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Abstract

Generating an interpretable and compact representation
of 3D shapes from point clouds is an important and chal-
lenging problem. This paper presents CSG-Stump Net, an
unsupervised end-to-end network for learning shapes from
point clouds and discovering the underlying constituent
modeling primitives and operations as well. At the core
is a three-level structure called CSG-Stump, consisting of
a complement layer at the bottom, an intersection layer in
the middle, and a union layer at the top. CSG-Stump is
proven to be equivalent to CSG in terms of representation,
therefore inheriting the interpretable, compact and editable
nature of CSG while freeing from CSG’s complex tree struc-
tures. Particularly, the CSG-Stump has a simple and regu-
lar structure, allowing neural networks to give outputs of a
constant dimensionality, which makes itself deep-learning
friendly. Due to these characteristics of CSG-Stump, CSG-
Stump Net achieves superior results compared to previous
CSG-based methods and generates much more appealing
shapes, as confirmed by extensive experiments.

1. Introduction
Shape is a geometric form, which helps us understand

objects, surrounding environments and even the world.
Therefore shape modeling and understanding has always
been a research topic in computer vision and graphics. Vari-
ous representations have been developed for 3D shapes. Ex-
amples are point clouds [23, 24, 35, 30], 3D voxels [34], im-
plicit fields [16, 19, 5, 10, 4, 26, 17], meshes [9, 1, 32, 22,
36], and parametric representations [28, 11]. With the ad-
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Figure 1. A CAD model (a) can be represented as either a CSG
representation (b) or a CSG-Stump representation (c). CSG-Stump
is equivalent to CSG but frees from CSG’s irregular tree structure.
Thus CSG-Stump is more friendly to optimization formulation and
network designs. Here nodes “I”, “U”, “D”, and “C” denote inter-
section, union, difference, and (shape) complement, respectively.

vance in 3D acquisition technologies, point clouds are eas-
ily generated, but they are a set of unstructured points and
lack explicit high-level structure and semantic information.
There is a great demand for converting point clouds to high-
level shape representations that help recognize and under-
stand the shapes, supporting the designer to re-create new
products and facilitate various applications such as building
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the digital twins of products and systems [15]. Particularly,
reverse engineering (RE) technologies, especially recon-
structing implicit or parametric (CAD) models from point
clouds, have been extensively studied in engineering. How-
ever, most prior art involves a tedious and time-consuming
process and has difficulty in fully addressing the require-
ments of the industry, which actually indicates a need of a
paradigm shift.

In recent years, deep learning has achieved substantial
success in areas such as computer vision and natural lan-
guage processing and shows great potential in solving com-
plex problems that are difficult to be solved with traditional
techniques. The exploration of deep learning techniques for
high-level shape reconstruction from point clouds also gains
much popularity. In particular, a few works exploit neu-
ral network techniques for parsing point cloud models into
their Constructive Solid Geometry (CSG) tree [13], which
is a widely used 3D representation and modeling process-
ing in the CAD industry. CSG models a shape by iteratively
performing Boolean operations on simple parametric prim-
itives, usually followed by a binary tree (see Fig. 1). Thus
CSG is an ideal model for providing compact representa-
tion, high interpretability, and editability. However, the bi-
nary CSG-Tree structure introduces two challenges: 1) it is
difficult to define a CSG-Tree with a fixed dimension for-
mulation; 2) the iterative nature of CSG-Tree construction
cannot be formulated as matrix operations and a long se-
quence optimization suffers varnishing gradients.

CSG-Net [28] pioneers deep learning based CSG pars-
ing by employing an RNN for the tree structure prediction.
However, CSG-Net requires expensive annotations with ex-
pert knowledge, which is difficult to scale. BSP-Net [3]
and CVX-Net [7] propose to leverage a set of paramet-
ric hyperplanes to represent a shape, but abundant hyper-
planes are needed to approximate curved surfaces. Over-
all, these methods are still not efficient, interpretable, or
easy-editable. More importantly, these methods assume a
frozen combination among predicted hyperplanes during in-
ference, which effectively collapses into a fixed order of
operations, limiting its theoretical representability. UCSG-
Net[11] proposes the CSG-Layer to generate highly inter-
pretable shapes by a multi-layer CSG-Tree iteratively, but
only a few layers can be supported (five layers in UCSG-
Net) because of the optimization difficulty, which greatly
restricts the diversity and representation capability.

In this paper, we propose CSG-Stump, a novel and sys-
tematic reformulation of CSG-Tree. CSG-Stump has a fixed
tree structure of only three layers (hence the name stump).
We prove that CSG-Stump is equivalent to typical CSG-
Tree in terms of representation, i.e., we can represent any
complex CSG shape by our three-layer CSG-Stump (see
Fig.1). Therefore, CSG-Stump inherits the ideal character-
istics of CSG-Tree, allowing highly compact, interpretable

and editable shape representation while freeing from the
limitations of a tree structure. Moreover, CSG-Stump gives
rise to two additional advantages: 1) High representation
capability. The maximum representation capability can be
realistically achieved with CSG-Stump, as opposed to a
conventional CSG-Tree that needs many layers for complex
shapes. 2) Deep learning-friendly. The consistent structure
of CSG-Stump allows neural networks to give fixed dimen-
sion output, making network design much easier.

We also propose two methods to automatically con-
struct CSG-Stump from unstructured raw inputs, e.g., point
clouds. The first approach is to detect basic primitives using
off-the-shelf methods, e.g. RANSAC [27], and then convert
the problem to a Binary Programming problem to estimate
the primitive constructive relations. To overcome the is-
sues such as precision requirements on the inputs, manual
parameter tuning and scalability due to the combinational
nature of the problem, we in the second approach design
a simple end-to-end network for joint primitive detection
and CSG-Stump estimation (see Sec. 4). This data-driven
approach is more efficient. Moreover, it can learn useful
priors for primitive detection and assembly from large scale
data. Notably, this network is trained in an unsupervised
manner, i.e., without the need of expensive annotations of
CSG parsing trees from trained professionals. Experimen-
tal results show that our CSG-Stump exhibits remarkable
representation capability while preserving the interpretable,
compact and editable nature of CSG representation.

In summary, the paper has the following contributions:
• We propose CSG-Stump, a three-layer reformulation of

the classic CSG-Tree for a better interpretable, trainable
and learning friendly representation, and provide theoret-
ical proof of the equivalence between CSG-Stump and
CSG-Tree.

• We demonstrate that CSG-Stump is highly compatible
with deep learning. With its help, even a simple unsu-
pervised end-to-end network can perform dynamic shape
abstraction.

• Extensive experiments are conducted to show that CSG-
Stump achieves state-of-the-art results both quantitatively
and qualitatively while allowing further edits and manip-
ulation.

2. Related Work
This section briefly reviews 3D shape representation,

neural point cloud learning and high-level shape parsing and
reconstruction, which are relevant to our work.
3D Shape Representation. In 3D computer vision, diverse
representations are designed and proposed for different ap-
plications, each containing its own advantages and draw-
backs. Point cloud is the widely adopted raw input for-
mat for 3D data due to its flexibility in representing shape
details and wide usages in data collection [23, 24, 35],
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but its unstructured nature makes it hard to edit. Mesh
is simple to use and render, but its variant topology re-
quires additional processes for learning [9, 1]. Volumet-
ric representation extends 2D grid representation of im-
ages to 3D voxels, making it easy to incorporate innovative
network designs in 2D, but the memory and computation-
hungry nature limit its resolutions, leading to the lack of
geometry details [37, 25, 34, 33, 6]. Implicit representa-
tion frees from topology and resolution issues, but heavy
computation is required for tessellation and mesh genera-
tion [16, 19, 10, 4, 5, 26, 17]. Moreover, these representa-
tions do not account for the structural and semantic organi-
zation of 3D shapes.
Point Cloud Learning. 3D raw inputs are usually in the
form of point clouds. Qi et al. [23, 24] pioneered 3D
deep learning on point clouds by introducing permutation-
invariant feature learning and multi-scale feature aggrega-
tion. Wang et al. [35] explored neighborhood information
via a dynamically constructed graph and edge convolution.
More recently, Thomas et al. [30] proposed Kernel Point
as a new convolution operator and achieved a state-of-the-
art result on common benchmarks. In this paper, we focus
on structural shape fitting instead of point cloud feature ex-
traction. In particular, for simplicity, we use DGCNN [35]
as our backbone, and minimal effort is required to swap to
other point cloud encoders.
High-Level Shape Parsing and Reconstruction. Re-
cently, there has been an increasing interest in parsing the
shape to its high-level representations. For example, gen-
erating parametric shapes using data-driven methods has
gained popularity. Tulsiani et al. [31] pioneered deep learn-
ing based parametric shape representation by abstracting
a shape as a union of boxes. Paschalidou et al. [20] em-
ployed superquadrics instead of boxes as basic primitives to
achieve better approximation. Both methods only support
the union operation, which limits the representation capa-
bility. In contrast to solid primitives, Li et al. proposed
SPFN [14], a supervised method for parametric surface pre-
diction. SPFN does not consider the mutual relations among
the predicted primitives, which leads to improperly gener-
ated shapes. BSP-Net [3] and CVX-Net [7] achieved re-
markable results by exploring half-space partition. These
two methods require a large number of planes to approxi-
mate non-planar surfaces. Hence, though parametric, they
are still less interpretable.

CSG [13] is a modeling procedure and a representation
for 3D Shapes as well. CSG is widely used in industrial
software like SolidWorks [29] and OpenSCAD [12] due
to its intuitive and powerful concept. In [8], a normalized
CSG representation was proposed for fast rendering by re-
arranging CSG operations into union of intersections. How-
ever, the normalized CSG is still a tree structure with vary-
ing depths, which makes it difficult to be directly inferred

by a neural network. Recently, a few methods have been
proposed to tackle this problem. Sharma et al. [28] used
RNN to generate a sequence of primitives and operations
in a supervised manner and then parsed the sequence as a
CSG-Tree. Annotating parsing trees for a large corpus of
3D shapes however requires professional knowledge and te-
dious annotation processes. UCSG-Net [11] took an unsu-
pervised approach but required iterative operand selections
for each tree branch. This iterative process makes it hard to
extend to a very deep structure (only 5 levels in the paper)
due to gradient vanishing.

Our proposed CSG-Stump squashes a CSG-Tree of arbi-
trary depth into a fixed three-layer representation and uses
connection matrices to represent variations in different CSG
relations. This regular structure alleviates the problem of
handling tree structures and makes it much easier to be in-
corporated in a network.

3. CSG-Stump
This section presents CSG-Stump, a three-layer tree rep-

resentation for 3D shapes. At the top is a union layer with
only one node. In the middle is an intersection layer, and at
the bottom is a complement layer (see Fig. 1). CSG-Stump
also contains a set of primitive objects. The nodes at the
complement layer correspond to the primitives one-to-one.
Nodes at different layers contain some information for oper-
ations, as indicated by their names. Specifically, the nodes
at the complement layer store whether the complement op-
eration is performed on their corresponding primitives. The
nodes at the intersection layer record which shapes gener-
ated in the bottom layer are selected for the intersection op-
eration. The node at the top layer records which shapes
generated in the intersection layer are selected for the union
operation.

To facilitate discussion and analysis, we also introduce
two special shapes as primitives: the whole space and the
empty set denoted by U and ∅, respectively. The comple-
ment of a shape is implemented by the difference of the
shape with the whole space. Intersecting an object with U
gives the object itself. Similarly, a union of an object and ∅
also returns the object itself.

For each layer in the CSG-Stump, we introduce a con-
nection matrix to encode the information for its nodes.
Specifically, we define a 1 ×K matrix WC ∈ {0, 1}K for
the complement layer, where K is the number of the primi-
tives; a K×C matrix WI ∈ {0, 1}K×C for the intersection
layer, whereC(≤ K) is the number of nodes in the intersec-
tion layer; and a C × 1 matrix WU ∈ {0, 1}C for the union
layer. Each entry in these matrices takes a value of either 1
or 0. In particular, WC [1, i] = 0 or 1 encodes whether the
shape of primitive i or its complement is used for node i of
the complement layer. If WI [j, i] = 1, the shape from node
j in the complement layer is selected for the intersection in
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node i of the intersection layer, and similarly, WU [j, 1] im-
plies that the shape from node j in the intersection layer is
selected for the union operation at the top layer. In this way,
CSG-Stump represents a shape by a set of primitive shapes
and three connection matrices.

Similar to the CSG-Tree, CSG-Stump is a hierarchical
representation with nodes storing operation information, but
with fixed three layers. The CSG-Tree representation is
usually organized as a binary tree with many layers, which
makes the prediction of primitives and Boolean operations
a tedious and challenging iterative process [11, 28]. Partic-
ularly, working with a long sequence not only causes prob-
lems in gradient feedback but also is sensitive to the order
of primitives and Boolean operations. In contrast, CSG-
Stump has a fixed type of Boolean operations at each layer
and only requires determining three binary connection ma-
trices, which makes CSG-Stump learning friendly.

3.1. Function Representation

To facilitate shape analysis and problem formulation, we
describe the nodes of CSG-Stump by mathematics func-
tions. First, we define a shape O by an occupancy function
O(x) : R3 → {0, 1} as follows:

O(x) =

{
1, x is within the shape
0, otherwise (1)

which encodes the occupancy of the shape in 3D space.
Here we use O for both the shape and its occupancy func-
tion, and we adopt the same convention in the rest of the
paper where there is no ambiguity. Thus U(x) ≡ 1 and
∅(x) ≡ 0. The Boolean operations can then be formulated
by simple mathematics functions. In particular, the com-
plement of primitive object Oi can be defined by function
Oc

i (x) = 1 − Oi(x), the intersection of k objects,
⋂k

i Oi,
by mini=1...k(Oi(x)), the union of k objects,

⋃k
i Oi, by

maxi=1...k(Oi(x)), and the difference Oi − Oj of two ob-
jects Oi and Oj by min (Oi(x), 1−Oj(x)).

With the binary connection matrices WC , WI and WU ,
each node in the CSG-Stump structure can be defined by a
certain function.

• For each node i = 1, · · · ,K in the first layer, its shape
Fi can be defined by function Fi(x):

Fi(x) =WC [1, i]×(1−Oi(x))+(1−WC [1, i])Oi(x).
(2)

• For each node i = 1, · · · , C in the second layer, its
shape Si is an intersection of nodes from the first layer,⋂K

j=1 Fj , and can thus be defined by function Si(x):

Si(x) = min
1≤j≤K

(WI [j, i]×Fj(x)+(1−WI [j, i])×1).

(3)

• For the node in the third layer, its shape T is the union
of nodes from the second layer,

⋃C
j=1Sj , and can thus

be defined by function T (x):

T (x) = max
1≤j≤C

(WU [j, 1]×Sj(x)+(1−WU [j, 1])×0).

(4)

3.2. Equivalence of CSG-Stump and CSG-Tree

It is easy to verify that a CSG-Stump structure can
be converted into a binary CSG-Tree due to the fact that
∪n
i=1pi = p1 ∪ (p2 ∪ (· · · (pn−1 ∪ pn))) and ∩n

i=1pi =
p1∩ (p2∩ (· · · (pn−1∩pn))) where pi represent some solid
shapes. The reverse is also true. That is, an arbitrary bi-
nary CSG-Tree can be represented by a CSG-Stump struc-
ture without loss of information, which we prove below.

In fact, let P = p1, p2, · · · , pk be a set of primitive
shapes, and ⊗ = {∩,∪, \} be Boolean operations. We need
to prove that a shape defined by a CSG-Tree with primi-
tives P and boolean operations ⊗ can be represented by a
CSG-Stump structure.
Base Case: First we prove that any Boolean operation of
2 primitives p1 and p2 can be represented by a CSG-Stump.
This is straightforward since

p1 ∩ p2 = (p1 ∩ p2) ∪ ∅ (5)

p1 ∪ p2 = (p1 ∩ U) ∪ (p2 ∩ U) (6)

p1 \ p2 = (p1 ∩ pc2) ∪ ∅ (7)

Inductive Step: Next, we assume that any CSG-Tree with
less than n + 1 primitives can be represented by a CSG-
Stump. Now consider a shape β represented by a CSG-Tree
with n + 1 primitives. The tree is split into two sub-trees
at the root node: β = β1 ⊗ β2, where β1, β2 represent the
shapes defined by the sub-trees and ⊗ is the Boolean op-
eration at the root node. Since obviously each of the two
sub-trees contains at most n primitives, they can be repre-
sented by CSG-Stump.

Let β1 = γ1 ∪ · · · ∪ γm and β2 = η1 ∪ · · · ∪ ηh where
γi, ηj are the intersections of primitives or their comple-
ments. We examine the expressions under different Boolean
operations.

• Union

β1 ∪ β2 = γ1 ∪ · · · ∪ γm ∪ η1 ∪ · · · ∪ ηh (8)

• Intersection

β1 ∩ β2 = (β1 ∩ η1) ∪ · · · ∪ (β1 ∩ ηh)
= (γ1 ∩ η1) ∪ · · · ∪ (γm ∩ η1)∪

...
(γ1 ∩ ηh) ∪ · · · ∪ (γm ∩ ηh)

(9)
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• Difference

β1 \ β2 = β1 ∩ βc
2 = β1 ∩ (ηc1 ∩ · · · ∩ ηch)

= (γ1 ∩ ηc1 ∩ · · · ∩ ηcn)∪
...
(γm ∩ ηc1 ∩ · · · ∩ ηch)

(10)
A similar expression can be derived for β2 \ β1.

All above derivations indicate that β can be converted to
a CSG-Stump. By mathematical induction, we can con-
clude that any CSG-tree can be expressed by a CSG-Stump.
Hence we theoretically show the equivalence between CSG
and CSG-Stump.

3.3. Binary Programming Formulation
Now let us consider our problem: the input is a shape

given by a point cloud X = {xi}N consisting of a list of
3D points xi, and we want to reconstruct a CSG-like repre-
sentation for the shape. With the CSG-Stump, we can come
up with a possible solution. We first obtain the target shape
occupancy Oi by [16] and detect the underlying primitives
with a RANSAC-like method [27]. Then reconstructing a
CSG-Stump representation is simplified to finding the three
connection matrices. This can be formulated as a Binary
Programming problem. In particular, let Ok(i) represents
the occupancy value of testing point i for primitive k and
T (i) represents the estimated occupancy of point i. The
connection matrices WC ,WI and WU for the selection pro-
cess of CSG-Stump are the solution of the following mini-
mization problem:

min.
W{C,I,U}

1

N

N∑
i

∥T (i)−Oi∥

s.t. T (i) = max
j

{Sj(i)×WU [j, 1]}

Sj(i) = min
k

{Fk(i)×WI [k, j] + (1−WI [k, j])}

Fk(i) = (1−Ok(i))WC [1, k] +Ok(i)(1−WC [1, k])

WI ,WU ,WC ∈ {0, 1}, Ok(i) ∈ {0, 1} (11)

4. CSG-Stump Net
When a relatively large number of primitives are re-

quired to represent a shape, Binary Programming typically
fails to obtain an optimal solution in polynomial time due to
the combinational nature of the problem. We therefore pro-
pose a learning-based approach by designing CSG-Stump
Net to jointly detect primitives and estimate CSG-Stump
connections. As illustrated in Fig. 2, CSG-Stump Net first
encodes a point cloud into a latent feature and then decodes
it into primitives and connections via the primitive head and
the connection head respectively, followed by occupancy
calculation and CSG-Stump construction.

We directly employ an off-the-shelf backbone, i.e.
DGCNN [35], as the encoder. Note that our framework is

Figure 2. CSG-Stump Net architecture. An input point cloud is fed
into an encoder to generate its feature vector. Then the feature vec-
tor is decoded by a dual-headed decoder into primitive parameters
and CSG-Stump connection weights. Then the Occupancy Cal-
culator computes occupancies on testing points of each predicted
primitive. Finally, the CSG-Stump constructor recovers the over-
all shape occupancy based on predicted connection weights and
primitive occupancies.

fully compatible with other backbones as well. We discuss
the decoder, occupancy calculator, and CSG-Stump con-
structor in detail as follows.

4.1. Dual-Headed Decoder

We first enhance the latent feature with three fully-
connected layers ([512, 1024, 2048]), and then use two dif-
ferent heads to further decode the feature into primitive pa-
rameters and connection matrices.
Primitive Head. Primitive head decodes latent features
into a set ofK parametric primitives where each parametric
primitive is represented by intrinsic and extrinsic parame-
ters. Intrinsic parameters q model the shape of the primitive,
such as sphere radius and box dimensions, whereas extrin-
sic parameters model the global shape transformation com-
posed of a translation vector t ∈ R3 and a rotation vector
in quaternion form r ∈ R4. We select four typical types of
parametric primitives, i.e., box, sphere, cylinder and cone,
as the primitive set, which are standard primitives in CSG
representation. For simplicity, we predict equal numbers of
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K primitives for each type.
CSG-Stump Connection Head. CSG-Stump leverages bi-
nary matrices to represent Boolean operations among dif-
ferent primitives. We use three dedicated single layer pre-
ceptrons to decode the encoded features into the connection
matrices WC , WI and WU . As binary value is not differen-
tiable, we relax this constraint by predicting a soft connec-
tion weight in [0, 1] using the Sigmoid Function.

4.2. Differentiable Occupancy Calculator

To generate primitive’s occupancy function in a differ-
ential fashion, we first compute the primitive’s Signed Dis-
tance Field (SDF) [19] and then convert it to occupancy [16]
differentially.

Denoting the corresponding operations for the extrinsic
parameters of a primitive as translation T and rotation R,
point x in the world coordinate can be transformed to point
x′ in a local primitive coordinate as x′ = T−1(R−1(x)).
Afterward, SDF can be calculated according to the math-
ematical formulation of different primitives. For detailed
SDF computation regarding each type of primitives, please
refer to the Supplementary Material.

Inspired by [7], SDF is further converted to occupancy
by a sigmoid function Φ:

O(x) = Φ(−η × SDF (x)), (12)

where the scalar η is a hyperparameter indicating the sharp-
ness of the conversion to occupancy.

4.3. CSG-Stump Constructor

Given the predicted primitives occupancy and connec-
tion matrices, we can finally calculate the occupancy of
the overall shape using the formulations of CSG-Stump de-
scribed in Sec. 3.1. Note that the complement layer output
in (2) can now be written as:

Fi(x) =WC [1, i]× Φ(η × SDF (x))+

(1−WC [1, i])× Φ(−η × SDF (x)). (13)

Though the above CSG-Stump construction process is
differentiable and can be directly used in CSG-Stump Net.
The gradient can still varnish considering the min and max
operations only allow gradient back-propagation on the
minimal and maximal values. Hence we propose a relaxed
version, min* and max*, using weighted softmax functions:

max∗(x) = σ(ψ · x) · x, (14)
min∗(x) = σ(−ψ · x) · x,

where σ is a softmax function and ψ denotes the modulating
coefficient.

4.4. Training and Inference

Training. We train CSG-Stump Net end-to-end in an un-
supervised manner. CSG-Stump Net learns to predict a
CSG-Stump with primitives and their connections without
explicit ground truth. Instead, the supervision signal is
quantified by the reconstruction loss between the predicted
and ground truth occupancy. Specifically, we sample testing
points X ∈ RN×3 from the shape bounding box and mea-
sure the discrepancy between the ground truth occupancy
O∗ and the predicted occupancy Ô as follows:

Lrecon = Ex∼X ||Ôi −O∗
i ||22. (15)

In our experiments, we observe that testing points far
away from a primitive surface have gradients close to zero,
thus stalling the training process. To address this issue, we
propose a primitive loss to pull each primitive surface to its
closest test point, which prevents the gradient from vanish-
ing. We define this loss term as

Lprimitive =
1

K

K∑
k

min
n
SDF 2

k (xn), (16)

where SDFk(xn) computes the SDF of test point xn to
primitive k.

Finally, the overall objective can be defined as the joint
loss of the above two terms:

Ltotal = Lrecon + λ · Lprimitive, (17)

where the balance parameter λ is set to 0.001 empirically.

Inference. During inference, we follow the same pro-
cedure as training except that we binarize predicted con-
nection matrices with a threshold 0.5 to fulfill the binary
constraint and generate an interpretable and editable CSG-
Stump representation.

5. Experiments
In this section, we evaluate CSG-Stump and CSG-Stump

Net, respectively. We first demonstrate that our CSG-Stump
theoretical framework can achieve optimal solutions by us-
ing several toy examples. Then, we evaluate our practi-
cal CSG-Stump Net on a large-scale dataset with extensive
comparisons and ablation studies.

5.1. Evaluate CSG-Stump

To validate the expressiveness of CSG-Stump, we use
the Binary Programming formulation in Sec. 3.3 to find the
optimal solution for CSG-Stump. Particularly, to demon-
strate the equivalence between CSG-Stump and CSG, we
manually create a toy dataset using OpenSCAD [12], which
is constructed by a CSG modeling process with different
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Figure 3. Examples of our estimated CSG-Stump connections,
where nodes “I”, “U” and “C” represent intersection, union and
shape complement.

Boolean operations and different primitives. Our dataset
consists of six complex shapes, where each shape is con-
structed with around six primitives with different CSG-
Tree. The details of the dataset can be found in the sup-
plementary.

We optimize the problem by randomly sampling N =
1000 testing points inside the shape bounding box. To get
rid of the influence of primitive detection and target oc-
cupancy estimation, the input primitive occupancy Ôik for
point i and primitive k is directly calculated on the ground
truth primitives, while the target occupancy Oi is computed
from the target shape. We optimize the binary CSG-Stump
weight variables, i.e., WC , WI , and WU , by using the off-
the-shelf Gurobi solver [18].

In our experiments, the solver can find the optimal so-
lution and converge to zero objective loss within a minute
for the toy dataset. Two CSG-Stump parsed examples are
shown in Fig. 3. However, the solver fails to find an opti-
mal solution within a reasonable time limit when we test on
some complex shapes from ShapeNet Dataset [2]. This is
likely because of the combinatorial complexity of the op-
timization problem and noisy input shapes. Therefore, we
propose a deep learning based CSG-Stump Net solution.

5.2. Evaluate CSG-Stump Net

Dataset. We evaluate CSG-Stump Net on ShapeNet
dataset [2] with the standard splits. We randomly sample
2048 points on a shape surface as an input point cloud and
generate N = 2048 points in the shape bounding box as
testing points. The target occupancy for testing points are
obtained following [16]. In our experiments, we found that
randomly sampled testing points tend to miss reconstruct-
ing thin structures. Therefore, we use a balanced sampling
strategy (1 : 1 for inside and outside points) during training.
Implementation Details. CSG-Stump Net is implemented
in Pytorch [21] and is optimized with the Adam solver with
a learning rate of 10−4. We distributively train the network
on 16 nVIDIA V100 32GB GPUs with a batch size of 32.
It took about one week to converge on all 13 classes.

In our experiments, we setK = 256 andC = 256 for the
intersection layer. We demonstrate their impacts on results

in the ablation studies. As most shapes in ShapeNet dataset
can be constructed with just intersection and union, we di-
rectly set complement weight WC to zeros. We also try to
learn a dynamic complement weight WC , which results in
a slightly better performance with more learning space and
higher computational burden. For hyper-parameters in (12)
and (14), we set σ = 75 and ψ = 20, empirically.
Comparisons. We compare our method with both CSG-
like methods, i.e. UCSG-Net [11], and primitive decompo-
sition methods, including VP [31] and SQ [20]. We evalu-
ate results on the L2 Chamfer Distance between 2048 sam-
pled points on a reconstructed shape and those on the cor-
responding ground truth following UCSG-Net. The quanti-
tative results are reported in Table 1. Note that the results
of VP, SQ and UCSGNet are those reported in UCSG-Net.
We can see that CSG-Stump Net outperforms both kinds of
methods and improve previous SOTA results by over 9%.
Fig. 4 shows the qualitative comparison with the CSG-like
counterpart, i.e. UCSG-Net. We can see that our method
achieves much better geometry approximation and structure
decomposition in comparison to oracle shapes.

Table 1. 3D Reconstruction quantitative results measured by L2

Chamfer Distance (CD) on ShapeNet Dataset. Our CSG-Stump
Net outperforms the baselines by convincing margins. The CD
values are multiplied by 1000 for easy reading.

VP [31] SQ [20] UCSGNet [11] Ours
CD 2.259 1.656 2.085 1.505

Performance on Compactness. Fig. 5 shows the gener-
ated CSG-stump structures of the car and lamp examples.
We can see that only a small subset of intersection nodes is
used to construct the final shape, which suggests that the ob-
tained structure is compact. Interestingly, the automatically
learned intersection nodes are consistent with the semantic
part decomposition of the car and lamp, which may be use-
ful for other tasks such as part segmentation.
Performance on Editability. As CSG-Stump is equivalent
to CSG, we are allowed to edit primitives and CSG-Stump
connections for further designs. Specifically, we imple-
mented a simple adaptor to convert our outputs to the input
format of OpenSCAD files, where OpenSCAD is an open-
sourced CAD software. By leveraging OpenSCAD’s edit-
ing user interface and CSG-Stump Net, a user can achieve a
design aim directly based on a point cloud (see Fig. 6).
Ablation on the Number of Primitives. The max num-
ber of available primitives is an important factor of CSG-
Stump. Intuitively, more available primitives lead to a bet-
ter approximation. However, too many primitives can make
results complex and not editable as well as increase the
network complexity and inference computation. Table 2
shows CD results under different numbers of primitives. We
can see that allowing more primitives improves the perfor-
mance.
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Figure 4. Comparisons of the reconstruction results of CSG-Stump Net and UCSG-Net [11].

Figure 5. Two examples show how a car and a lamp can be con-
structed with a small number of parts of intersection nodes. The
decomposition is compact, interpretable, and consistent with the
semantic parts of cars and lamps. Note that we only show the vis-
ible parts.

Figure 6. A editing workflow. A CAD-compatible shape is firstly
recovered from a point cloud by CSG-Stump Net, then users can
edit it in a CAD software for novel designs.

Ablation on the Number of Intersection Nodes. Apart
from the number of available primitives, the number of in-
tersection nodes also affects the overall quality of results.
Table 3 shows the CD results under different numbers of in-
tersection nodes. In general, more intersection nodes lead
to better results but at the cost of reducing compactness and
increasing network complexity.

Table 2. Chamfer Distances of Airplane class under different num-
bers of available primitives.

# Primitives 256 128 64 32
CD 1.22 1.28 1.40 1.44

Table 3. Chamfer Distances of Airplane class under different num-
bers of intersection nodes.

# Intersection Nodes 256 128 64 32
CD 1.22 1.37 2.28 2.26

Ablation on the Type of Primitives. Experience in CAD
modeling has shown that more kinds of primitives can in-
crease the modeling ability of CSG while increasing com-
plexity in modeling software. We study how different avail-
able types of primitives affect overall results quantitatively
in Table 4 and qualitatively in Fig. 7. We can see that
CSG-Stump Net can well approximate a shape with differ-
ent kinds of primitives.

Figure 7. Different types of Primitives: From left to right are the
results only using box, using box and cylinder (see fuselage), and
using all types (e.g. cone for airplane nose), respectively.

Table 4. Chamfer Distance (CD) results of Airplane class with dif-
ferent primitive types.

Box Box Cylinder All Types
CD 1.27 1.24 1.22

6. Conclusion
We have presented CSG-Stump, a three-level CSG-like

representation for 3D shapes. While it inherits the compact,
interpretable and editable nature of CSG-Tree, it is learning-
friendly and has high representation capability. Based on
CSG-Stump, we design CSG-Stump Net, which can be
trained end-to-end in an unsupervised manner. We demon-
strate through extensive experiments that CSG-Stump out-
performs existing methods by a significant margin.
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