

As seen in Tab. 3, VIBE gives locally accurate predic-
tions for visible joints, but large global errors and unrealistic
accelerations due to occlusions and temporal inconsistency
(see Fig. 5). VPoser-t gives reasonable global errors, but
suffers frequent penetrations as shown for sitting in Fig. 5.
Using MVAE or ablations of HuMoR as the motion prior in
TestOpt fails to effectively generalize to real-world data and
performs worse than the full model. The conditional prior
and LSMPL have the largest impact, while performance even
without using contacts still outperforms the baselines.

The top half of Tab. 4 evaluates plausibility on additional
RGB results from PROX compared to VIBE and PROX-
RGB. Since PROX-RGB uses the scene mesh as input to
enforce environment constraints, it is a very strong base-
line and its performance on penetration metrics is expect-
edly good. HuMoR comparatively increases penetration
frequency since it only gets a rough ground plane as ini-
tialization, but gives much smoother motions.

The bottom half of Tab. 4 shows results fitting to RGB-D
for the same PROX data, which uses both E2D

data and EPC3D
data

in TestOpt. This improves performance using HuMoR,
slightly outperforming PROX-D which is less robust to is-
sues with 2D joint detections and 3D point noise causing
large errors. Qualitative examples are in Fig. 1 and Fig. 4.

Thanks to the generalizability of HuMoR, TestOpt is also
effective in recovering very dynamic motions like dancing
from RGB video when the full body is visible (see supple-
mentary material for examples).

11494



Global Joint Error Root-Aligned Joint Error Ground Pen
Method Vis Occ All Legs Vis Occ All Legs Accel Freq Dist
VIBE [37] 90.05 192.55 116.46 121.61 12.06 23.78 15.08 21.65 243.36 7.98% 3.01
VPoser-t 28.33 40.97 31.59 35.06 12.77 26.48 16.31 25.60 4.46 9.28% 2.42
MVAE [44] 37.54 50.63 40.91 44.42 16.00 28.32 19.17 26.63 4.96 7.43% 1.55
No Delta 27.55 35.59 29.62 32.14 11.92 23.10 14.80 21.65 3.05 2.84% 0.58
No Contacts 26.65 39.21 29.89 35.73 12.24 23.36 15.11 22.25 2.43 5.59% 1.70
No LSMPL 31.09 43.67 34.33 36.84 12.81 25.47 16.07 23.54 3.21 4.12% 1.31
Standard Prior 77.60 146.76 95.42 99.01 18.67 39.40 24.01 34.02 5.98 8.30% 6.47
HuMoR (Ours) 26.00 34.36 28.15 31.26 12.02 21.70 14.51 20.74 2.43 2.12% 0.68

Table 3: Motion and shape from RGB video (i.e. 2D joints) on i3DB [54]. Joint errors are in cm and acceleration is m/s2.
Top shows results from motion estimation baselines while bottom uses ablations of HuMoR during optimization.

Figure 5: Qualitative comparison for fitting to RGB video (i.e. 2D joints) from i3DB [54]. Optimization using HuMoR (Ours)
outputs natural and plausible sitting and walking motions under heavy occlusions compared to baseline approaches.

Ground Pen
Method Input Accel Freq Dist
VIBE [37] RGB 86.06 23.46% 4.71
PROX-RGB [28] RGB 196.07 2.55% 0.32
VPoser-t RGB 3.14 13.38% 2.82
HuMoR (Ours) RGB 1.73 9.99% 1.56
PROX-D [28] RGB-D 46.59 8.95% 1.19
VPoser-t RGB-D 3.27 10.66% 2.18
HuMoR (Ours) RGB-D 1.61 5.19% 0.85

Table 4: Plausibility evaluation on videos in PROX [28].
Acceleration is m/s2 and penetration distance in cm.

6. Discussion

We have introduced HuMoR, a learned generative model
of 3D human motion leveraged during test-time optimiza-
tion to robustly recover pose and shape from 3D, RGB, and
RGB-D observations. We have demonstrated that the key
components of our model enable generalization to novel
motions and body shapes for both generative tasks and
downstream optimization. Compared to strong learning and

optimization-based baselines, HuMoR excels at estimating
plausible motion under heavy occlusions, and simultane-
ously produces consistent ground plane and contact outputs.

Limitations & Future Work. HuMoR leaves ample room
for future studies. The static camera and ground plane as-
sumptions are reasonable for indoor scenes but true in-the-
wild operation demands methods handling dynamic cam-
eras and complex terrain. Our rather simplistic contact
model should be upgraded to capture scene-person interac-
tions for improved motion and scene perception. Lastly, we
plan to learn motion estimation directly from partial obser-
vations which will be faster than TestOpt and enable sam-
pling multiple plausible motions rather than relying on a
single local minimum.
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